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Dedicated to the seekers of beauty everywhere

I have long been thinking how to best illustrate the beauty of
mathematics, and this book is the culmination of many attempts,

thoughts, and trials that I have finally put on paper in an
attempt to expose them to the silent scrutiny of cold print.

—The author.



The Beauty of Mathematics

In numbers’ dance, a silent symphony plays,
A realm where logic and grace entwine their ways.
Infinite truths in finite forms concealed,
In mathematics, the universe revealed.

From zero’s void to infinity’s grand span,
The language of cosmos, known to man.
Prime numbers, the building blocks of all,
Stand alone, their secrets quietly call.

Patterns in nature, Fibonacci’s code,
Golden ratios where beauty strode.
In fractals’ maze, endless, self-repeating,
A glimpse of the divine in each small meeting.

Geometry’s lines, precise and ever true,
Shapes and angles in harmonious view.
The circle, perfect, endless in its curve,
A symbol of unity, both calm and verve.

In algebra’s realm, variables entwine,
Equations whisper, secrets to define.
Polynomials with roots complex and real,
Reveal a world beyond what senses feel.

Calculus, where motion meets still thought,
Rates of change in elegance are caught.
Derivatives, integrals, bound in their dance,
Describing worlds in a single glance.

Statistics, where chance and certainty blend,
Predictions made on data’s trend.
The bell curve, its gentle rise and fall,
Mapping life’s randomness, encompassing all.

In probability’s paradoxical play,
Certainty in chaos finds its way.
Schrödinger’s cat, both dead and alive,
Quantum realms where probabilities thrive.

Symmetry’s allure, a mathematician’s delight,
Mirroring nature in left and right.
Group theory’s elegance, abstract and pure,
Invariants that through transformation endure.

Topology, where surfaces twist and turn,
Dimensions folded, beyond sight we learn.
The Möbius strip, with its single side,
Challenges the concept of space’s divide.

Complex numbers, where real meets the dreamed,
Imaginary units, elegantly schemed.
Euler’s identity, a marvel concise,
Where e, i, and � in unity splice.

Mathematics, a bridge ’tween earth and sky,
A quest for truth that never will die.
Each theorem a step on an endless ascent,
Towards understanding, our minds are sent.

The Pythagorean theorem, ancient and wise,
In right-angled triangles, its truth lies.

a2 + b2 = c2’s might,
A beacon of logic in the night.

Fourier transforms, harmonies dissect,
Waves into frequencies, patterns we detect.
Signal processing, a world unseen,
Mathematics turns the abstract serene.

Game theory’s strategies, choices arrayed,
In conflict and cooperation played.
Nash’s equilibrium, a delicate balance,
Rational minds in competitive valance.

In cryptography, secrets safely hide,
Algorithms guard on data’s tide.
Prime factors in RSA’s firm hold,
Encrypting messages, stories untold.

Set theory, where infinity unfolds,
Cantor’s diagonal, a paradox bold.
The continuum hypothesis, forever debated,
In the realm of the infinite, truth is fated.

Mathematics, an art, a science, a key,
Unlocking the secrets of reality.
From the simple to the complex intertwined,
The beauty of numbers, a gift to mankind.

In every equation, a story is told,
In every proof, a truth to behold.
Mathematics, a tapestry, woven with care,
A testament to the wonder we all share.

Thus, in the abstract, beauty does lie,
In the patterns and structures that defy
The limits of our sight, our mortal ken,
Mathematics, the purest of all human pen.

By chatGPT 4o, May 2024.

Beauty is truth, truth beauty, that is all Ye know on earth, and all ye need to know.
—John Keats.
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Let’s start with two imaginary (but very likely) conversations.
1. A typical conversation between two people on the street.
A. Who are you going to vote for?
B. Ms. so and so. She is first rate, as well as the best choice for our country. I’m

certain of it.
A. What political party do you belong to?
B. The Nationalist party. We have the interest of the nation in mind. Yes, I know

it for a fact.
A. How can we improve the economy?
B. That’s obvious. The government has to increase taxes, subsidize the corn farmers,

drop the interest rate by at least 2%, and eliminate the tari⌃ on imported alcohol.
A. How much is 2% of 15 billion?
B. I don’t know. This is math, and I’ve never been good at math. In fact, I’ve

always hated it. Let’s get back to the economy. I have more ideas.

2. Interviewing a candidate for the secret service.
A. You understand that this is a dangerous job? You might get killed.
B. I am ready to sacrifice my life for my country.
A. Good. Let’s start. You are sent to the Gobi desert on a four-week secret mission.

There are four agents under you. How much water should you take with you?
B. Just a minute. Let me get my calculator.
A. But this is only a simple multiplication!
B. This is math, and I’ve never been good with the multiplication table.

These types of responses are frequently seen. A lot of individuals hold firm beliefs
on intricate matters like voting choices, preferred political parties, and economic en-
hancements. However, the same individuals are willing (even content) to acknowledge
that they lack knowledge in mathematics and sometimes even ridicule or detest it. The
quotes that follow are enlightening.
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Man has always found it easier to sacrifice his life than to learn the multiplication
table.

—W. Somerset Maugham, Ashenden: Or the British Agent, 1928.

This was something new and very interesting, and he felt that it was of greater
import than trigonometry, which he never could understand.

—W. Somerset Maugham, Of Human Bondage, 1915.

I expect my mother’s fear of decimal currency was related to her dislike of math,
which is a common fear often dating back to a cruel teacher.

—Liane Moriarty, Here One Moment, 2024.

Pooh! Buck Mulligan said. We have grown out of Wilde and paradoxes. It’s quite
simple. He proves by algebra that Hamlet’s grandson is Shakespeare’s grandfather and
that he himself is the ghost of his own father.

—James Joyce, Ulysses, 1922.

Every morning I thank heaven for giving me another day without algebra.
—Unknown.

When people are asked why they hate math, the most common answer is “Math
isn’t always taught well.” The following answers are only slightly less common: (1)
math is hard, even impossible, (2) it is only for bright kids, (3) no fun at all, (4) it is
logical, answers are either right or wrong, (5) it involves numbers like 1, 2, 3 and so on;
confusing, (6) it’s unnecessarily formal, (7) because math teachers are failed engineers,
(8) I am not hardwired for math. (9) I hate it simply because it is MATH!

Parents, teachers, school principals, and mathematicians have long been aware of the
disturbing fact that many people claim to hate ALL of mathematics, whereas it is rare
to hear someone claim to hate all of literature or all of art. There must be something in
mathematics that alienates certain types of people. However, the modern world is based
on science and engineering, disciplines where mathematics plays an essential role, which
is why the question of what to do about math anxiety is so important. It is my hope that
this book will prove a small step toward a solution. The book tries to alleviate math
anxiety by illustrating those aspects of mathematics that can be considered unexpected,
powerful, or beautiful. It also tries to present mathematics as an integral part of the
overall scientific endeavor, and to give the reader a glimpse of the nature of mathematical
thinking.

Today, the number of professional mathematicians in the world (in schools, univer-
sities, industry, research institutes, and in government service) runs into the hundreds of
thousands. There are also many math enthusiasts who spend their time and are having
fun in studying mathematics, solving problems, and trying to understand di⌥cult con-
cepts. Someone who hates math would simply say that these people are weird, but the
math professionals and amateurs claim that they love their field because it is beautiful,
interesting, and full of surprises and unexpected results. In general, it is fun. Far from
being a dry and esoteric subject, they feel that mathematics is a rich and living part of
our culture and that the essence of mathematics lies in its elegance and the intellectual
challenge it o⌃ers.
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Work is much more fun than fun.
—Noel Coward.

Math is a human language, much like the many other languages that are written
and spoken by humans. It is a language because it makes it possible for people to
communicate. This has always been true, even in the distant past, because even then
people needed to communicate in order to interact, trade, cooperate, and even to fight.
Monetary transactions, land surveying, construction of buildings and monuments, and
organizing armies, are examples of tasks that require communications and cooperation.

Mathematics is also a sense, a sense that allows us to perceive things in the real
world, just like vision and touch make it possible for us to sense parts of the world,
so math is a sense for patterns, relationships, and logical connections between facts
and statements. As with other senses, people have di⌃erent amounts of each, which is
perhaps why so many have a weak sense of math. If you need eyeglasses, should you
claim I am not hardwired for seeing? And yet many people, young and old claims just
that when it comes to math, and thereby deprive themselves from sensing a large part
of the world.

Why do so many people hate mathematics? I would like to propose the following
reasons:

Reason 1. Mathematics is hard. A person coming across a mathematics text with
an interesting title may open it, browse a few pages, examine the many bizarre symbols
and unfamiliar expressions, emit a deep sigh, and put the book away as too di⌥cult.
In contrast, a mathematician who finds himself in the same situation may often say to
himself, this is certainly di⌥cult, but I consider it a challenge and I’d like to spend the
time and e⌃ort to master it and eventually obtain much enjoyment from it.

Reason 2. The tremendous progress that was made in this field in the last two or
three centuries. This progress led to abstraction, to a way of thinking with logic but
without pictures, that is foreign to most people.

Reason 3. Mathematics is seen as the science of numbers and numbers are dry,
boring, and only good for calculations. Mathematicians, however, know that their dis-
cipline is about much more than just numbers and computations. Mathematics is not
numerology, it is not the domain of accountants, and it consists of much more than
arithmetic. Today, mathematics is seen as the study and understanding of patterns.
Here is a short historical survey of the development of this field of knowledge.

I have always found mathematics to be challenging and unengaging. The abstract
nature of mathematical concepts, coupled with the repetitive and rigid processes required
to solve problems, does not resonate with my strengths and interests. I prefer tasks that
allow for creativity, flexibility, and a focus on language or visual elements, rather than
the structured and formulaic approach that mathematics demands. This has led to a
lack of enthusiasm and confidence in my mathematical abilities, ultimately making the
subject unenjoyable for me.

—A short explanation of why I hate maths, by chatGPT 4o, June 2024.

I love mathematics because of its logical structure and the clarity it brings to com-
plex problems. The ability to break down intricate issues into solvable steps through
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well-defined rules and formulas is both satisfying and intellectually stimulating. Mathe-
matics provides a universal language that helps explain patterns and relationships in the
world around us. I enjoy the challenge of solving mathematical problems and the sense
of accomplishment that comes with finding precise solutions. This discipline enhances
my problem-solving skills and analytical thinking, making it a deeply rewarding subject
for me.

—A short explanation of why I love maths, by chatGPT 4o, June 2024.

It is true that mathematics started as the study of numbers. Up to about 500 b.c.,
Egyptian, Babylonians, and other mathematicians were concerned with solving practi-
cal problems that involved numbers (mostly integers). Greek mathematicians, generally
active in the period from 500 b.c. to a.d. 300, were mostly interested in geometry and
how to measure the areas and volumes of geometrical figures. Thus, Greek mathematics
was concerned with both numbers and shapes. In the middle ages, mathematicians came
to terms with the concepts of irrational numbers, complex numbers, and the modern
(Hindu-Arabic) notation still in use today. They were also interested in solving equa-
tions of high degrees, but it was not until modern times—specifically, the 1600s—that
new concepts were included in mathematics. The ideas and contributions of Descartes,
Newton, Leibniz and others had extended mathematics by introducing the concepts of
space, motion, and rate of change.

Also in the 1600s, Blaise Pascal made important contributions to probability, the
study of chances and their behavior, thereby introducing a new type of pattern to math-
ematics, the pattern of chance. In the early 1800s, the young Evariste Galois introduced
the concept of groups, thereby adding symmetries and structure to the patterns of math-
ematics. In the late 1800s, Georg Cantor introduced the transfinite numbers.

Since the late 1800s, many types of mathematical objects and patterns—such as
tensors, vector spaces, point sets, reasoning (logic), and fractals—have been introduced
and became legitimate objects of study and research.

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are
more permanent than theirs, it is because they are made with ideas.

—G. H. Hardy, A Mathematician’s Apology, 1992.

The word “pattern” is a fortunate choice in this context because it connotes order,
regularity, and lawfulness and because a pattern is abstract. The pattern of floor tiles,
for example, is not the tiles themselves but an abstract attribute associated with the
tiles and with the way they are laid on the floor.

Thus, modern mathematics is a diverse discipline and it can be considered the
study of many di⌃erent types of patterns, chief among them are patterns of counting,
shape, motion, change, symmetry, structure, position in space, regularity, reasoning,
chance, and infinity. In addition, mathematics helps us understand the world we live
in. For a not-yet-fully-understood reason, the behavior of physical objects can concisely
and accurately be described, and even predicted, by mathematical expressions. Thus,
thanks to mathematics, we are better able to understand the universe, the objects in it
and how they interact, and to communicate this understanding to others in ways that
reveal the unity and order that we discover in complex phenomena.
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The fact that mathematics is extremely useful for solving and explaining real-world
problems has always been and still remains a puzzle. The short article [Wigner 60]
is just one of many publications where this unexpected e⌃ectiveness of mathematics is
discussed.

It is important to say a few words about mathematical existence. Do numbers
really exist? What does it mean to say that a certain mathematical object, relation,
or theorem exists? Today, mathematicians agree that mathematical existence means
only logical self-consistency. For a mathematical object to exist, it does not have to
have physical reality. If we make a list of non-contradictory axioms and rules, and then
use it to deduce results, then these results exist mathematically. Thus, existence in
mathematics is similar to positions in chess. They follow from previous positions and
rules, but do not have physical existence the way everyday objects have.

The great book of nature can be read only by those who know the language in which
it was written. And this language is mathematics.

—Galileo Galilei.
This is certainly not the only book that tries to encourage an interest in mathe-

matics. There are many texts that discuss the magic, mystery, beauty, and fun of math
with various degrees of success. Some of these texts try to accomplish this task without
the use of equations, formulas, expressions, and symbols. The idea being that those who
need help with mathematics would be discouraged by formulas and may not even try
to benefit from the book or at least to enjoy it. However, this book is not shy about
using and displaying many mathematical objects, because I believe that notation is im-
portant and that mathematics is easier to master and enjoy when the proper notation
is understood and used. Anyone who doubts this claim should try to add and multiply
two 2-digit integers expressed in Roman numerals.

(Modern mathematical notation makes it easier to write, understand, and manipu-
late expressions, but beginners often find it daunting. The notation is compressed and
also requires a strict syntax. A short mathematical expression of just a few symbols
may contain a great deal of information about variables, constants, and operations.)

Someone told me that each equation I included in the book would halve the sales. I
therefore resolved not to have any equations at all. In the end, however, I did put in
one equation, Einstein’s famous equation E = mc2.

—Stephen Hawking, A Brief History of Time: From the Big Bang to Black Holes.

Equations are more important to me, because politics is for the present, but an
equation is something for eternity.

—Albert Einstein.

⌅ Exercise 1: A book with 20 equations has sold just one copy. How many copies would
it have sold if it had no equations at all?

Before we look at any details of mathematical beauty and elegance, here is an
example that beautifully illustrates the topic of this book. Most mathematicians agree
that the well-known Euler equation

ei⇤ + 1 = 0
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is beautiful, and it is easy to see why. It connects the five most-important numbers
in mathematics 0, 1, e, �, and i in a compact expression. It reveals an unexpected
connection between them, and it also includes the important operations of addition,
multiplication, and exponentiation.

The laws of nature are written in the language of mathematics.
—Galileo.

The Unreasonable E�ectiveness of Mathematics in the Natural Sciences

As a young student in elementary school I vividly remember my surprise when,
perhaps in 3rd grade, the science teacher wrote the first equation on the blackboard. I
don’t remember what elementary concept he was trying to explain, perhaps something
to do with pulleys or with speed and motion. He suddenly wrote an equation that
related very nicely to the topic under discussion, and followed it with more equations
and expressions (a mathematical equation is in expression that contains an equal sign
and an unknown).

I was startled, as if something unexpected has happened; not exactly wrong, but
unexpected. Why are we allowed to use mathematics to explain the world? What is
the justification for this? Why does the world follow mathematical logic? Or is it the
opposite, is mathematics somehow dependent on the world we live in? Heady questions!
Even at such a young age I felt that this practice needed to be justified.

Over time, after seeing and using many equations, I got used to this way of doing and
describing science, and then I discovered that I was not alone. Other people have also
been asking the same question, namely why is mathematics so e⌃ective and successful
in describing the behavior of the universe. The discussion that follows is a summary of
explanations of and solutions to this question that others have been proposing.

The title above is due to a much discussed, intriguing 1960 article by Eugene Wigner,
reference [Wigner 60]. In it, Wigner discusses and analyzes the question of why the real
world, the world we see around us, can be so e⌃ectively described by mathematical
expressions, equations, and functions. The root of the problem is that mathematics is a
creation of the human mind, whereas the world is something we are born into. We try
to unravel and understand its behavior and the laws it obeys, but we have no control
over it. Reference [WikiWigner 23] lists several solutions proposed by scientists and
philosophers, and here is a summary of the relevant ideas.

Note. None of the ideas and solutions discussed here is ultimate or complete, but
each may prove satisfactory to some readers. The question treated here may be one that
does not have a full answer, at least not at our present stage of knowledge.

We start with a summary of Wigner’s article. Many mathematical ideas were
originally developed in contexts far removed from science, but are routinely used today
to illustrate modern scientific concepts and theories. Why is this justified? Perhaps
the chief example is the ellipse, which was discovered by the ancients while considering
the conic sections, and then used by Newton to mathematically describe the orbits of
planets.

Sometimes, a scientist uses very little experimental evidence to claim a new theory
or discovery, and then writes a mathematical function or relation to formally “explain”
it. Based on his work, the discovery is tested again and again until, after passing many
tests, it is accepted as a theory.
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An excellent example is the 1929 discovery of the expansion of the universe by
Edwin Hubble. Hubble’s paper that announced the astonishing fact contains his famous
diagram where only 6–7 of the 21–22 galaxies shown are on or very close to the straight
line that proves the expansion. Nevertheless, it is this unconvincing diagram which has
quickly convinced the scientific community that we live in an expanding universe.

Maxwell’s equations are an excellent example of important scientific predictions
driven by mathematics. It was Maxwell who noticed that the mysterious constant c
in his equations has dimensions of speed. He therefore conjectured c to be the speed
of propagation of both the electric and magnetic fields. The actual electromagnetic
waves were discovered in 1879 and used by Hertz in 1886 to send information wirelessly.
Special relativity, published in 1905, employs the fact that c is a constant to claim that
the speed of light is constant. It is a pity that Maxwell himself did not live to see those
fundamental implications of his equations.

Since 1960, several people have responded to Wigner’s article, trying to solve and
explain his basic question. In 1975, Hilary Putnam explored several arguments, among
them the following: Perhaps the use of mathematics to formally describe physical phe-
nomena is not mysterious because it is simply wrong. After all, in our world, it is
humans who check and interpret the results of other humans, and being human, they
cannot be objective. Thus, scientific results and their mathematical interpretations are
not objective. The mathematics is wrong, and its use is therefore not mysterious.

In 1980, Richard Hamming came up with four arguments that even he admitted
were unsatisfactory.

1. Science is based on experiments, not, as the ancient philosophers believed, simply
on thinking. A theory, even the simplest and most basic, is wrong if it is disproved by
even a single experiment. However, humans often see what they are looking for.

A famous example is the canals on Mars. In 1877 astronomer Giovanni Schiaparelli
observed the planet Mars and was surprised to “see” what he later described as canali
(channels). As so often happens, something was lost in the English translation and canali
came out as canals. The belief in Martian canals was strong and persisted until 1964,
when NASA’s Mariner IV photographed the planet and found no canals. I distinctly
remember reading about the canals in science books for children in the mid 1940’s.

Thus, a long lasting scientific theory was based on what astronomers wanted to see.
Any mathematics based on the canals—such as how long they took to dig, how many
Martians worked on them, and how much water they transferred—must also have been
false; they explained nothing.

2. Perhaps science can be explained by mathematics, but the world that we ex-
perience consists of much more than science, and those parts of the world cannot be
explained by mathematics.

3. Scientists choose what mathematical tools they need to explain a given theory.
They also often extend mathematical concepts and theories as needed to explain new
physical discoveries, concepts, and theories. We can therefore claim that mathematics is
a tool that grows with our growing knowledge of the world. In some sense, mathematics
complements science, which is why they are so compatible.

4. We humans find it natural to think of facts mathematically, because of the
way in which natural selection, working blindly, has developed us from other animals.
Therefore, it is natural for us to use mathematics to explain what we see in nature.



xvi Preface

Michael Atiyah has proposed to turn the tables and look at this mystery as the
unreasonable e⌃ectiveness of physics in mathematics. Perhaps mathematics, the mental
creation of humans, is the dominant fact in the universe, and we should ask why the
world conforms to our mental creation in such a way that scientific theories can explain
the mathematical theories that we have come up with, sometimes in ancient times.

Perhaps the simplest explanation so far, due to Max Tegmark, is that the physical
world is completely mathematical. This assumption gets rid of the mystery in a most
natural way.

Is mathematics a science?

The connection between mathematics and science is an intriguing question that
has been a source of debates, arguments, misunderstandings, and disagreements for
centuries. The explanations and examples shown here are only meant to illuminate the
concepts of what is science and what is mathematics. They are not going to settle this
question. This section is based on reference [arachnoid 08].

We start with commonly accepted definitions (from Wikipedia):
“Mathematics is a field of study that discovers and organizes methods, theories

and theorems that are developed and proved for the needs of empirical sciences and
mathematics itself.”

This definition has two shortcomings: (1) It considers mathematics a field of discov-
ery, whereas some may consider mathematics a process of invention. (2) This definition
defined mathematics partly in terms of itself (in italics).

“Mathematics involves the description and manipulation of abstract objects that
consist of either abstractions from nature or, in modern mathematics, purely abstract
entities that are stipulated to have certain properties, called axioms.”

This seems a better definition, mostly because it mentions the connection between
mathematics and nature. We often naively assume that mathematics is a creation of
the human mind and may have nothing to do with the world we perceive around us, but
here are two examples that illustrate connections between the two.

1. The famous spirals found in sunflowers and their relation to the Fibonacci se-
quence. See Page 248.

2. Cicadas in their prime, or the connection between cicadas and prime numbers.
Certain species of periodical cicadas have life cycles that last exactly 13 or 17 years,
which are both prime numbers.

The Wikipedia definition of science. “Science is a systematic discipline that builds
and organizes knowledge in the form of testable hypotheses and predictions about the
universe.”

These definitions are from Wikipedia. I believe that science can better be defined
by the following statements:

1. Science is a field of knowledge that collects data from experiments and observa-
tions.

2. It then attempts to develop theories based on this data and tries to extend these
theories and generalize cases.

3. New data can demolish (falsify) any theory. Any attempt to believe in a theory
against new contradictory data is unscientific.
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Notice that statements 1 and 2 can be swapped. It is possible, even common, to
first create a theory and then try to find support for it in nature. A good example of
this approach to science is general relativity, which was published by Einstein in 1916
without any experimental evidence to support it. On the other hand, the theory of
natural selection was published by Charles Darwin in 1859, many years after collecting
the relevant data in the Galapagos islands during 1831–1836. For more than 20 years
Darwin was thinking, developing ideas, writing, and incubating his data before finally
making it public.

Statement 3 is most important, because it distinguishes science from superstition.
This statement is the essence of the important falsifiability criterion which has long been
recognized as an essential constituent of science. A scientific theory can never be proven
correct, but can easily be proven wrong by even a single experiment that contradicts it.
A superstition, on the other hand, cannot be disproved, because it is based on belief,
not on evidence.

Science in itself is a sweet beginning and sometimes a bitter ending, whereas super-
stitions have neither beginning nor end; it is complete in itself.

—From Times of India, March 2020.

Notice that scientific data must be unambiguous, verifiable (other labs and re-
searchers should be able to repeat it), and objective (anyone who sees it should come
to the same conclusion). However, the precise way data is obtained is unimportant.
Di⌃erent researchers may collect the same data from di⌃erent sources. Radioactivity,
for example, was discovered (by Henri Becquerel in 1896) by experimenting with Ura-
nium, but those who came after Becquerel discovered the same natural phenomenon by
working with Thorium.

Once these definitions and statements are understood, we can discuss the di⌃erences
between, and the similarities of science and mathematics.

Science must be falsifiable. A scientific theory can be proved wrong, but cannot be
proved correct. On the other hand, a mathematical statement can be proved wrong (by
a counter-example), but can also be proved correct. The concept of a proof, in fact, is
a central pillar in mathematics. We can prove by logic that a claim, a statement, or
a theorem, is true, and this fact constitutes a big di⌃erence between mathematics and
science. It suggests that the two are di⌃erent disciplines in principle.

As an example, there are countless (well, hundreds of) proofs of the Pythagorean
theorem about the sides of a right-angle triangle. Mathematicians, engineers, and stu-
dents feel strongly that no one would ever be able to refute this theorem. It is eternal
and does not depend on any future scientific discoveries or progress.

On the other hand, mathematical statements and conjectures can be demolished
by experiment, although fast computers are often needed for this. A simple example is
the prime generator function x2 � x + 41 discovered (produced? guessed?) by Euler in
1772. Today, with the help of computers, it is easy to show that this function has a very
limited range. It produces prime numbers for integer x values from 0 to 39, but fails at
x = 40. Hence, a simple computation proves that this isn’t a universal prime generator.
In this respect, mathematics and science seem similar.

Another example of a mathematical claim that was di⌥cult to prove wrong by logic
but was actually easy to falsify by computations, is the well-known Monty Hall problem
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(Page 286), which is based on a subtle probabilistic argument. The naive solution that
was proposed by thousands of viewers and readers proved false by an expert, but could
have been shown to be false if those believers had written a simple computer program
to simulate the process. The result would have shown immediately that their proposed
naive solution was wrong.

Would you consider a logician a scientist? There are logical statements that can
be, and that have been, falsified. On the other hand, logicians are viewed by the rest of
us as the purest of pure mathematicians, people who do not perform computations, do
not write software, rarely deal with numbers, and never consider numbers that are non-
integers. And yet logic is a bona-fide field of mathematics. In this respect, mathematics
and science are viewed as di⌃erent disciplines.

Must science be based in nature? Science fiction is a literary genre whose prac-
titioners claim: “Science fiction is not about future technology and light sabers. It is
about life in a di⌃erent society or even a di⌃erent universe. In principle, it is possible to
develop a science based on an imaginary universe where the laws of nature are di⌃erent
from ours. If those laws are consistent and free of contradictions, a science based on
such a world would be as good as our science. It may not be the “real” science, but it
may be as rich, complex, and logical as our science, and may also be falsifiable. In this
respect, mathematics may be such a science. We may consider it a system of imaginary
objects, their properties and relations between them, and such a system may not be
very di⌃erent from an imaginary science based on a fictional world.

More about mathematical proofs. In the past, proofs were produced mostly by pro-
fessional mathematicians and sometimes by amateurs. In the 20th century, the world
was several times surprised by proofs that were either obtained with the help of comput-
ers or are so long and convoluted that only a few experts can understand and appreciate
them. This suggests that as the world of mathematics is progressing and becomes more
complex and abstract, we are likely to see more examples of such proofs, a trend that
makes some uneasy. Here are two well-known examples of such proofs:

1. The four color map theorem states that a maximum of four colors is required
to color the regions of any map so that no two adjacent regions have the same color.
Figure 1 illustrates what is meant by adjacent regions. Regions that share a single
common point, as in part (a) of the figure, are not considered adjacent, but if their
common boundary is longer, as in part (b), they are adjacent and require di⌃erent
colors.

It seems that it was Augustus de Morgan who first became interested in this prob-
lem and made it popular, but it wasn’t until 1976 that it was solved, by Kenneth Appel
and Wolfgang Haken, with the aid of elaborate computer software. This problem is
considered historically important because it was the first major theorem to be proved
using a computer. Needless to say, their proof was not immediately accepted by the
mathematical community. Some experts felt that mathematical proofs should be pro-
duced by brain power alone, while others pointed out that such a vast piece of software
(it had to individually check a set of 1,476 possible map configurations) was infeasible
for a human to check manually. Today, the consensus is that the proof is correct.

2. From Wikipedia: Fermat’s Last Theorem states that no three positive integers
a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2.
The cases n = 1 and n = 2 have been known since antiquity to have infinitely many
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(a) (b)

Figure 1: Map Coloring.

USA map licensed by “creativecommons.org/licenses/by-sa/3.0/deed.en.”

solutions.
Pierre de Fermat, a French lawyer and judge, was also a serious amateur mathe-

matician. Today, he is considered one of the two leading mathematicians of the first half
of the 17th century. (The other is René Descartes.) It was around 1637 that Fermat
wrote the now-famous note in the margin of his copy of Arithmetica (an ancient text on
number theory by Diophantus). “It is impossible to separate a cube into two cubes, or
a fourth power into two fourth powers, or in general, any power higher than the second
into two like powers. I have discovered a truly marvelous proof of this, which this margin
is too narrow to contain.”

Those who followed Fermat took this note seriously, because Fermat was known
to make correct statements and conjectures while omitting their proofs. However, 358
years of e⌃orts by many mathematicians yielded no proof, until Andrew Wiles published
a 129-page-long proof in 1993. After a few corrections in 1994, this long and esoteric
communication has come to be regarded as a formal proof of the theorem.

Fermat “was a mathematician of rare power. He was an independent inventor of
analytic geometry, he contributed to the early development of calculus, he did research
on the weight of the earth, and he worked on light refraction and optics. In the
course of what turned out to be an extended correspondence with Blaise Pascal, he
made a significant contribution to the theory of probability. But Fermat’s crowning
achievement was in the theory of numbers.”

—Peter L. Bernstein, Against the Gods, 1996.

The history of mathematics has many examples of long and complex proofs that
were later simplified, often several times, by their originator as well as others. It would
therefore come as mo surprise if Wiles’s proof would be greatly simplified in the future,
but when it first came out, several mathematicians objected to it in principle, claiming
that such long proofs can be checked and understood only by few specialists, and should
therefore remain suspect until they are simplified and shortened.

The discussion and examples in this section will not put an end to the debate about
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whether mathematics is a science. They can only serve as an aid and guidelines to those
interested in this question.

About This Book

This book was started as a collection of beautiful facts, objects, theorems, and
relations in mathematics. Over time, however, as more and more material was added,
it became simply a place to summarize, discuss, and explain mathematical topics that
are of personal interest to me. As a result, the book is personal (some may say that it
is a hodgepodge of topics and facts). An occasional reader may find certain topics that
are of interest and may skip the rest of the book. In any case, it is free.

The text of this book includes many references. They have the format [name date]
and are listed in detail in the bibliography at the end of the book.

Any errors, mistakes, misprints, and mistypes found here, as well as any criticism
and suggestions, can be emailed to me at dsalomon@csun.edu.

The single most compelling reason to explore
the world of mathematics is that it is beautiful.

—Calvin C. Clawson, Mathematical Mysteries.
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Mathematical Jokes

A joke is a display of humor in which words are used within a specific and well-
defined narrative structure to make people laugh and is usually not meant to be inter-
preted literally.

A mathematical joke is a form of humor which relies on aspects of mathematics or a
stereotype of mathematicians. The humor may come from a pun, or from a double mean-
ing of a mathematical term, or from a lay person’s misunderstanding of a mathematical
concept.

—From Wikipedia

Math is like love; a simple idea, but it can get complicated.
Hey, have you ever noticed what’s odd? Every other number!
All non-parallel lines in a plane meet once and never again.
I was perpendicular to a girl I liked a lot. Never saw her again after high school.
You have dialed an imaginary number, please rotate your handset 90⇤ and try again.
Parallel lines never meet, but have much in common.
Draw them on a spherical surface for a happy ending.
Our friend the ray spends its entire life traveling with no real destination.
Non-straight lines must be gay.
Owlgebra is the type of math birds like best.
� says to i, “get real.” i says to �, “be rational.”
The minus sign: “Are you sure I make a di⌃erence?” The other sign: “I’m positive.”
Which tool is best for math? The multi-pliers.
There are only 10 types of people, those who understand binary, and those who don’t.
Quadratics hit rock bottom, then find their way to greatness.
Negative quadratics spend their life to get to the top, only to then drop all the way.
For us, x is unknown, but for the Romans X was always 10.
Why was six afraid of seven? Because seven, eight, nine.
Sine waves also have their ups and downs.
The moon and six pence is a misnomer. Rather, the moon has four quarters.
How does it feel to be sixteen? “It feels really square, but next year I’ll be in my prime.”
How do you turn seven into an even number? Remove the “s.”
When does 1 + 2 equal 13? When you add wrong.
How can you argue with a 90⇤ angle? It is always right.
Daddy, why is the math book so sad? Because it has so many problems.
How do you find a math tutor? An ad.
Circles are pointless.
A physicist, a biologist and a mathematician are sitting in a cafe, watching people
entering and leaving a house across the street. First they see two people entering the
house. Then they notice three people leaving the house. The physicist says, “The
measurement wasn’t accurate.” The biologist says, “They must have reproduced.” The
mathematician says, “If one more person enters the house, it will be empty.”
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Mathematical Quotations

A quotation is the repetition of a sentence, phrase, or passage from speech or text
that someone has said or written.

—From Wikipedia

Pure mathematics is, in its way, the poetry of logical ideas.
Without mathematics, there’s nothing you can do. Everything around you is mathe-
matics. Everything around you is numbers.
Mathematics is the most beautiful and most powerful creation of the human spirit.
For many people, math is a four-letter word.
The most painful thing about mathematics is how far away you are from being able to
use it after you have learned it.
We will always have STEM with us. Some things will drop out of the public eye and
go away, but there will always be science, engineering, and technology. And there will
always, always be mathematics.
Mathematics as an expression of the human mind reflects the active will, the contem-
plative reason, and the desire for aesthetic perfection. Its basic elements are logic and
intuition, analysis and construction, generality and individuality.
As far as the laws of mathematics refer to reality, they are not certain, and as far as
they are certain, they do not refer to reality.
What is mathematics? It is only a systematic e⌃ort of solving puzzles posed by nature.
Mathematics is the music of reason.
Mathematics knows no races or geographic boundaries; for mathematics, the cultural
world is one country.
There should be no such thing as boring mathematics.
God used beautiful mathematics in creating the world.
This result is too beautiful to be false; it is more important to have beauty in one’s
equations than to have them fit experiment.
“Obvious” is the most dangerous word in mathematics.
Mathematics are the result of mysterious powers which no one understands, and which
the unconscious recognition of beauty must play an important part. Out of an infinity
of designs a mathematician chooses one pattern for beauty’s sake and pulls it down to
earth.
Mathematics allows for no hypocrisy and no vagueness.
I’ve always enjoyed mathematics. It is the most precise and concise way of expressing
an idea.
It is impossible to be a mathematician without being a poet in soul.
A mathematician who is not also something of a poet will never be a complete mathe-
matician.
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Mathematics compares the most diverse phenomena and discovers the secret analogies
that unite them.
Mathematics is not about numbers, equations, computations, or algorithms: it is about
understanding.
Somehow it’s okay for people to chuckle about not being good at math. Yet, if I said “I
never learned to read,” they’d say I was an illiterate dolt.
In mathematics the art of proposing a question must be held of higher value than solving
it.
Beauty is the first test; there is no permanent place in the world for ugly mathematics.
It is clear that the chief end of mathematical study must be to make the students think.
Go down deep enough into anything and you will find mathematics.
Nature is written in mathematical language.
Mathematics is a language.
Mathematics has beauty and romance. It’s not a boring place to be, the mathematical
world. It’s an extraordinary place; it’s worth spending time there.
To me, mathematics, computer science, and the arts are insanely related. They’re all
creative expressions.
The essence of mathematics lies in its freedom.
Why do children dread mathematics? Because of the wrong approach. Because it is
looked at as a subject.
Many who have had an opportunity of knowing any more about mathematics confuse
it with arithmetic, and consider it an arid science. In reality, however, it is a science
which requires a great amount of imagination.
The study of mathematics, like the Nile, begins in minuteness but ends in magnificence.
Wherever there is number, there is beauty.
Life is a math equation. In order to gain the most, you have to know how to convert
negatives into positives.
Mathematics may not teach us to add love or subtract hate, but it gives us hope that
every problem has a solution.
One of the endlessly alluring aspects of mathematics is that its thorniest paradoxes have
a way of blooming into beautiful theories.
Mathematics is not a careful march down a well-cleared highway, but a journey into a
strange wilderness, where the explorers often get lost. Rigor should be a signal to the
historians that the maps have been made, and the real explorers have gone elsewhere.
The pure mathematician, like the musician, is a free creator of his world of ordered
beauty.
Just because we can’t find a solution, it doesn’t mean there isn’t one.
Mathematics is a place where you can do things which you can’t do in the real world.
Millions saw the apple fall, but Newton asked why.
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The definition of a good mathematical problem is the mathematics it generates rather
than the problem itself.
If I were again beginning my studies, I would follow the advice of Plato and start with
mathematics.
Pure mathematicians just love to try unsolved problems, they love a challenge.
I’ve always been interested in using mathematics to make the world work better.
I hope that seeing the excitement of solving this problem will make mathematicians
realize that there are lots and lots of other problems in mathematics which are going to
be just as challenging in the future.
The only way to learn mathematics is to do mathematics.
It’s fine to work on any problem, so long as it generates interesting mathematics along
the way, even if you don’t solve it at the end of the day.
You don’t have to be a mathematician to have a feel for numbers.
Sometimes the questions are complicated and the answers are simple.
The essence of math is not to make simple things complicated, but to make complicated
things simple.
If people do not believe that mathematics is simple, it is only because they do not realize
how complicated life is.
Mathematics is a game played according to certain simple rules with meaningless marks
on paper.
Dear Math, please grow up and solve your own problems. I’m tired of solving them for
you.
I am still waiting for the day I’ll use mathematics integration in real life.
Arithmetic is numbers you squeeze from your head to your hand to your pencil to your
paper till you get the answer.
That awkward moment when you finish a math problem and your answer isn’t even one
of the choices.
Mathematics is like love; a simple idea, but it can get complicated.
If there is a 50-50 chance that something can go wrong, then nine times out of 10 it will.
Math is fun. It teaches you life and death information like when you’re cold, you should
go to a corner since it’s 90 degrees there.
Pure mathematics is the world’s best game. It is more absorbing than chess, more of a
gamble than poker, and lasts longer than Monopoly. It’s free. It can be played anywhere,
Archimedes did it in a bathtub.
Mathematics consists of proving the most obvious thing in the least obvious way.
In mathematics, you don’t understand things. You just get used to them.
There are two ways to do great mathematics. The first is to be smarter than everybody
else. The second way is to be stupider than everybody else, but persistent.
Five out of four people have trouble with fractions.
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Mathematics is a hard thing to love. It has the unfortunate habit, like a rude dog, of
turning its most unfavorable side towards you when you first make contact with it.
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The content of most textbooks is perishable, but the
tools of self-directness serve one well over time.

—Albert Bandura.



Introduction

The following discussion illustrates how a bright child, someone who has just been intro-
duced to integers and basic arithmetic operations, may discover a beautiful mathematical
relation. The child knows that adding certain pairs of integers, such as 1 and 9, 2 and
8, and 5 and 5, produce a sum of 10. It may occur to him to multiply the two integers
of each pair, in order to find out which pair yields the largest product. The results are
summarized in Table 1a. It is clear that the pair (5, 5) yields the largest product, 25, but
it is also easy to see that the other four pairs yield products (in column 3) that become
smaller in a regular way. Column 4 lists the di⌃erences between 25 and the products
in column 3, and column 5 lists the same di⌃erences as squares of consecutive integers.
Not an earth shattering discovery, but a discovery nonetheless.

1 2 3 4 5
5 5 25 0 02

4 6 24 1 12

3 7 21 4 22

2 8 16 9 32

1 9 9 16 42

(a)

1 2 3 4 5
6 6 36 0 02

5 7 35 1 12

4 8 32 4 22

3 9 27 9 32

2 10 20 16 42

(b)
Table 1: Adding and Multiplying Five Pairs.

Most children may not be interested in such a game. Some children may stop when
they make this simple discovery, but others may ask themselves, is this pattern specific
to 10? It is easy to show (Table 1b) that the integer 12 features the same pattern, and
after spending a few years at school, a bright child can use algebra to prove, as shown
here, that this pattern of behavior is general

n + n = 2n, n⇥ n = n2. (n� i) + (n + i) = 2n, (n� i)(n + i) = n2 � i2.

Such an achievement is very satisfying and may result in the child becoming, if not a
professional mathematician, at least someone with an understanding of and an interest
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in mathematics.
Mathematics is absolute, infinite, and eternal. A mathematical result that has been

satisfactorily proved, whether positive or negative, is certain; there is no doubt about
it. Mathematics is the only area where we come face to face with absolute certainty as
well as with the infinite. Everything else that we experience in this world is finite.

Two things are infinite: the universe and human stupidity; and I’m not sure about
the universe.

—Albert Einstein.
Mathematics is timeless, as every mathematical fact, outcome, or theorem will

endure indefinitely. The results achieved and confirmed by ancient civilizations remain
accurate in society today, just as they did upon their initial discovery. Furthermore, they
will remain accurate regardless of wars, revolutions, beliefs, advancements in science, or
any upcoming social or historical occurrences. For this reason, it can be argued that
mathematics is the sole endeavor through which one can achieve eternal fame. An
idea, outcome, or principle in mathematics that was originally introduced or proved
by someone like Professor Henry Higgins cannot be invalidated or demonstrated by
another individual and secures Higgins’s position in history. Before we explore further,
here are various illustrations of the concept of beauty in mathematics along with unique
mathematical characteristics and properties not seen in other fields.

A thing of beauty is a joy for ever:
Its loveliness increases; it will never
Pass into nothingness; but still will keep . . . .

—John Keats Endymion, 1818.

Boring numbers. We start with the concept of a boring number. Some may claim
that every number is boring, but consider the following. The integer zero means nil,
zilch, nothing, naught, and no thing. Yet it is not boring and is even important. The
concept of zero, acting as a place holder, made it possible to replace the cumbersome
system of Roman numerals with the much superior Hindu-Arabic numerals that we use
today. The integer one is the first positive integer and is therefore of interest. The
integer two is the first even integer, and so is not boring. Three is the first odd integer.
Four has the interesting property that it equals both the sum and the product of two
twos, and so is not boring. Section 2.3 lists many examples of interesting numbers.

This leads us to the little-known number paradox [WikiInteresting 23], a humorous
but logical argument. Imagine that we partition the integers into two classes, interesting
I and boring B, according to certain criteria. The set B of boring integers may be infinite,
but it must have a smallest member S. S is the smallest boring number, but this fact
makes it interesting, so we have to move it to set I. After the move, if set B is non-
empty, it must have another smallest number, which should also be moved to I for the
same reason. When this process is completed, we find that set B is empty; there are no
boring numbers.

Real numbers. We are familiar with the integers. They are easy even for little
children to visualize and comprehend. When a child asks How many numbers are there,
the answer, Infinitely many, may come as a surprise, but it is easy to accept when the
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child hears the following argument. It is possible to add 1 to any number x and in
this way, end up with a bigger number. Thus, there is no largest number and there are
infinitely many numbers. However, when the real numbers are introduced at school a
few years later, they are much harder to accept, to deal with, and to understand. The
real numbers include the integers, the rationals (numbers of the form m/n where both
m and n are integers) and the irrationals. (The latter are numbers with infinitely many
digits after the decimal point, where the digits follow no pattern. Most of the roots and
logarithms belong in this set.)

One conceptual di⌥culty with the real numbers is that they are dense. We know
that there are infinitely many integers, but they are discrete. Each integer has a successor
and a predecessor, and there are gaps between them that are full of real numbers. Thus,
there are infinitely many real numbers between the integers 1 and 2, but there are also
infinitely many real numbers between, say 1.6 and 1.7, as well as between 1.6 and 1.60001.
We therefore say that the reals are dense in any interval. Between any real numbers a
and b there are infinitely many real numbers.

A surprising result of this property of the reals is that a real number does not have
an immediate successor or a predecessor. Given a real number a, there is no number that
immediately follows or precedes a. If we find a number b that looks like the immediate
successor of a, we may eventually realize that the number c, defined as (a + b)/2 is
located midway between a and b. Similarly, the number d = (a+ c)/2 is located midway
between a and c, and so on.

An unexpected corollary is that there is no such thing as the smallest positive real
number. Such a number, the immediate successor of zero, does not exist; it forms a
hole in the real number line. Another unexpected result (a paradox?) is that there
are infinitely many such holes in the number line, but at the same time the line must
also be continuous. On one hand we visualize this line as a set of discrete points, each
corresponding to a real number but, because the reals are dense, we cannot imagine
any gaps between the points on this line, nor can we imagine any missing points. We
therefore refer to the real number line as the continuum, and we simply live with the fact
that the real numbers raise conceptual problems that we may never solve or understand.

A set of mathematical objects known as surreal numbers was introduced into math-
ematics in 1969 by John H. Conway. Among other features, surreal numbers attempt to
extend the concept of real numbers. Thus, every real number is surrounded by surreals,
which are closer to it than any real number. Also, between any two real numbers there
are infinitely many surreals. Do the surreal numbers exist? A mathematical object is
a matter of definition. Anyone can come up with a set of such objects and they would
become part of the mathematical universe if they are consistent and free of contradic-
tions, and especially if they extend a previous mathematical idea, theory, or object.
The definition of surreal numbers consists of a notation (how to write them) and rules
of arithmetic operations on them. For detailed information, see the wikipedia article
Surreal_number.

The field of modern analytic geometry was independently developed by Pierre de
Fermat and René Descartes around 1637. This field is an important illustration of
the beauty of mathematics, because it shows how to translate between numbers and
geometric figures and objects. Instead of trying to describe the shape of the top of Mount
Everest, we can simply tell the reader to locate the point with coordinates 27⇤ 59⌥ 1⌥⌥ N
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86⇤ 55⌥ 31⌥⌥ E on his map.

Figure 10.15, copied here, illustrates another aspect of the beauty of mathemat-
ics. The corners of a cube can be numbered such that each digit position in a corner
number corresponds to a di⌃erent dimension of the cube. We can consider the square
a two-dimensional cube, because it is one face of a three-dimensional cube. Similarly,
a straight segment can be viewed as a one-dimensional cube, constructed as a face of a
two-dimensional cube.

1D

2D 3D 4D

10 11

00 01

010
110

111

1110

1111

101
001000

100

011

0 1

Figure 10.15. Cubes of Various Dimensions and Corner Numbering.

The figure shows how the corners of cubes of any dimensions can be numbered
in this way, and makes it clear how to number, for example, the 16 corners of a four-
dimensional cube, even though we cannot visualize such an object. We have therefore
translated cubes (part of geometry) into numbers, which makes it easy to imagine and
analyze higher-dimensional objects without having to deal with pictures.

Here are two proofs, geometric and algebraic, that
"

2 is irrational. The first one is
described in [Apostol 2000]. See also Page 73.

Figure 2 shows an isosceles right triangle ABO. We assume that its two equal
sides AB and BO are of length 1 and its hypothenuse AO, whose length, according
to Pythagoras, is

"
2, is a rational number of the form m/n, where m and n have no

common divisors (i.e., they are coprime or relatively prime). We multiply each triangle
side by n to end up with a hypothenuse of length m. Now all three sides are integers
and they are the smallest set of integers for this triangle, making it the smallest possible
isosceles right triangle whose sides are all integers. If we try to shrink a side by any
factor, some sides would become non integers.

We now construct the circular arc from B to C to obtain AB = AC. Since both
AO and AC are now integers, CO must also be an integer. We draw segment CD as
the perpendicular to AO at point C to obtain point D, and observe that CDO is also an
isosceles right triangle and therefore CD = CO, implying that triangles ABO and CDO
are similar. Because hypothenuse AO is rational, hypothenuse DO must also be rational,
but this contradicts the assumption that m and n are relatively prime (in lowest terms).

Many texts list the ancient proof, provided by the Greeks, which is arithmetical, so
it is a surprise to see that there are also other approaches to prove the same fact, and
they are based on di⌃erent mathematical concepts and and techniques.

“How many proofs of the Pythagorean Theorem do you know?” Erdős asked. “One,”
Vázsonyi said. “I know thirty-seven.”

—Andrew Vázsonyi in Paul Ho⌃man, The Man Who Loved Only Numbers, 1998.
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Figure 2: Try a Rational

"
2.

As a bonus, here is another, short algebraic proof. Assume that
"

2 = p/q where p
and q are positive integers and q is the smallest possible. This implies that p � q > 0
while p� 2q < 0. We can now write

2q � p

p� q
=

2� p/q

p/q � 1
=

2�
"

2"
2� 1

= (2�
"

2)(
"

2 + 1) =
"

2,

which contradicts the assumption that q is the smallest possible.

Infinity in math. Infinity plays an important part in many mathematical areas,
where it can be extremely useful. The human mind, however, cannot grasp infinity, so
we have to be wary when infinity is used to solve a problem, prove a theorem, or support
a claim or an idea. Here are examples of the use of infinity in mathematics, and how
wrong results are easy to obtain when this important concept is used carelessly.

1. The sum of the infinite series C = 1� 1 + 1� 1 + 1� 1 + · · · can be computed
in the following ways. First, we can write it as the sum of di⌃erences C = (1 � 1) +
(1 � 1) + (1 � 1) + · · ·, where it adds up to zero. Then we can write it as the sum
C = 1 + (�1 + 1) + (�1 + 1) + (�1 + 1) + · · ·, where its sum is 1, and finally as
C = 1+(�1+1� 1+1� 1+ · · ·) = 1+ (�C), which implies 2C = 1 or C = 1/2. These
three sums are di⌃erent and all employ the fact that C is infinite. Which is correct?
It is obvious that the partial sums obtained when we add more and more terms of C
oscillate between zero and 1 and would never deviate from these values. This justifies
the conclusion that series C has no unique sum or, more accurately, does not converge
to a sum.

Note. Given a series
$�

i=1 ai, it is always possible to construct the sequence whose
kth element is the partial sum

$k
i=1 ai. It is known that if this sequence converges,

then its associated series also converges, and vice versa. Applying this concept to series
C above, we construct its partial-sums sequence 1, 0, 1, 0, 1,. . .which does not con-
verge. Being both tricky and devious, mathematicians may point out that the average
of this sequence converges to 1/2. Thus, even though series C diverges, we can somehow
consider the value 1/2 as a representative of its sum.

2. Consider the infinite fraction D = 0.999 . . ., which we denote by 0.99. The
quantity D cannot be greater than 1, so it must either be equal to or less than 1. Even
though it contains infinitely many digits, it is easy to show that D equals 1, and here
are three proofs (see also Page 83). The first proof says that if D were less than 1, there
would be a real number F = (D + 1)/2 between it and 1, but F cannot exist because D
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contains infinitely many digits and because all those digits are 9’s, the largest decimal
digit. This kind of proof is often referred to as hand waving and may not be rigorous.

The second proof start with D = 0.999 . . ., continues with 10D = 9.999 . . ., and
subtracts 9D = 10D �D = 9.999� 0.999 = 9, from which it is obvious that D = 1. A
straightforward use of the infinite nature of D.

The third proof is geometric and is based on the area of a circle. Figure 3 shows
a circle of area a. We cut a hole at the center, whose area is 0.1a. The remaining ring
has an area of 0.9a. We now repeat this process. We think of the first hole as a new
circle of area 0.1a and cut a smaller hole, of area 0.01a at its center, leaving a small ring
of area 0.1 � 0.01 = 0.09a. When this is repeated without limit, the total areas of the
rings, which is the infinite sum 0.9a + 0.09a + 0.009a + · · · = 0.999a . . ., must equal the
original area a, which proves that 0.99 = 1.

Figure 3: Circles and Rings.

This fact is one of many surprises and unexpected results that appear in math-
ematics. Several such surprises appear in this book, such as the Khinchin constant
(Page 57).

3. We now apply the technique of the previous proof to the “opposite” of D, the
huge number G = . . . 9999.0. We first compute 10G = . . . 99990.0, and then add 9 to
both sides, obtaining

10G + 9 = . . . 99990.0 + 9 = . . . 99999.0 = G,

or 10G + 9 = G, a simple equation whose solution is G = �1. This clearly makes no
sense and is the result of treating the infinite carelessly when we multiplied both sides
by 10 in step 1, simply by shifting G to the left. We conclude that the use of infinity
in mathematics can be beneficial, but results obtained with the help of this quantity
should be verified before they can be considered valid.

4. Finally, a proof that avoids the naive approach of treating infinity as a number.
Instead, it uses the epsilon-delta (⇧, ⌅) technique of approaching a limit. We start by
constructing the infinite sequence

x1 = .9, x2 = .99, x3 = .999, . . . , xn =
n&

k=1

9 · 10�k = 0. 99 . . . 96 54 7
n

,

and define D as the limit of this sequence, if it exists.
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In order to prove that the limit is 1, we examine the di⌃erence

|xn � 1| = |0. 99 . . . 96 54 7
n

�1| = 10�n,

and observe that for any positive real number ⇧ we can choose a value for n that is
greater than 1/⇧, and such a value would satisfy |xn � 1| = 10�n < ⇧. This is a formal
proof that shows that the di⌃erent between xn and 1 can get as small as we want if we
choose a large enough n.

Judging Mathematics by its pragmatic value is like judging a symphony by the weight
of its score.

—Alexander Bogomolny.

Squaring the Circle. The problem of squaring the circle has intrigued mathe-
maticians, as well as mathematical crackpots, since antiquity. The Greeks did not have
algebra, but were strong on geometry. They could easily draw accurate circles and
straight lines, which is why they were interested in geometric problems that could be
solved using just these two tools.

The Greek philosopher Anaxagoras was among those who asked whether it was
possible to construct, with the help of just a compass and straightedge, a square whose
area equals the area of a given circle. The problem is worthy of consideration, because
a circle is curved at every point, while a square consists of only straight segments.

A decisive answer came in 1882, when Ferdinand von Lindemann proved that � is
transcendental. This implies that squaring the circle with just a compass and straight-
edge is impossible, because a previous result had shown that using only these tools, it
is impossible to construct a segment of transcendental length.

(The ancient Greeks had geometry, which enabled them to construct complex figures
with just a compass and straightedge. With these tools it is possible to do quite a lot of
arithmetic. It is possible to perform the four arithmetic operations and even construct
certain geometric figures whose dimensions are irrational, such as the hypotenuse of a
right-angle triangle. However, it is impossible to construct figures whose dimensions are
transcendental.)

I continued to do arithmetic with my father, passing proudly through fractions to
decimals. I eventually arrived at the point where so many cows ate so much grass,
and tanks filled with water in so many hours. I found it quite enthralling.

—Agatha Christie, An Autobiography.

But some stubborn people never give up, and in 1925, the eminent logician Alfred
Tarski gave this ancient problem a twist by dropping the compass and straightedge and
adopting a pair of scissors instead. He proposed the problem of dissecting the circle, can
a circle be split or broken with just scissors into a finite number of parts that can then
be assembled into a mathematically perfect square with the same area?

Such a process, which is called circle dissecting and which is similar to the well-
known Tangram puzzle, requires a pair of mathematical scissors, which have infinite
precision, but such details have never deterred the followers of the art of mathematics.
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(Tangram is an ancient dissection puzzle consisting of seven polygons that form
a square. They can be arranged and rearranged to form thousands of recognizable
patterns.)

Then came a disappointment. In 1964, the trio Dubins, Hirsch, and Karush dis-
covered that, working with only scissors, a circular disk is not congruent to any strictly
convex object, and the square, obviously, is convex. In simple terms, such a dissection
requires pieces that are too complex to be cut by scissors, because they resemble fractals
whose edges can be infinitely jagged.

But the year 1990 brought the next step, this time positive, in the saga of circle
squaring. Miklós Laczkovich managed to prove that the circle can be decomposed (not
dissected but decomposed) into complex-shaped, strange pieces that can be reassembled
into a square of equal area just by translating them; no rotations or reflections needed.

A dissection can be done with scissors, because the pieces required for a decomposi-
tion are too complex to be cut by scissors, not matter how delicate. Laczkovich replaced
scissors with a tool known as the axiom of choice, discussed below.

His proof allows for pieces as strange as dust particles. The proof promises that such
a process is possible, but it is an existence proof; it doesn’t tell what the actual pieces
are and how to move and assemble them. Even worse, his pieces are unmeasurable,
meaning it’s impossible to measure and determine their area. We also do not know how
many pieces may be needed, and Laczkovich only provides an upper bound of 1050, a
vast number!

Nevertheless, this revolutionary proof of Laczkovich’s served to renew interest in
the problem and in 2006 came a publication, by  Lukasz Grabowski, Andras Máthé, and
Oleg Pikhurko, that is almost constructive. Most of the pieces they use are well defined,
but their assembly into a square left a small hole in the square, a hole described as “a
set of measure zero.”

Clearly, at least one more step was needed to fully decompose the circle, and this
came in 2015 in the form of work by Andrew Marx and Spencer Unger. Now there is
a complete description of a method that decomposes the circle completely, but requires
an even unimaginably larger number of pieces, in the order of 10200.

This latest achievement may not be the last word in the long saga of squaring the
circle. As long as mathematicians exist, surprises in this area, as in many others in
mathematics, may await us.

[Nadis 23] is a short, nontechnical reference to the history described here.
Appendix: The Axiom of Choice

Mathematicians sometimes hear the following question from friends “What is the
axiom of choice? Does it have anything to do with free choice?” Here is a nontechnical
description of this strange concept and its history.

Set theory, the creation of Georg Cantor in the 1880s, was one of the biggest sur-
prises in the history of mathematics and has remained controversial since its inception.
The theory talks about the relative sizes of infinite sets and deduces in a simple way
that there are di⌃erent kinds, or magnitudes, of infinity.

Well, are there di⌃erent infinities? The simplest answer is We don’t know. The
human mind cannot grasp infinity, and by definition, infinity cannot be reached and
examined. A better answer is that like any theory, set theory is based on assumptions
that underlie it and are responsible for its results and conclusions. Cantor’s initial,
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naive assumption was that sets, even infinite sets, can be compared by matching their
elements, and based on this assumption he arrived at his revolutionary results.

It didn’t take long for cracks to develop in set theory. Already in 1901, Bertrand
Russell discovered and published the paradox that is named after him and which showed
that something was wrong with set theory, at least with the way Cantor had originally
developed it. Admittedly, Russell’s work dealt with a strange object, the set R whose
elements are all the sets which are not members of themselves, but this is acceptable
because mathematics is full of unusual, small and large, beautiful and ugly, objects,
ideas, and proofs. Russell used basic logic to prove that if R is an element of itself, then
R is not an element of itself, and conversely, if R is not an element of itself, then R is
an element of itself. Expressed in symbols, this paradox says:

Let R = {x|x /⇠ x}, then R ⇠ R � R /⇠ R.

Those mathematicians who objected to set theory from the beginning were not
surprised by this contradiction, but the many friends and enthusiasts of the theory got
concerned, and some have immediately decided to try and put it on a firm mathematical
basis. A mathematical theory is normally based on axioms; simple self-evident state-
ments on which later conclusions, results, and proofs are based. The term axiom comes
from the Greek �� ◆µ� (axiōma) meaning “that which is thought worthy or fit” or “that
which commends itself as evident.”

Several mathematicians helped in choosing a set of axioms on which the new Ax-
iomatic Set Theory or Zermelo–Fraenkel set theory (ZF), would be based, chief among
them were Ernst Zermelo and Abraham Fraenkel. Deciding on a set of axioms is not triv-
ial. In addition to being few and simple, axioms have to be consistent and independent,
and give rise to an entire theory that would grow from them.

Zermelo’s surname appears to have been unique to his family (after his wife’s death,
German telephone directories showed no one else with that name), and he gave various
explanations of its origin, including that it was taken from the middle of the word
Walzermelodie (waltz melody).

—From the lore of mathematics.
The axiom of choice was included in Zermelo’s axiomatic set theory around 1904–

1908 and is now part of the modern ZF theory. In simple words, it claims Given a set C
whose elements B are nonempty disjoint sets, it is always possible to (simultaneously)
choose exactly one element of each B and use those elements to construct a new set.
(The word “simultaneously” is sometimes omitted.) As long as we consider finite sets,
there is no problem. In principle, it is possible go over every set B and choose an
element of it, either at random or according to some rule. With infinite sets, however,
it is impossible to go over all the sets B, so a rule or a function is needed to specify how
to choose an element from each B.

Here are examples of infinite sets C.
• If the elements of sets B are integers, we can always choose the smallest one.
• If the elements of sets B are real intervals of the form [a, b], it is possible to choose
the midle element (a + b)/2 from each set B.
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• However, if the elements of sets B are real numbers, it may be impossible to specify
a rule of selection. Recall from the Introduction that a real number does not have an
immediate successor or a predecessor. Given a real number a, there is no number that
immediately follows or precedes a. Also, an interval of real numbers may not have a
smallest, largest, or even a middle number. An example is the open interval (a, b).

The next two examples are by Bertrand Russell and are about sets with non-
mathematical elements.
• If each set B consists of a pair of shoes, then it is possible to choose, say, the left shoe
from each B.
• However, if each set consists of a pair of identical socks, there is no way to identify
one and choose it.

In all these examples the axiom of choice insists that the answer is yes, it is possible
to choose, but it doesn’t tell how.

Being more philosophical than mathematical, the axiom has been a source of con-
troversy and arguments since its inception. It has also produced unexpected and unusual
consequences of which the Banach-Tarski paradox is the most spectacular. This claim
has to do with the decompositions of the sphere, and is therefore related to the question
of circle squaring discussed earlier. The claim is that any solid sphere can be split into
finitely many pieces which can be reassembled to form two solid spheres of the same
size. Furthermore, any solid sphere can be split into finitely many pieces in such a way
that they can later be reassembled to form a solid sphere of arbitrary size.

The universe can be very a strange place without choice. One consequence of the
Axiom of Choice is that when you partition a set into disjoint nonempty parts, then the
number of parts does not exceed the number of elements of the set being partitioned.
This can fail without the Axiom of Choice.

—The mysterious Dr. Strangechoice.

Tupper’s Self-Referential Formula

Tupper’s self-referential formula, developed by Je⌃ Tupper in 2001, is a formula
that visually represents itself when graphed at a specific location in the (x, y) plane.
Wikipedia defines the term self reference as follows:

Self-reference is a concept that involves referring to oneself or one’s own
attributes, characteristics, or actions. It can occur in language, logic, mathe-
matics, philosophy, and other fields.

In natural or formal languages, self-reference occurs when a sentence, idea,
or formula refers to itself. The reference may be expressed either directly,
through some intermediate sentence or formula, or by means of some encoding.
The following software challenge has long been a favorite of aficionados of computer

programming (software design or software engineering). It asks you to write a program
that prints itself. Being nerds, many programmers love this kind of challenge and have
spent much time and e⌃ort in creating this type of, basically useless, software. (Useless,
because it requires no input. It always outputs the same thing. See reference [Quine 23].)

This kind of self-replicating of self-producing software has been named Quine by
Douglas Hofstadter in honor of the philosopher Willard Quine.
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At first, Tupper’s formula [Tupper 01] seems to be self-referential, but once we un-
derstand how it works and what it really does, it becomes clear that this formula is
something di⌃erent; it is more a fun game that connects binary numbers and monochro-
matics (black-and-white) graphics. It is general and can print more than just itself, and
it is based on the frightening-looking inequality

1
2

<
,
mod

�⇧ y

17
⌃
2�17↵x��mod(↵y�,17), 2

⇥-
. (.1)

To draw a figure using this inequality, prepare a [107, 18] bit rectangle and fill it with
zeros. Scan it by varying x in [0, 106] and y in [k, k + 17], where k is the 543-digit
(1802 = 106 ⇥ 17 bits,) integer listed in Figure 4. For each pair of coordinates (x, y)
that satisfies the inequality above, set the corresponding bit in the grid to 1. The
low-resolution figure obtained in this way will represent the inequality.

ArrayPlot[Table[

Boole[1/2<Floor[Mod[Floor[y/17] 2^(-17 Floor[x]-Mod[Floor[y],17]),2]]],

{y,k,k+16},{x,105,0,-1}]/.

k->

9609393799189588849716729621278527547150043396601293066515055192717028

0239526642468964284217435071812126715378277062335599323728087414430789

1325963941337723487857735749823926629715517173716995165232890538221612

4032388558661840132355851360488286933379024914542292886670810961844960

9170518345406782773155170540538162738096760256562501698148208341878316

3849115590225610003652351370343874461848378737238198224849863465033159

4100549747005931383392264972494617515457283667023697454610146559979337

98537483143786841806593422227898388722980000748404719]

Figure 4: Tupper’s Self-Referential Formula and Its Output.

Even more. Take any image, scan it in monochrome and in any low resolution, not
just 107 ⇥ 18, to obtain a grid of bits, a 1-bit for a black pixel and a 0-bit for a white
pixel. Scan this grid column by column, collecting the bits. The resulting bitstring can
then be used as k in Figure (.1).

With this process in mind, the Tupper formula is no longer magical or even com-
plicated. It is only part of a straightforward process of converting a monochrome image
to a number and converting any number to such an image. We can think of it as either
(1) encoding an image in a number, in cases where it is easy to share a number than
an image, or (2) a way to hide a number in an admittedly weird looking, but innocuous
image.
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To convert an integer to an image, it should be converted to a bitstring and arranged
in a rectangular array. Figure 5 shows, on lines 2 through 4, such an array, of dimensions
8 ⇥ 10. The array is displayed in matrix form on line 5. An empty list l is defined on
line 7 and is populated, on lines 8 and 9, with the pairs (x, y) of coordinates of array
locations that have a 1-bit. The Show command on lines 12–13 then uses the coordinates
to display black rectangles that recreate the original image.

The Tupper formula of Figure (.1)is more complex than the simple test on line 8,
because it creates from each coordinate pair (x, y) a 16 ⇥ 16 square of pixels. This is
done in order to end up with large pixels and an easy-to-read final image.

1 Remove["Global‘*"];

2 k={{1,1,1,0,1,1,1,0,0,0},{1,0,0,0,0,1,0,0,0,0},{1,1,1,0,0,1,0,1,0,1},

3 {1,0,0,0,0,1,0,1,1,1},{1,0,0,0,1,1,1,0,1,0},{0,0,1,0,0 ,0,0,0,0,0},

4 {0,1,0,0,1,1,1,0,1,0},{1,0,0,1,1,0,0,1,0,1}};

5 MatrixForm[k] (* k is 8x10*)

6 r=First[Dimensions[k]]; c=Last[Dimensions[k]];

7 l={};

8 Do[{x=Floor[(i-1)/c+1],y=Mod[i-1,c]+1,If[k[[x,y]]==1,AppendTo[l,{x,y}]]},

9 {i,1,r *c}];

10 len=First[Dimensions[l]];

11 bbox:={EdgeForm[Thick],Rectangle[{0,0},{.8,.8}]};

12 Show[Graphics[{Table[Translate[ bbox,{l[[t]][[2]],-l[[t]][[1]]}],

13 {t,1,len}]},Background->LightBlue]]

Figure 5: Mathematica Code for Tupper’s Formula.

Ramsey Theory: complete chaos is impossible

Everyone knows that the pope is the head of the Roman Catholic Church. Fewer
people know that the bishop of Canterbury is the primate of the Anglican church (or
Church of England). Even fewer have heard the name of Michael Ramsey, the 100th
bishop of Canterbury (1961–1974). Practically no one outside of a small circle of math-
ematicians have heard of his brother, Frank who died aged 26, and yet it is Frank
Ramsey who developed one of the most original mathematical fields, known today as
Ramsey theory. It is said that Frank Ramsey was interested in English literature, the
classics, politics, philosophy, and psychoanalysis, while also making important contribu-
tions to mathematics. This short discussion of Ramsey theory follows reference [ram-
sey.bazett 23].

Ramsey theory is part of combinatorics, a vast field which is concerned with the
enumeration (counting) of mathematical structures, arrangements, or configurations.
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However, Ramsey theory is di⌃erent from the rest of combinatorics because it studies
the amount of order in a structure as a function of its size. A topic in Ramsey theory
may ask, given this structure, how can we prove that it, or a bigger version of it, would
satisfy a particular property or a given relation. Sometimes, the aim is more specific,
and we ask how big should the structure be in order to have the desired property or
relation? The following are two key theorems of Ramsey theory:

Van der Waerden’s theorem. For any given c and n, there is a number V , such
that if V consecutive numbers are colored with c di⌃erent colors, then the sequence of
numbers must contain an arithmetic progression of length n whose elements are all the
same color. Here is a typical example. Given a sequence of eight numbers, each colored
with one of two colors R and B, we check for the existence of arithmetic progressions.

It is easy to verify that for the particular coloring R1 B2 B3 R4 R5 B6 B7 R8 there
are no arithmetic progressions. As we start at a particular color and hop from left to
right in equal steps, we cannot reach the same color more than once. However, adding
a ninth cell of any color, R or B, makes it possible to move, for example, is steps of 4,
from 1 to 5 to 9 (if 9 has color A) or in steps of 3, from 3 to 6 to 9 (if 9 has color B). By
extending the structure from 8 to 9 units, we have opened up possibilities of skipping in
equal steps while staying with the same color.

The more general Hales–Jewett is an existence theorem. It guarantees that some-
thing must exist, but cannot tell us how to construct it or how big it must be. Specifically,
the theorem says that an object with a high enough number of dimensions would fea-
ture some combinatorial requirement. In other words, just by increasing the number of
dimensions of the object, we can always eliminate any element of randomness that it
originally exhibited. Some may even draw from this the extreme conclusion that there
is no such thing as complete randomness. Stated informally, the theorem says that for
any given n and c, there is a number H such that if the cells of an H-dimensional
n ⇥ n ⇥ n ⇥ · · ·n ⇥ n cube are colored with c colors, there must be one row, column,
or diagonal all of whose cells are the same color. The coloring cannot be completely
random.

The following example of a graph illustrates the Hales–Jewett theorem. A math-
ematical graph, such as the one of Figure 6a, is a set of nodes, also called vertices,
connected by edges. The 6-vertex graph in the figure describes a group of six people
who happen to be in the same place (Ramsey used the example of a party). Some of
them may know certain others, but perhaps not everyone. The blue edges in the figure
connect people who know each other, while the red edges connect pair of people who
don’t know each other. It is clear that the blue edges, which form a subgraph, also define
several triangles, each of which is a small group of three people where each one knowns
everyone else. The same is true for the red edges. The Hales–Jewett theorem states
that regardless of how many people each of the six people knows, there will always be
at least one triangle, blue or red, in a group of six people, and more triangles can be
expected with larger parties.

The proof is simple. The full circle in Figure 6a is a person connected to five other
people, some of which he knows. Obviously, given that there are only two colors, at
least three of the five edges emanating from this person must have the same color. Let’s
assume that the three same-color edges of vertex 1 in Figure 6b are blue. They lead
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Figure 6: Two Fully-Connected Graphs.

from vertex 1 to vertices 2, 3, and 4, so we connect those vertices with dashed lines and
observe the following. If all three dashed lines are red, then there is a red triangle in the
graph. Otherwise, at least one of the three must be blue, and whichever it is, it forms
a blue triangle between vertex 1 and one of the other numbered three vertices. Thus,
there will always be at least one triangle in a graph of six or more vertices.

Figure 7 is another example of this theorem. It is easy to verify that none of the
rows and diagonals of the two-dimensional tic-tac-toe boards is uniform, but once these
are extended to a three-dimensional structure, there are uniform substructures, two of
which are shown in red dashed lines.
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Figure 7: A 3D Tic-Tac-Toe.

There are only two kinds of math books: Those you cannot read beyond the first
sentence, and those you cannot read beyond the first page.

—Chen-Ning Yang.

The birthday Problem (or Paradox). This interesting problem, with its unex-
pected and counterintuitive result, is an example of the use of probabilities to gain an
insight into problems. We present a simple, approximate solution and illustrate it with
examples. For a more detailed treatment, see reference [Wikibirthday 23].
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Imagine n people in a room, perhaps for a birthday party. Each has a birthday
(just month and day, not year). The birthday problem is to compute the probability
that two or more of them share the same birthday.

This probability is unexpected and is often referred to as a paradox, because it is
higher than what most people feel intuitively. For example, the case n = 23 (just 23
people with random birthdates) would cause many people to guess a low probability
of sharing a birthday, but the correct (albeit approximate) result is about 50%. With
n = 50, this probability rises to about 97%.

Here is one way to compute this probability. We ignore leap years, we assume that
all days are equally likely as birthdays, and that there are no twins in the room.

We start with person #1. He/she was certainly born, so the probability of him
having a birthday is 1. We denote his birthday by D and decide to write as 365/365.
The probability of person #2 NOT sharing birthday D is 364/365, because he must
have been born on one of the other 364 days. We denote his birthday by F . Similarly,
for person #3 not to share his birthday with either #1 or #2, he must have been born
not on day D and not on day F , but on one of the remaining 363 days. His probability
of not sharing a birthday is therefore 363/365.

This argument is similarly extended to all the remaining persons. The probability of
person #n not to share his birthday with the n�1 others is, similarly, (365�n+1)/365.

Thus, the probability that no two people share a birthday is the product

365
365

⇥ 364
365

⇥ 363
365

⇥ · · ·⇥ (365� n + 1)
365

= 365⇥ 364⇥ 363⇥ · · ·⇥ (365� n + 1)
�

1
365

�n

=
365!

(365� n)!365n

=
n! ·
�365

n

⇥

365n
,

where symbol ! is the factorial operator and
�365

n

⇥
is the well-known binomial coe⌥cient.

The Mathematica code

n = 23.;
n! Binomial[365, n]/365^n

produces 0.492703. Subtracting this from 1 yields 0.507297. Surprisingly, the probability
of 23 people, chosen at random, to not share a birthday, is higher than 50%. Similarly,
setting n = 50 results in 0.0296264, which produces the probability 1 � 0.0296264 =
0.9703736.

Such a computation can be viewed as the product of evaluating each person against
the other n� 1 persons. Clearly, it is not enough to check whether persons 2 through n
share a birthday with person 1. We also have to check whether persons 3 through n
share a birthday with person 2, whether persons 4 through n share a birthday with
person 3, and so on.

An interesting, practical application of this result in probability is implementing
safe passwords. When a computer user opens a new account at, say, a location X, and
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sends in his new password for the account, the computer at X passes the password
through a simple hashing process where the password’s characters are scrambled and
put through several calculations to produce a fixed length hash code C, normally 128
or 256 bits long, which is then stored in computer X.

The password itself is then deleted. It is not saved anywhere in location X, to
prevent it from being stolen. The hashing process is irreversible, which means that even
if the table of hash codes is stolen, the codes cannot be converted back into passwords.

Each time the user logs into his account at X and types the password, the computer
at X hashes it, computes a hash code D, and then searches the table of hash codes for
a match to D.

This process results in high digital security at location X, but it requires that no
two passwords would hash to the same hash code. In professional terms, it is mandatory
to have no collisions. This is where the birthday paradox is employed to maximum
e⌃ect. The equivalent of persons is the passwords. The equivalent of the birthdays are
the new users inputting passwords. That of 365 is the size of the hash codes space, and
the equivalent of n is the current number of users.

With 128-bit hash codes, there can be 2128 = 3.40282 · 1038 codes, resulting in a
space much bigger than any conceivable number of passwords. With 256-bit hash codes,
the size of the space is 1.15792 · 1077, unimaginably vast.

This book has been a journey,. . .
—Paul R. Walker.
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A common definition of art in a dictionary is “the creation of work or its principles; the
act of making or producing things that exhibit form, beauty, and unique perspective.”
In English, the term art also has various other connotations like the skill of negotiation,
humanities, and cunning behavior. What catches our attention is the link established
in this definition between art and beauty. An artwork must possess beauty regardless
of its creation process or inspiration. Therefore, the mathematical principles utilized in
creating art are connected with aesthetics.

This chapter is concerned with those aspects of mathematics that can be employed
to create beautiful or attractive patterns, or simply patterns that are pleasing to the
eye. One of the marvels of mathematics is the pleasure we feel when an unexceptional,
dry-looking mathematical expression unexpectedly produces a lovely geometric shape
when plotted graphically.

Those with a mathematical background know that mathematical functions and
expressions can be plotted graphically as curves or surfaces, many of which would be
considered interesting, nice, lovely, attractive, pretty, fair, or even beautiful. Some
examples of such plots are shown in this chapter, but even more interesting graphical
objects can be constructed from other approaches such as: (1) combining straight lines or
arcs in various ways, (2) plotting the curve followed by an object when it slides without
friction along the circumference of another object, (3) using random numbers to combine
familiar objects in unpredictable, surprising ways, and (4) extending two-dimensional
figures to three dimensions, such as constructing a helix from a spiral. These and other
approaches are described and illustrated in this chapter.
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1.1 Curves and Surfaces

We start with simple functions. In English, the word function has several meanings, one
of which is a mathematical function. A mathematical function is a rule of computation.
Given a number x, the function y = f(x) specifies how to compute another number y.
Consider, for example, the function f(x) = x2. For x = 1, the function specifies (returns)
y = 12 = 1. For x = 2.1, the function returns 2.12 = 4.41, and so on. Applying this
function to all the real numbers x in the interval [1, 2] returns all the real numbers y in
the interval [1, 4]. We can therefore say that a function produces pairs (x, y) of numbers.

The discipline of analytic geometry (the study of geometry using a coordinate sys-
tem, also known as coordinate geometry or Cartesian geometry) teaches us that such
a pair specifies a point in two dimensions. The first component of the pair is the x
coordinate of the point; it specifies its distance from the y axis. Similarly, the second
component is the y coordinate of the point, i.e., its distance from the x axis (Figure 1.1a).
It is now easy to see how the set of all the pairs (x, y) specified by a function can be
plotted as a set of points to generate a curve. Figure 1.1b shows the curve of the func-
tion y = x4 for x values in the interval [1, 2] and Figure 1.1c shows a sine curve from
0 to �. Part (d) of the figure shows how such smooth curves are drawn in practice.
Several points on the curve are computed and are connected with straight segments. If
the segments are short enough, the curve appears smooth.

1 2 3 1 2 3
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(a)

(b)

(c) (d)

Figure 1.1: Points and Curves.

I made a graph of all the past relationships I had. It had an “ex”
axis and a “why” axis.

Curves can also be three-dimensional, as the helix of Figure 1.2a illustrates. A func-
tion may also specify how to compute a result z from two given numbers (parameters) x
and y. Such a two-parameter function has the form z = f(x, y) and it can be employed
to plot a surface. For any pair (x, y), the function computes a third number z and the
triplet (x, y, z) is plotted as a point in three dimensions. Once enough points have been
plotted, the result looks like a surface. Figures 1.2b,c show the surface produced by the
functions cos(x · y) and e�(x2+y2).

A function of the form y = f(x) is called explicit because it separates the two
variables x and y. A function where the two are not separated is called implicit and has
the form F (x, y) = 0. The explicit equation of a straight line is y = ax+ b and that of a
sine curve is y = sin(t). However, a circle is easier to express implicitly as x2+y2�R2 = 0.
(Many other closed curves also lend themselves to implicit representations.)
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(a) (b) (c)

Figure 1.2: Three-Dimensional Plots.

A function can also be parametric. A parametric representation is an approach to
curve and surface design where attractive curves and surfaces can be created systemati-
cally and made as complex as desired. The idea is to represent the coordinates of points
on the curve (or surface) as functions of one (or two) parameters. Thus, the expression
(cos(t), sin(t)) is a two-dimensional point whose x and y coordinates are functions of a
parameter t. When t is varied in a certain interval, a point (cos(t), sin(t)) is computed
for each value of t and the total of all the points becomes a curve. The curve generated
by (cos(t), sin(t)) is a circle because sin2(t) + cos2(t) = 1 for any t. This basic circle
can be extended to an ellipse, a spiral, an oval, and many other curves. It can also be
extended to three dimensions to become a helix, a cylinder, a cone, and other surfaces
and space curves.

The three-dimensional helix curve of Figure 1.2 was computed by the parametric
function

�
sin(3t), cos(3t), t/3

⇥
for t in the interval [0, 2�].

A parametric surface is generated by a function of the form
�
x(u,w), y(u,w), z(u,w)

⇥

when it is computed for many values of the parameters u and w and the resulting points
are plotted. Thus, for example, the function (u,w, 3) corresponds to a flat plane at
z = 3. Here are examples of parametric surfaces that are attractive, exhibit certain
symmetry, and are easy to compute, display, and extend in many ways.

1. A saddle (formally, a hyperbolic paraboloid) has the form z = x2 � y2, and can
therefore be computed parametrically by (u,w, u2 �w2) when both u and w are varied
symmetrically about zero.

2. The explicit expression z = cos(x2 + y2) corresponds to a wavy surface. It is
easy to represent parametrically as

�
u,w, cos(u2 + w2)

⇥
.

3. A cylinder is a circle extruded vertically, which suggests the parametric expression�
cos(u), sin(u), w

⇥
where u varies in the interval [0, 2�] and w goes from 0 to the desired

height of the cylinder.
4. A disk is a surface that consists of concentric circles located at the same height.

Its parametric representation is therefore
�
w cos(u), w sin(u), 0

⇥
.

5. A cone is the surface obtained when the same concentric circles are located
higher and higher on the z axis. Instead of being always 0, the z coordinate of a circle is
slightly larger than that of the preceding circle. The parametric expression is therefore�
w cos(u), w sin(u), w

⇥
. A double cone can be obtained when w is varied in an interval

that is symmetric about 0, such as [�2, 2].
Figure 1.3 illustrates the next five surface constructions. They are all based on

circles of radius w whose heights are varied in simple ways.
6. The first surface of this quintet is a flower. The idea is to vary the height
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Figure 1.3: Five Parametric Surfaces.

of each circle periodically while the circle is plotted. This is achieved by the simple
parametric expression

�
w cos(u), w sin(u), (w cos(7u)/2)/2

⇥
. Notice how the height (the

z coordinate) is varied as cos(7u).
7. When the height of a circle is proportional to u, the result is a helicoid. Each

curve on this surface is a helix and is obtained by drawing a circle and raising it contin-
uously as it is being drawn. The parametric expression is

�
w cos(u), w sin(u), 0.7u

⇥
.

8. A paraboloid is obtained when the height of a circle is equal (or proportional to)
the square of its radius. The expression is

�
w cos(u), w sin(u), w2

⇥
.

9. When we vary the height of a circle as the sine or cosine of its radius, the result is
a strange surface of revolution, somewhat resembling a torus. The surface in the figure
was generated by

�
w cos(u), w sin(u), cos(w)

⇥
. Note how consecutive circles have larger

and larger radii, followed by circles of smaller and smaller radii.
10. A strange, unnameable surface results when the height of a circle varies as its

radius w, but is also varied while the circle is being drawn. The surface in the figure
was computed by

�
w cos(u), w sin(u), cos(w � 4u)

⇥
.

⌅ Exercise 1.1: Try to guess the shape of the surface produced by the parametric ex-
pression

�
w, p cos(u), p sin(u)

⇥
where p = 1 + cos(w).

1.1.1 Hypotrochoids, a Family of Curves

Given a circle A of radius a, we place a smaller circle B of radius b inside it and let B
roll without sliding along the circumference of A. A point P is attached to circle B at a
distance h from its center. The roulette curve traced by P is called a hypotrochoid. The
shape of the curve depends on a, b, and h, which is why the hypotrochoids constitute a
family of curves, many of which are well known and have their own names. Spirograph
is a toy that employs plastic sprocket wheels to trace many hypotrochoids. If circle B
rolls along the circumference of A, but outside A, the curve traced by P is referred to
as epitrochoid.

a
A

A

A
B

B

b

hP

a
b

hP

a

P

It can be shown that the parametric expression for a general hypotrochoid is

Ha,b,h(t) =
�
(a� b) cos(t) + h cos

�
(a� b)t

b

�
, (a� b) sin(t)� h sin

�
(a� b)t

b

��
,
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and the general epitrochoid is similarly expressed by

Ea,b,h(t) =
�
(a + b) cos(t)� h cos

�
(a + b)t

b

�
, (a + b) sin(t)� h sin

�
(a + b)t

b

��
.

There are many special cases of hypotrochoids, among which should be mentioned
the hypocycloid (the case where h = b), the ellipse (when a = 2b and h ⇡= 0), and the
n-petal rose (obtained for a = 2nh/(n + 1) and b = (n� 1)h/(n + 1). Figure 1.4 shows
six rows of seven hypotrochoids each. Each row corresponds to a di⌃erent pair (a, b)
and the curves of a row correspond to h values of 0,5, 1, 1.5, 2, 2.5, 3, and 3.5.

(3,1)

(4,1)

(5,1)

(5,2)

(5,3)

(7,3)

0.5 1 1.5 2 2.5 3 3.5

Figure 1.4: Various Hypotrochoids.

It is easy to see how the shapes vary from a simple triangle to roses with seven
petals.

A cycloid is the curve traced by a point on a circle as it rolls along a straight line
without slipping (Figure 1.5a). A cycloid is a special form of trochoid and is an example
of a roulette, a curve generated by a curve rolling on another curve. Part (b) of the
figure shows how the cycloid is also the curve of shortest time. Given points A (higher)
and B (lower) in a field of uniform gravity, we want to connect them with a curve such
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(a)

(b)

A

B

Figure 1.5: Cycloid and Brachistochrone.

that an object sliding down it without friction would take the shortest time. Such a
curve is called a brachistochrone (from Greek: “shortest time”).

Given the cycloid that is generated by a circle of radius r rolling over the x-axis
on the positive y side, its parametric equation is given by

�
r(t � sin t), r(1 � cos t)

⇥
,

where t is a real parameter corresponding to the angle through which the rolling circle
has rotated.

A mathematician is a device for turning co⌃ee into theorems.
American co⌃ee is good for lemmas.

—Alfréd Rényi and Paul Erdős.

⌅ Exercise 1.2: Use the many examples of reference [sine.amazing 24] to experiment with
simple combinations of sine and cosine curves that create pleasing patterns, especially
with straight lines.

1.1.2 Patterns From Straight Segments

A straight line is not generally considered an object of beauty, but it is possible, even
easy, to obtain beautiful patterns from groups of straight segments where the individual
segments partially overlap or vary their orientations in simple ways.

The first idea is to select a long, preferably winding, curve P (t) =
�
x(t), y(t)

⇥
, select

a constant a, and generate a single polyline by connecting points of the form P (an) and
P (a(n+1)) for n = 0, 1, 2, . . .. If the resulting pattern is not interesting, a new, perhaps
very di⌃erent pattern may be generated by selecting another constant a.

The first example is a circle. One parametric expression of a circle is
�
cos(t), sin(t)

⇥
.

We generate a polyline of 24 straight segments from point
�
cos(na), sin(na)

⇥
to point�

cos((n + 1)a), sin((n + 1)a)
⇥
, while varying n from 0 to 25. Figure 1.6 shows seven of

the many patterns created when parameter a is varied between 0 and �.
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Figure 1.6: Seven Patterns Made of Straight Segments.

The next example starts with the 5-sided hypotrochoid (5, 1, 1) (Figure 1.4), whose
simplified parametric expression is

�
4 cos(t) + cos(4t), 4 sin(t) � sin(4t)

⇥
. The following

figures were obtained by varying parameter a from 0 to 5�.

The next idea is to start with a parametric curve P (t) =
�
x(t), y(t)

⇥
, select a param-

eter a, connect points P (t) and P (at) with a straight segment, and then increment t by
a small step and repeat. The five figures were generated in a circle by the Mathematica
code
Manipulate[Show[Graphics[Table[Line[{{Cos[t],Sin[t]},{Cos[a.t],Sin[a.t]}}],{t,0,2Pi,0.05}]]],{a,0.1,2}]

by varying a from 0.1 to 2. The last figure (for a = 2) is called a cardioid and is obtained
as the envelope of the family of straight segments.

The ideas described here can be applied to any parametric curves and almost always
result in a surprising variety of patterns and envelopes.

1.1.3 Patterns Formed From Circular Arcs

Here are simple examples of tiling the plane. Much as a floor or a wall can be tiled with
vinyl, ceramic, or other types of tiles, the two-dimensional xy plane can be tiled with
all kinds of patterns. The di⌃erences between real tiles and mathematical tiles are (1)
the price, (2) the amount of work required to tile, and (3) the number of dimensions.
In mathematics, tiles (and other objects) can have any number of dimensions, although
we cannot visualize more than three dimensions.

We start with a pattern tile0 of two circular arcs on a square and follow with a
similar pattern tile1.
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Tile0 Tile1

The two patterns are selected at random and are arranged in a 10⇥10 grid to form
the left part of Figure 1.7. The center part is similarly formed by randomly selecting
and packing patterns of quarter disks.

Figure 1.7: Patterns of Circular Arcs and Disks.

⌅ Exercise 1.3: The rightmost part of Figure 1.7 is a grid where a simple square pattern
is copied 100 times, rotated by a random multiple of 90⇤ each time, and packed in 10
rows and 10 columns. Try to guess the basic pattern and construct similar grids.

1.1.4 Parabola

The parabola (from the Greek ��✏�⇥o↵⌥) is a well-known curve that often appears
in nature. It is usually introduced as a conic section, but here we employ a di⌃erent
approach. We start with a line (called a directrix) and a point (the focus) not on the
line. The parabola defined by these two elements is the locus of all the points that are
equidistant from the line and the focus. Figure 1.8a shows four such points that satisfy
FPi = PiAi. A locus a curve or other figure formed by all the points whose coordinates
are related mathematically. Alternatively, a locus can also be a point, line, or surface
whose movement in space obeys a rigorous mathematical relation.

Most modern telescopes are reflectors, a type invented by Newton in 1668, where
the main part is a concave mirror that reflects the light and concentrates it at its focus
(Figure 1.9). We intuitively feel that such a mirror should be spherical, but it is easy to
show that its ideal shape is parabolic. Here is why.

Figure 1.8b shows a group of parallel light rays arriving from a star to the vicinity of
such a mirror. The rays left the star simultaneously and therefore arrive at points Bi on
line L at the same time. They continue to the parabolic mirror, hit it at di⌃erent times
(the ray from B3 is first), and are reflected to the focus. The distance C between line L
and the directrix is the same for all rays. Thus, BiPi + PiAi = C, but the definition of
a parabola tells us that FPi = PiAi, so we end up with BiPi + PiF = C. All the paths
of rays from line L to the focus have the same length C.
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Figure 1.8: Parabolas.

Main mirror
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Diagonal mirror

Light

Eyepiece lens

Figure 1.9: Parabolas.

In addition to telescopes, the mirrors used in solar collectors, microwave ovens,
and satellite dish antennas are parabolic (more accurate, they are paraboloids). The
trajectories of comets are parabolas, as are also the path of a bouncing ball and the arc
described by a stream of water sprayed at an angle from a sprinkler.

Figure 1.9 also illustrates a simple way to draw a parabola. Start with two lines that
meet at a point. Place equidistant points on each line, and connect corresponding points
with straight segments. The parabola is obtained as the envelope of all the segments.

Figure 1.10 illustrates how the envelope of a parabola can be obtained by folding
a sheet of paper (origami). Simply fold a corner of a sheet of paper several times such
that one edge of the paper always passes through the focus.

fo
ld

 h
er

e

Focus

Figure 1.10: Parabola by Paper Folding.

1.1.5 Spirals and Helices
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Given a circle, we imagine a point moving along its circumference. While the point
is moving, we continuously increase the radius of the circle. The curve generated by
the point is a spiral. The precise shape of the spiral depends on the relation between
the speed of the point and the speed with which the radius is increased. The special
shape of a spiral implies that the most natural way to represent it mathematically is in
polar coordinates. A spiral is any curve of the form r = af(b�) where f is a monotonic
increasing function and a and b are parameters.

The simplest type of this curve is the spiral of Archimedes. In this curve, the
radius is increased by the same distance the point has moved. The polar equation of
the Archimedean spiral is therefore r = a�, where a is a constant. After one lap (i.e.,
when � is increased by 360⇤), the new radius is a(� + 2�) = a� + 2a� = r + 2a�.
Thus, the distance between consecutive laps of this spiral is constant. The parametric
equation of this spiral is obtained directly from its polar equation as

�
r cos �, r sin �

⇥
or

a�
�
cos �, sin �

⇥
.

The next important type of spiral is the equiangular spiral (also known as the
logarithmic or Bernoulli’s spiral). Its polar equation is r = aeb⇥, where a and b are
constants, leading to the parametric representation e⇥

�
cos �, sin �

⇥
. This type of spiral

has an interesting property. If we increase � by a constant c, the radius r is multiplied
by ec. This is because e(c+⇥) = ece⇥ = ecr. Thus, an arithmetic sequence of � values,
results in a geometric sequence of r values. The growth patterns of the Archimedean
and logarithmic spirals are compared in the leftmost part of the following figure.
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55
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Many other types of spirals are possible and have polar equations of the form
r = af(b�) for di⌃erent functions f . If f is monotonic increasing, the spiral grows from
the origin when � is increased. Examples of this type are r = �2, r = log �, and r = ±

"
�

(the latter rule results in the second part of the figure showing two spirals spiraling into
and out of the origin). If f decreases monotonically, the curve spirals toward the origin
while � is increased. Examples of this type are r = 1/�, r = 1/

"
�, and r = e�a⇥.

The third part of the figure shows a square spiral where two consecutive edges have
the same length, and then the length is increased by one unit for the next pair. The
rightmost part is a set of squares, each rotated by 10⇤ relative to its predecessors and is
shrunk by a factor of 0.86. The corners of the squares lie along four logarithmic spirals.
This is an example of a pursuit curve.

A pursuit curve is the trace an object leaves when chasing another object. Imagine
four bugs located at the corners of a square. At a certain moment, each bug starts
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crawling towards its neighbor on the right with uniform speed. The curve followed by
each bug is identical to the pursuit curves of the figure.

The two-dimensional spiral curve can be extended to three dimensions by “pulling”
it out of the xy plane while it spins and expands. The three-dimensional parametric
representation of the Archimedean spiral is of the form

�
r cos �, r sin �, �

⇥
. The z co-

ordinate can either be � or a monotonic increasing function of �. Such an expanding
three-dimensional spiral is known as a conical helix. A helix is a three-dimensional spiral
whose radius is constant; it looks like like a corkscrew or spiral staircase.

Figure 1.11 shows a basic helix and two three-dimensional spirals, Archimedean and
logarithmic.

Figure 1.11: Helices.

Figure 1.12 illustrates three patterns, spirals and rosettes, based on ⌘, �, and e.
Mathematica code is included. See also Figures 5.5 and 5.6.

Each generation has its few great mathematicians. . . and [the others’] research harms
no one.

—Alfred W. Adler.

1.1.6 The Lotus in Polar Coordinates

r1[t_]:=1+(Abs[Cos[3t]]+2(0.25-Abs[Cos[3t+Pi/2]]))/(2+8Abs[Cos[6t+Pi/2]]);
r2[t_]:=1.8+(Abs[Cos[3t]]+2(0.25-Abs[Cos[3t+Pi/2]]))/(2+8Abs[Cos[6t+Pi/2]]);
PolarPlot[{r1[t],r2[t]}, {t,0,2Pi}, Ticks->False, PlotStyle->{Black,Red}]

Figure 1.14: Lotus, by YouTube channel MathsShorts1.

1.1.7 Egg Shapes

We are familiar with the oval shape of an egg. (The word oval is derived from the Latin
“ovus” for egg.) Eggs are mentioned in the Bible and in Shakespeare, and appear in
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par=GoldenRatio;
p=Table[{(n/100)Cos[2par Pi n],(n/100)Sin[2par Pi n]},{n,0,500}];
Graphics[{PointSize[Medium],Red,Point[p]},Axes->True]
par=GoldenRatio^2; (*1/phi^2*)
p=Table[{(Sqrt[n]/2)Cos[2 Pi n/par],(Sqrt[n]/2)Sin[2 Pi n/par]},{n,0,500}];
Graphics[{PointSize[Medium],Red,Point[p]},Axes->True]
par=Pi;
p=Table[{(n/100)Cos[2par Pi n],(n/100)Sin[2par Pi n]},{n,0,500}];
Graphics[{PointSize[Medium],Green,Point[p]},Axes->True]
par=E;
p=Table[{(n/100)Cos[2par Pi n],(n/100)Sin[2par Pi n]},{n,0,500}];
Graphics[{PointSize[Medium],Blue,Point[p]},Axes->True]

Figure 1.12: Rosettes based on ⌘, �, and e.
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r       = sin(n µ) for various values of n

r = 1; n = 24/25;
PolarPlot[{r, Sin[n t]}, {t, 0, 50 Pi}, Ticks -> False]

Figure 1.13: Rosettes in Polar Coordinates From r = sin(n�) For Various n.
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classical painting (Figure 1.17 is from an altarpiece by Piero della Francesca). An egg-
like oval is a generalization of the familiar ellipse, much as an ellipse is a generalization
of the circle, but how can we derive a mathematical expression for an egg?

We start with the ellipse. The ellipse is defined as the locus of all the points the sum
of whose distances from two fixed points, the foci (pronounced fow-sai) of the ellipse, is
constant. Figure 1.15a illustrates how this definition leads to a simple construction of
the ellipse. A nail is driven into each focus and a string is attached loosely to the nails.
A pen is used to tighten the string, and half of the ellipse is drawn by sliding the pen
along the string. The string is then moved to the other side of the nails and other half
of the ellipse is drawn in the same way.

(a) (b) (c)

(x,y)

(c,0)(-c,0)
2b

2a

d'd'
dd

Figure 1.15: Ellipse and Oval.

⌅ Exercise 1.4: Explain how to succeed in billiard (pool table) with the aid of an ellipse.

The shape of an egg isn’t well defined, but the great 19th-century physicist James
Maxwell discovered, at the tender age of 15, how to create an entire family of oval shapes
that resemble eggs [May 62]. Figure 1.15b shows how to attach a string to the left focus
and to the pen (the hollow circle) such that the sum of distance d of the pen from the left
focus and twice its distance d⌥ from the right focus is constant. Moving the pen traces
an oval shape reminiscent of an egg. Figure 1.16 is a contour plot of the six shapes
created by keeping the sum d+2d⌥ equal to 2.5, 3, 3.5, 4, 4.5, and 5. Figure 1.15c shows
a similar oval created by attaching a string to the right focus and to the pen in a way
that keeps the sum 2d+3d⌥ constant. An entire family of oval shapes can be created by
keeping the sum ad + bd⌥ constant for various values of a and b.

2.5

3
3.5

4
4.5

5

Figure 1.16: Contour Plots of Maxwell Ovals.

Here is another approach to the construction of ovals. We modify the equation
of the ellipse to give it a left-right asymmetry. The implicit equation of the circle is
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x2 + y2 = R2 or (x/R)2 + (y/R)2 = 1 and that of the ellipse is (x/a)2 + (y/b)2 = 1,
where a and b are the two main half-axes of the ellipse. We therefore modify this
equation such that the term (y/b)2 will become larger on one side of the x axis and
smaller on the other side. The simplest way of doing this is to multiply this term by a
simple perturbation function g(x) that satisfies

g(x) =
�

< 1 positive x,
> 1 negative x.

As an experiment, we try the implicit expression (x/a)2+g(x)(y/b)2 = 1 for the functions
g1(x) = 1 + 0.2x, g2(x) = 1/(1 � 0.2x), g3(x) = e0.2x, and g4(x) = (1 + kx)/(1 � kx).
The last perturbation function is computed for k = 0.1, 0.2, 0.3, and 0.333 and results in
shapes varying from an egg to a triangle. All four functions extend the range of values
of y when x is negative and shrink this range when x positive, thereby resulting in ovals.

(1) (2)

(3)

(4)

Section 3.9 discusses a di⌃erent approach, circle inversions, to constructing and
converting curves. Among other features, the circle inversion of an ellipse is an oval.

⌅ Exercise 1.5: Apply the methods shown here to compute and draw an egg shape in
three dimensions.

Figure 1.17 is one of many examples of the use of an egg shape in art and architec-
ture.
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Figure 1.17: An Egg by Piero Della Francesca (1465).

1.1.8 The Cassini Oval

The ellipse is the locus of points whose sum of distances from two fixed foci (pronounced
fow-sai) is constant. Similarly, the Cassini oval, named after the astronomer Giovanni
Cassini, is the locus of points the product of whose distances from two fixed foci is
constant.

We denote by b the square root of the constant product of the distances. If the foci
are at (a, 0) and (�a, 0), then the equation of the curve is

((x� a)2 + y2)((x + a)2 + y2) = b4, or (x2 + y2)2 � 2a2(x2 � y2) + a2 = b4.

Figure 1.18 shows 11 shapes of this oval, for a = 1 and for b values ranging from
0.6a to 1.6a. For b/a < 1, the curve consists of two disconnected loops, each of which
contains a focus. For b/a > 1, the curve is a single, connected loop enclosing both foci.

The special shape for b = a is the lemniscate of Bernoulli. The name is derived
from lemniscatus, Latin for “decorated with hanging ribbons.” The lemniscate was first
described in 1694 by Jakob Bernoulli as a modification of the ellipse. The central point
of the lemniscate is a crunode (or an ordinary double point), a point where a curve
intersects itself.

1.1.9 Witch of Agnesi

The witch of Agnesi is a plane curve that is defined by a generating circle. The Wikipedia
article on this curve explains how it is named after Maria Gaetana Agnesi, and how the
word “witch,” is a result of a meaning lost in translation. Reference [agnesi 24] has
much information about this curve.
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b=0.6a

b=1.6a

b=a

a=1;
cassini[x_,y_]:=(x^2+y^2)^2-2a^2(x^2-y^2)+a^4-b^4;
Show[Table[ContourPlot[cassini[x,y]==0, {x,-2,2}, {y,-1.3,1.3},
ColorFunction->Function[{x,y,b},Hue[4b]]], {b,0.6a,1.6a,0.1a}],
Frame->False, AspectRatio->0.6]

Figure 1.18: Cassini Ovals for Several b Values.

Figure 1.19a illustrates the special construction of this curve. Draw a line segment
from the bottom a of the circle through an arbitrary point b on the circle. Continue
the segment until it reaches the height of the circle at c, and then drop a vertical to the
height of b. This defines the location of point d, the point on the curve that corresponds
to b.

a

b

c

d

- 20 - 10 10 20

5

10

15

(a)

(b)

Agn[a_]:=8a^3/(x^2+4a^2);
p1=Plot[{Agn[1],Agn[2],Agn[4],Agn[8]}, {x,-25,25}, AspectRatio->Automatic];
p2=Graphics[Evaluate[Table[Circle[{0,a},a],{a,{1,2,4,8}}]]];
Show[p1,p2]

Figure 1.19: Construction of the Witch of Agnesi.

Figure 1.19b may help the reader to derive the parametric equation of the curve
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which is x = 2a cot � and y = a[1� cos(2�)] for � ⇠ [0,�]. An alternative representation
is x = 2at and y = 2a/(1 + t2) for t ⇠ (�⌫,⌫). A derivation which eliminates t
produces the Cartesian equation

y =
8a3

x2 + 4a2
.

1.1.10 The Superellipse

Mathematicians, being curious, always try to extend and generalize current concepts and
theories, which is why Gabriel Lamé, a little-known mathematician, decided to extend
the ellipse, a common curve which is itself an extension of the circle. He came up with
the simple but flexible expression

⌥⌥⌥
x

a

⌥⌥⌥
n

+
⌥⌥⌥
y

b

⌥⌥⌥
n

= 1,

where a and b, the semi-axes of the superellipse, are positive numbers, and n is a positive
real parameter that controls the shape of the curve. For n = 1, the superellipse is a
rhombus with corners at (±a, 0) and (0,±b). For n = 2, the superellipse is the original
ellipse. For n > 2, the curve becomes a rectangle with rounded corners, and for 0 < n < 2
the curve resembles a rhombus with the same corners, but with convex sides.

Figure 1.20 shows several examples for n values form 0.25 to 3, in steps of 0.25.
Because of the use of a real parameter, the superellipse can take on many shapes

and has been used over the years to design typefaces, a map projection (the Tobler
hyperelliptical projection), various commercial logos, the 1968 Azteca Olympic Stadium
in Mexico City, and the shapes of app icons in versions 7 and up of the popular iOS
operating system. Perhaps the most well-known application of the superellipse is Sergels
torg, a public square in Stockholm, Sweden (Figure 1.21), designed by Piet Hein in the
1960s.

Figure 1.21: Sergels Torg, Stockholm.
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n=0.25

n
=
1

n=
3

a=1; b=0.75; (*SuperEllipse*)
l={};
SupEllipse[x_,y_]:=(x/a)^n+(y/b)^n-1;
Do[
p1=ContourPlot[SupEllipse[x,y]==0, {x,-a,a}, {y,-b,b}];
p2=ContourPlot[SupEllipse[-x,-y]==0, {x,-a,a}, {y,-b,b}];
p3=ContourPlot[SupEllipse[x,-y]==0, {x,-a,a}, {y,-b,b}];
p4=ContourPlot[SupEllipse[-x,y]==0, {x,-a,a}, {y,-b,b}];
p5=Show[{p1,p2,p3,p4},ColorFunction->Function[{n},Hue[4n]]];
AppendTo[l,p5], {n,0.25,3,0.25}]
Show[l]

Figure 1.20: SuperEllipses for Several n Values.

There is
one art,
no more,
no less:
to do
all things
with art-
lessness.
—Piet Hein, Grooks.

1.1.11 Heart Shape

The classical shape of a heart is generally considered attractive. Two-dimensional heart
curves are easy to generate by (experimentally derived) formulas such as
(x2+y2�1)3�x2y3 = 0, x2+2(3

5x2/3�y)2�1 = 0, and r = 5 sin7(t)e|2t| for�� ⌦ t ⌦ �/2
and �/2 ⌦ t ⌦ �. In contrast, a three-dimensional “heart” surface is much more di⌥cult
to express mathematically because it is smooth all over except for sharp point at the
bottom and a deep indentation at the top. The heart shown in the figure follows the
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implicit equation

(x2 + (1.5y)2 + z2 � 1)3 � x2z3 � (1.5y)2z3/20 = 0,

that was derived experimentally by Gabriel Taubin of IBM [Taubin 94].

1.2 Perspective

Painters, engineers, and architects have recognized in the early 1400s that paintings and
drawings of three-dimensional objects look realistic if drawn following two simple rules:
(1) closer objects should appear small and (2) groups of parallel lines on the object
should appear to converge to a vanishing point (except if the lines are perpendicular
to the line of sight). This technique has become known as perspective, and it is an
important concept in art, and technical drawing. Using a computer, it is quick and easy
to perform the vast amount of computations needed and display figures in perspective.
The figure shown here depicts two chess boards and it is obvious that the lines, which
are parallel, converge to the vanishing point at the center of the figure.
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1.3 Ruled Surfaces

A ruled surface is generated by connecting two space curves with straight segments.
Given two space curves, P (u) and Q(u), a ruled surface is constructed between them by
drawing a family of straight segments that connect points on P (u) to points on Q(u).
Given two points, a and b, the equation of the straight segment connecting them is
a + wb for 0 ⌦ w ⌦ 1, which is why the parametric representation of a ruled surface
is P (u) + wQ(u) where the two parameters u and w vary independently. The figure
shows three ruled surfaces. The one-sheet hyperboloid is the sum

�
a cosu, b sinu, 0

⇥
+

w
�
�a sinu, b cosu, c

⇥
, the cylindroid (also known as Plücker’s conoid) is given by the

sum
�
0, 0, 2 cosu sinu

⇥
+ w
�
cosu, sinu, 0

⇥
, and the well-known Möbius strip of radius a

and width 2w is obtained by
�
(a+w cos(u/2)) cos(u), (a+w cos(u/2)) sin(u), w sin(u/2)

⇥
.

1.4 Most Important Curve

And finally, the most important curve of all (whose source I have unfortunately forgot-
ten).

- 1.0 - 0.5 0.0 0.5 1.0

- 0.5

0.0

0.5

1.0

ContourPlot[x^2+(5y/4-Sqrt[Abs[x]])^2==1,{x,-1.2,1.2},{y,-0.8,1.3}]

Figure 1.22: Most Important Curve.
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Inspired by Julian Havil, Curves for the Mathematically Curious, 2019
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ContourPlot[Sin[Cos[2y]-Sin[x+y]]==Cos[Sin[x+2y]-Cos[x y]],
{x,-8,11},{y,-10,10},
GridLines->{{-10,-6,-4,-2,{0,Directive[Red]},2,4,6,8,10},
{-6,-4,-2,{0,Directive[Red]},2,4,6,8,11}}]

Figure 1.23: Mathematical Doodling, sin(sin(x) + cos(y)) = cos(sin(xy) + cos(x)).
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1.5 Listings of Mathematica codes

g1=ParametricPlot3D[{Sin[3t],Cos[3t],t/3}, {t,0,2Pi}, Ticks->None]
g2=Plot3D[Cos[x y], {x,0,Pi}, {y,0,Pi}, Ticks->None];
g3=Plot3D[Exp[-(x^2+y^2)], {x,-2,2}, {y,-2,2}, Ticks->None]
Show[GraphicsArray[{g1,g2,g3}], ImageSize->72 6]

Three-Dimensional Plots.

$TextStyle={FontFamily->"CMR10", FontSize->10}

g1=Show[Graphics[{AbsolutePointSize[3],{Point[{1,1.25}],Point[{0.4,0.9}],

Point[{-1,-0.5}]}}], Axes->True, AxesLabel->{"x","y"}, AspectRatio->1];

g2=Plot[x^4, {x,1,2}];

g3=Plot[Sin[x], {x,0,Pi}];

g4=Show[Graphics[Line[Table[{n,Sin[n]},{n,0,Pi,0.75}]]], Axes->True];

Show[GraphicsArray[{{g1,g2},{g3,g4}}], ImageSize->72 6]

Points and Curves.

(* GRParSurfC parametric surfaces in color *)
g1=ParametricPlot3D[{w Cos[u],w Sin[u],(w Cos[7u]/2)/2,
Hue[u/6.5]}, {u,0,2Pi}, {w,0,1}, Axes->False,
Boxed->False, PlotPoints->{55,10},
Mesh->None]; (* flower *)

g2=ParametricPlot3D[{w Cos[u],w Sin[u],0.6u}, {u,0,4Pi}, {w,0,2.5},
Axes->False, Boxed->False, PlotPoints->{25,9},
ViewPoint->{2,-4,4}, PlotStyle->Directive[RGBColor[0,.8,.7],
Specularity[1, 5]]];(* helicoid *)
g3=ParametricPlot3D[{w Cos[u],w Sin[u],w^2, RGBColor[.8,0,.7]},
{u,0,2Pi}, {w,0,0.8}, Axes->False, Boxed->False,
PlotPoints->{15,9}, Mesh->None]; (* paraboloid *)
g4=ParametricPlot3D[{w Cos[u],w Sin[u],Cos[w]}, {u,0,2Pi}, {w,0,5Pi},
Axes->False, Boxed->False, PlotPoints->{25,20},
PlotStyle->Directive[RGBColor[0.8,0,0.2]]]; (* surface of revolution *)
g5=ParametricPlot3D[{w Cos[u],w Sin[u],Cos[w-4u],Hue[u/6]},
{u,0,2Pi}, {w,0,5Pi}, Axes->False, Boxed->False,
PlotPoints->{30,15}, Mesh->None]; (* a variation *)
Show[GraphicsRow[{g1, g2, g3, g4, g5}], ImageSize->72 5]

Code for Figure 1.3

Hypot[a_, b_]:=ParametricPlot[{(a - b) Cos[t] +
h Cos[(a - b) t/b], (a - b) Sin[t] - h Sin[(a - b) t/b]},
{t, 0, a Pi}, Axes -> False];
GraphicsRow[Table[Hypot[3, 1], {h, 0.5, 3.5, 0.5}]]
GraphicsRow[Table[Hypot[4, 1], {h, 0.5, 3.5, 0.5}]]
GraphicsRow[Table[Hypot[5, 1], {h, 0.5, 3.5, 0.5}]]
GraphicsRow[Table[Hypot[5, 2], {h, 0.5, 3.5, 0.5}]]
GraphicsRow[Table[Hypot[7, 2], {h, 0.5, 3.5, 0.5}]]
GraphicsRow[Table[Hypot[7, 3], {h, 0.5, 3.5, 0.5}]]
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Code for Figure 1.4.

k = 25;
Manipulate[
Show[Graphics[Table[{Hue[n/25],
Line[{{Cos[n a], Sin[n a]}, {Cos[(n + 1) a], Sin[(n + 1) a]}}]},
{n, 0, k}]]],
{a, 0, Pi, 0.1}]

Seven polyline patterns in a circle.

k = 45;
Manipulate[Show[Graphics[
Table[{Line[{{4Cos[n a]+Cos[4n a],
4Sin[n a]-Sin[4n a]},{4Cos[(n+1)a]+Cos[4(n+1)a],
4Sin[(n+1)a]-Sin[4(n+1)a]}}]}, {n, 0, k}]]],
{a, 0, 5Pi, 0.1}]

Six polyline patterns in a five-sided hypotrochoid.

tile0[a ,b ]:=Union[{Circle[{a+1,b},0.5, {Pi/2,Pi}],
Circle[{a,b+1},0.5, {3Pi/2,2Pi}]}];

tile1[a ,b ]:=Union[{Circle[{a,b},0.5, {0,Pi/2}],
Circle[{a+1,b+1},0.5, {Pi,3Pi/2}]}];

Show[Graphics[
Table[Subscript[tile, Random[Integer]][a,b],{a,1,10},{b,1,10}]],
AspectRatio->Automatic]

Two patterns of circular arcs randomly selected and packed in a 10⇥ 10 grid.

tile0[a ,b ]:=
Union[{{Hue[a/10], Disk[{a+1,b},0.5, {Pi/2,Pi}]}, {Hue[b/10],
Disk[{a,b+1},0.5, {3Pi/2,2Pi}]}}];

tile1[a ,b ]:=
Union[{{Hue[b/10], Disk[{a,b},0.5, {0,Pi/2}]}, {Hue[a/10],
Disk[{a+1,b+1},0.5, {Pi,3Pi/2}]}}];

Show[Graphics[
Table[Subscript[sile, Random[Integer]][a,b], {a,1,10}, {b,1,10}]],
AspectRatio->Automatic]

Two patterns of circular disks randomly selected and packed in a 10⇥ 10 grid.

PolarPlot[{t, E^0.1 t}, {t,
0, 12 Pi}, Ticks -> False,
PlotStyle -> {Black, Directive[Dashed, Thick, Red]}]
(* +-sqrt[t] spirals *)
PolarPlot[{Sqrt[t], -Sqrt[t]}, {t, 0, 12 Pi},
Ticks -> False, PlotStyle -> {Black, Directive[Dashed, Red]}]

Archimedean and logarithmic spirals.

tile[a_,b_]:=Union[{Disk[{a+1,b},0.5, {Pi/2,Pi}],
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Polygon[{{a,b}, {a,b+1}, {a+1,b+1}}]}];
Show[Graphics[Table[{Hue[RandomReal[]], Rotate[ tile[m, n],
90 Random[Integer,{0,3}] Degree, {m+1/2,n+1/2}]},
{m,1,10}, {n,1,10}]]]

A square pattern rotated and packed to form a 10⇥ 10 grid for exercise.

a = 3; b = 2; g = E^(0.2 x);
ContourPlot[{(x/a)^2+g(y/b)^2==1, (x/a)^2+(y/b)^2==1},
{x, -a, a}, {y, -b-0.2, b+0.2}, Frame->False,
AspectRatio -> Automatic]

Code for Eggs generated by perturbing an ellipse

a = 3; b = 2; g[k_]:=(1+kx)/(1-kx);
ContourPlot[{(x/a)^2 + g[0.1] (y/b)^2 ==1,
(x/a)^2+g[0.2](y/b)^2==1, (x/a)^2+g[0.3](y/b)^2==1,
(x/a)^2+g[0.333](y/b)^2==1}, {x,-a,a}, {y, -2b, 2b},
Frame -> False, AspectRatio -> Automatic]

Code for eggs generated for four values of parameter k.

a=1; b=1; c=2; g=1+0.25z;
ContourPlot3D[g(x/a)^2+g(y/b)^2+(z/c)^2==1, {x,-a-0.2,a+0.2},
{y,-b-0.2, b+0.2}, {z,-c,c}, Axes->False, BoxRatios->Automatic]

Code for generating a three-dimensional egg shape by perturbing an ellipsoid

ContourPlot3D[(x^2+(1.5y)^2+z^2-1)^3-x^2 z^3-(1.5y)^2 z^3/20==0,
{x,-1.3,1.3}, {y,-0.8,0.8}, {z,-1,1.3}, Axes->False,
BoxRatios->Automatic, Mesh->None, ColorFunction->(Hue[#3] &)]

A heart shape (after Gabriel Taubin).

a=2; b=1; c=3;
g1=ParametricPlot3D[{a(Cos[u]-w Sin[u]),b(Sin[u]+w Cos[u]),cw},
{u,0,2Pi}, {w,-2Pi,2Pi}, Ticks->None];
g2=ParametricPlot3D[{w Cos[u],w Sin[u],2Cos[u]Sin[u]}, {u,0,2Pi},
{w, 0, 2}, Ticks->None];
g3=ParametricPlot3D[{(a+w Cos[u/2])Cos[u],
(a+w Cos[u/2])Sin[u],w Sin[u/2]}, {u, 0, 2Pi}, {w, -0.5, 0.5},
Ticks->None];

Show[GraphicsRow[{g1, g2, g3}]]

Ruled surfaces, Hyperboloid, Cylindroid, and Möbius strip.

I’m a creative guy, artistically with graphics.

—Tim Allen.



2
Numbers: The Basic
Building Blocks

Numbers play a fundamental role in forming various mathematical entities and struc-
tures. The average person discusses numbers as if there is only one type, but mathemati-
cians distinguish many types of numbers, the most important of which are the integers,
rationals, irrationals, transcendental, reals, imaginary, and complex. These are discussed
in this chapter. Reference [Conway 96], for advanced readers, discusses other types of
numbers such as quadratic surds, quaternions, octonions, Cayley numbers, transfinite
numbers, and infinitesimal numbers.

2.1 Arithmetic Operations

We are familiar with the basic arithmetic operations such as addition and subtraction,
but mathematicians, being methodical, always try to generalize concepts, which is why
they came up with an infinite hyperoperation sequence of such operations, which are
denoted by Hn(a, b) or by a[n]b. The first few hyperoperations are summarized in
Table 2.1.

“Reeling and Writhing of course, to begin with,” the Mock Turtle replied, “and the
di⌃erent branches of arithmetic—ambition, distraction, uglification, and derision.”

—Lewis Carroll, Alice in Wonderland, 1865.

The name of the nth member of the hyperoperation sequence starts with the prefix
of the Greek the name of n, followed by the string “ation.” Thus, we have tetration for
n = 4, pentation for n = 5, hexation for n = 6, and so on. The following is a recursive
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definition of the hyperoperations for n ↵ 2:

Hn(a, b) = a[n]b =

⌧
����

����

b + 1 if n = 0;
a if n = 1 and b = 0;
0 if n = 2 and b = 0;
1 if n ↵ 3 and b = 0;
Hn�1(a,Hn(a, b� 1)) otherwise.

Name Rank Definition
Succession 0 1 + b
Addition 1 a + b

Multiplication 2 a⇥ b
Exponentiation 3 ab

Tetration 4 aaa..
.

6 54 7
b

Table 2.1: The Hyperoperation Sequence of Arithmetic Operations.

A related topic is the representation of large numbers. Back in 1928, Wilhelm
Ackermann came up with a compact notation that made it easy to write extremely
large numbers, numbers for which the conventional exponential notation requires much
space and becomes cumbersome and unreadable. Ackermann’s notation was improved
and popularized by Donald Knuth in 1976 and is now known as the up-arrow notation.
See also Page 61.

For n = 3, the conventional notation ab becomes a ⌘ b, and higher-rank hyperoper-
ations are similarly denoted with more and more up-arrows according to:

H4(a, b) = a ⌘⌘ b,

H5(a, b) = a ⌘⌘⌘ b,

...

Hn(a, b) = a ⌘n�2 b, for n ↵ 3.

The pair (2, 4) is used here to illustrate the power and compactness of this notation.
We start with a single arrow (exponentiation)

2 ⌘ 4 = H3(2, 4) = 2⇥ (2⇥ (2⇥ 2)) = 24 = 16.

Continue with a double arrow (tetration)

2 ⌘⌘ 4 = H4(2, 4) = 2 ⌘ (2 ⌘ (2 ⌘ 2)) = 2222

= 216 = 65,536.

Only one more step is needed to convince anyone that the up-arrow notation is ideally
suitable for the representation of extremely large numbers. This step is based on the
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general rule is that an n-arrow hyperoperator expands into a right-associative series of
(n� 1)-arrow hyperoperators. Thus,

2 ⌘⌘⌘ 4 = H5(2, 4) = 2 ⌘⌘ (2 ⌘⌘ (2 ⌘⌘ 2)) = 2⇥ (2⇥ (2⇥ . . .))6 54 7
2⌃⌃4 copies of 2

= 22..
2

6547
65,536 2’s

.

2.2 Logical Operations

The integer 2 is special as the base of a numbering system. We use decimal numbers
(base 10) because we have 10 fingers, but other numbers, both integers and non-integers,
can serve as a base. Base 2 is special because it o⌃ers an extra set of operations, the
logical operations.

Numbers are useful because we can operate on them. Without operations, num-
bers, whether integers or real, would be useless. In addition to the familiar arithmetic
operations, numbers to any base can also be shifted. Shifting a decimal number one
position to the left amounts to multiplying it by 10, while shifting it one position to the
right amounts to dividing it by 10, and possibly losing its least-significant digit.

However, binary (base 2) numbers are di⌃erent in this respect, and are also very
useful, because they o⌃er the important family of logical operations. One of those
operations, negation, inputs one bit and outputs its opposite value. The other logical
operations input two bits each and output one bit. The definitions of the most important
logical operations are listed in Table 2.2 as truth tables, but there is a total of 16 such
operations, because 2⇥ 2 is the total number of binary truth tables.

A 1 1 0 0
B 1 0 1 0

negation ¬A 0 1
conjunction (AND) A⌧B 1 0 0 0
disjunction (OR) A�B 1 1 1 0

exclusive OR (XOR) A⇧B 0 1 1 0
equivalence A�B 1 0 0 1

Table 2.2: Several Logical Operations.

The logical operations are important because (1) they are easy to implement in
hardware, and (2) it is possible to implement the all-important arithmetic operations on
binary numbers by means of logical operations. This is one reason why digital computers
use binary numbers.
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⌅ Exercise 2.1: What is the other reason?

Pythagoras says that number is the origin of all things; certainly, the law of numbers
is the key that unlocks the secret of the universe [Carus 08].

A number is an abstract way to represent a quantity.
A number is a mathematical object (or a concept or an arithmetic value) used to

count, measure, and label.
An arithmetical value, expressed by a word, symbol, or figure, representing a par-

ticular quantity and used in counting and making calculations and for showing order in
a series or for identification.

2.3 Integers

We start with the simplest numbers, the integers. We are familiar with the integers and
have been using them from an early age. Yet mathematicians keep discovering properties
of these numbers, relations between them, and surprising and unexpected facts about
them; an activity that never ends. The study of the integers is known as number theory
and it keeps many researchers awake at night, wondering how to prove theorems about
the integers or how to find counter-examples that would disprove certain conjectures.

We first describe a fun experiment with integers, based on reference [IntegerPro-
port 23], that will make us respect the integers and wonder about their infinity. We want
to see how many times a certain digit, say, 3, appears in a set of consecutive integers. A
direct check reveals that in the interval [1, 10), i.e., positive integers less than 10, only
one, namely 3, contains the digit 3, a 10% ratio or coverage. In the interval [1, 100), i.e.,
integers less than 102, there are 19 that contain the digit 3, namely the 10 numbers 3,
13, 23,. . .up to 93, plus the 10 numbers of the form 3x, minus 33 (which was counted
twice); a proportion of 19%.

In the interval [1, 1000), i.e., integers less than 103, a similar count reveals 271
numbers that contain the digit 3, a coverage of 27.1%. Going over the first 1000 positive
integers and checking for occurrences of 3, yields the following interesting connection.
The value 271 was obtained by multiplying the previous 19 by 9 and adding 100 (or
102).

In general, we denote the number of integers in the interval [1, 10n) that contain
a 3 by Tn and can now write Tn+1 = 9Tn + 10n. When applied to n = 4, i.e., integers
in the interval [1, 104), we get T4 = 9⇥ 271 + 103 = 3439 or 34.39% coverage.

Before we continue, here is another way to compute these coverages or proportions.
Each digit in 4-digit integer can be chosen from the 10 decimal digits. The total number
of choices (or integers) is therefore 104 = 10000. We are interested in numbers that
contain a 3, so let’s invert our problem and count the number of integers that do not
have a 3. In this case, we have four-digit numbers where there are only nine choices for
each digit, for a total of 94 = 6561 or 104 � 94 = 10000� 6561 = 3439, very elegant!
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In general, we can write Tn+1 = 10n � 9n, from which we get the general coverage
or proportion, of the digit 3 as

Tn+1

10n
=

10n � 9n

10n
= 1�

�
9
10

�n

 lim
n⇧�

Tn+1

10n
= 1.

It seems that more and more integers contain the digit 3, but of course there is nothing
special about 3. Our surprising, unexpected result means that as we examine more
integers, the proportion of any digit grows toward 100%. This is one of the many
curious and ba�ing aspects of the infinite.

The following fact is a weird result of the previous analysis. The harmonic series
diverges, but if we remove every term which has a d in it—where d is any integer, single-
or multi-digit—the series would converge to about 22.92.

Next, we examine certain integers and describe some of their interesting, unusual,
elegant, and even beautiful properties.

0. Zero is interesting because it provides the basis of the modern mathematical
notation. This place-value system uses powers of 10 and also employs zeros as place
holders. Thus, the string 4080 means 4·103+0·102+8·101+0·100 = 4000+80. The value
of the digit zero is nothing (null), yet it plays an important role in mathematics because
of its use as a place holder. In contrast, the Roman numeral for 4080 is mmmmlxxx, which
is di⌥cult to write and even harder to operate on.

⌅ Exercise 2.2: Back in the late 1990’s, many people believed that the 21st century
would start in year 2000. Currently, more and more people realize that this century
started in 2001 and will end in year 2100. It will include years 2001, 2002, . . . , 2099,
2100. Similarly, the 18th century started in year 1701 and consisted of years 1701, 1702,
. . . , 1799, 1800. Such numbering is confusing. It would make more sense if the 18th
century included all the 100 years whose numbers start with 18, from 1800 to 1899. Why
is our calendar based on such a confusing system, instead of the simpler 2000–2099 and
1700–1799?

Other reasons why zero is interesting are: It is the additive/subtractive unity;
a ± 0 = a for any number a. The product a · 0 = 0 for any number a. Zero is the only
number that is neither positive nor negative. A division by zero is undefined. Zero is
one of the only two digits in the binary number system, and this system is important
because of its use in computers and other digital devices. Zero is also the first even
nonnegative integer.

The product a⇥ 0 is zero for any number a because multiplication is repeated
addition. Multiplying a by 3 is done by adding three copies of a, which is why multiplying
a by 0 is done by adding zero copies of a, thereby resulting in zero. Alternatively, this
product can also be interpreted as adding zero to itself five times, which produces the
same result.

Dividing by zero is undefined because of the following obvious reason. When a
number a is divided by smaller and smaller numbers, the result gets bigger and bigger,
leading a naive user to assume that in the limit, dividing a/0 produces infinity. This
idea leads to wrong results such as

a/0 =⌫ and b/0 =⌫⇣ a = b.
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We therefore agree that infinity, even though an important mathematical and philo-
sophical concept, is not a number and any mathematical expression in which it is used
or produced is invalid.

However, the symbol ⌫ is valid as an indication of an upper or lower limit in
expressions that require limits, such as integration and repeated summation. Thus, for
example, the expression a/0 =⌫ is invalid, but limx⇧0+(a/x) =⌫ is valid.

The concept of zero and the modern positional number system were introduced in
Europe by Leonardo of Pisa, also known as Fibonacci.

Zero is. . . a fine and wonderful refuge of the divine spirit—almost an amphibian
between being and non-being.

—Gottfried Wilhelm Leibniz.

1. The number 1 is interesting because it is the first nonzero integer, the first odd
integer, and the multiplicative identity, i.e., a · 1 = a for any number a. This integer
is one of the two digits of the important binary system. It equals its factorial, its own
square, cube, etc. Because 1n = 1, the function 1n has no unique inverse. This is why
1 cannot serve as the base of logarithms.

This number cannot serve as the base of a number system. Recall that decimal
numbers use 10 digits and binary (base 2) numbers use two digits. A number system
based on 1 would have just one digit, but a positional number system requires a zero,
which is why it needs at least two digits.

The first two Fibonacci numbers are 1 and it is well known (see, for example,
[Sloane 08]) that many sequences of integers start with 1. A prime number is divisible
by itself and by 1, whereas a composite number is divisible by several numbers. Because
of these definitions, the integer 1 is considered neither prime nor composite.

⌅ Exercise 2.3: Observe that when 1 is added to an even number it produces an odd
number and when it is added to an odd number it produces an even number. Are we
then justified in considering 1 an even/odd hybrid?

2. The integer 2 is interesting because it is the first even number, the first prime
number, the only even prime, and the smallest integer that can serve as a concise base of a
positional number system. If n is a concise base of such a system, then the representation
of any number a in this system is essentially (logn a)-digits long. Notice that 1 can be
used as the basis of a number system, but it is not concise, because the length of a
number a in such a case would be a digits. For base-2, the precise length of the binary
representation of a is

1 + �log2 a� =  log2(a + 1)!.
The following equalities add to the interest of 2: 2 + 2 = 2 ⇥ 2 = 22, 2 = 2!, and

2 ⌘⌘ 2 = 2 ⌘⌘⌘ 2 = 2 ⌘⌘ . . . ⌘ 2 = 4 (where the ⌘ notation is described on Page 61).
The integer 2 forms the basis of the sequence of square numbers. These are figurate

numbers of the form Sn = n2, for n ↵ 0. Thus, 0, 1, 4, 9, 16, 25, 36, 49,. . . (see Figure 2.4
and sequence A000290 in [Sloane 08]).

(Figurate numbers are those that can be represented by a regular geometrical ar-
rangement of equally-spaced points. Figure 2.4 illustrates a few examples.)

The importance of 2 is illustrated by the use of words such as dual, duel, couple,
double, pair, dichotomy, duplex, duet, dyad, duplicity, and twins in modern languages.
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In religion, the ten commandments were given on two stone tablets. In biology, there
are two sexes. Most important, in modern technology, mechanical looms, player pianos,
and computers are based on binary (base-2) numbers. (A player piano is driven by a
perforated paper tape. Each hole punched in the tape represents a tone to be played,
whereas the absence of a hole signifies silence. Old mechanical looms were similarly
driven by a set of punched cards, Figure 2.3.)

Time

Tones

Hole

Continuous hole

Player piano roll
Mechanical loom cards

Figure 2.3: Player Piano Paper Roll and Mechanical Loom Punched Cards.

The number 2 also represents the simplest symmetry. Drop a little ink on a sheet
of paper, fold the paper once, press, and open. The resulting pattern exhibits a twofold
symmetry which forms the basis of the Rorschach inkblot test, a method of psychological
evaluation.

3. There isn’t much to say about this old acquaintance, the integer 3. Nevertheless,
it isn’t completely boring. It is the first odd prime, it is associated with an interesting
divisibility test, and it is the number of points in a triangle, itself an important geometric
figure.

Given an integer, such as 1632, it is easy to check whether it is divisible by 3. Simply
add its digits and check divisibility of the sum. Thus, 1 + 6 + 3 + 2 = 12 and 1 + 2 = 3,
indicating that 1632 is divisible by 3. Addition is commutative, so we conclude that any
integer that consists of the digits 1, 6, 3, and 2, such as 2361, is also divisible by 3.

⌅ Exercise 2.4: Prove this divisibility test.

⌅ Exercise 2.5: Show that integers of the form 100 . . . 061600 . . . 01 are not primes re-
gardless of the number of zeros.

A triangle is defined by three independent points (i.e., three points not on the same
line). Thus, a triangle is a polygon with the smallest number (3) of edges. It is always
flat, because three distinct points are always in the same plane. Triangles have many
interesting and useful properties, one of which will be mentioned here. Imagine a triangle
whose three edges are connected with hinges. In spite of this flexibility, the triangle will
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resist attempts to change its shape; it is a durable geometric figure. (Three points not
on the same line also define a unique circle.)

A curiosity: Take any 3-digit integer abc, append the same three digits to obtain the
6-digit integer abcabc, divide it by 7, then by 11, and finally by 13. You’ll be surprised
to see that the final result is the original 3-digit integer abc. (For those who are not
afraid of algebra, this is because 7⇥11⇥13 = 1001. Also see Page 53 for the divisibility
test for 7.)

The sequence of triangular numbers is well known. It consists of the partial sums of
the divergent series 1+2+3+4+5+ · · ·. Thus, the first few such numbers are 1, 3, 6, 10,
15, 21, 28, . . . . In general, The nth triangular number Tn is given by n(n + 1)/2. These
numbers have many interesting and beautiful properties, two of which are mentioned
here:

The sums of consecutive triangular numbers form the following patterns

T1 + T2 + T3 = T4,

T5 + T6 + T7 + T8 = T9 + T10,

T11 + T12 + T13 + T14 + T15 = T16 + T17 + T18,

and so on.
The triangular numbers increase as we move along their sequence, which is why their

inverses decrease. It can be shown that the infinite sum of those inverses converges. Thus

1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + · · · = 2.

In religion, there is the Christian Holy Trinity. In science, the proton and neutron
each consist of three quarks. The world that we perceive is three-dimensional (in special
relativity, time is added as a 4th dimension, but is di⌃erent from the three dimensions
of space). In biology, each codeword of the genetic code consists of three nucleotides.

The triple redundancy concept, introduced in [Von Neumann 56], is based on having
three redundant copies of any important device, circuit, or instrument that may fail. The
following quotations refer to this concept.

The Ramans do everything in threes.
—Arthur C. Clarke, Rendezvous With Rama, 1973.

What I tell you three times is true.
—Lewis Carroll, The Hunting of the Snark, 1876.

4. The integer 4 is the smallest composite number. Its prime factors are 2 and 2,
so 4 is also the smallest composite number that equals the sum of its prime factors. It
is also the smallest square prime (because 4 = 22 and 2 is a prime) and is the only even
number that is a square prime.

A decimal integer is divisible by 4 if its two least-significant digits (considered as a
two-digit integer) are divisible by 4. Thus 167,036 is divisible by 4 because 36 is. This
is the divisibility test for 4, because all the digits to the left of the rightmost two are
multiples of the form 100, 1000, and so on, and are all divisible by 4.
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A quadrilateral is a plane figure with four edges. The most common quadrilaterals
are the square and the rectangle. Given four two-dimensional points, no three of which
are collinear, they uniquely define a hyperbola. Every positive integer is the sum of at
most four integer squares (Table 2.6).

The number 4 plays an essential role in the four-color theorem. This important
result states that four colors are enough to color regions on a map, such that no adjacent
regions have the same color. (Two regions are considered adjacent if they share a
segment, not just a point.)

In biology, DNA consists of the four nucleobases adenine, guanine, cytosine, and
thymine. Physics tells us that there are four fundamental forces in nature (gravity,
electromagnetism, the weak nuclear force, and the strong nuclear force). Many vehicles
have four wheels and many pieces of furniture have four legs. In English, the phrase
“four-letter word” indicates a swear word. Also, the word “four” consists of four letters
and is the only English name of a digit with this property. (See also the fun sequence on
Page 257.) The ancient Greeks believed that fire, air, water, and earth were the basic
constituent elements of the world. There are four directions, four annual seasons, four
corners of the world, and four suits of playing cards.

See [Penelope 09] for more thoughts on the number 4.
The digit 4 has an interesting property in the English language, a property that

makes it an attractor. Choose any number, integer, irrational, real, or complex, and
spell it in English. If its English name consists of n letters, then spell the English name
of the number n. When this process is repeated, it always results in 4, because 4 is the
only number n whose English name consists of 4 letters.

5. We are now halfway between 0 and 10. Five is a prime number, but its main
claim to mathematical fame is being the only prime that ends with a 5. An integer is
divisible by 5 if its least-significant digit is 0 or 5. Thus, integers that end with 5 are
divisible by 5 and are therefore composite.

In geometry, there are five Platonic solids, the tetrahedron, cube (or hexahedron),
octahedron, dodecahedron, and icosahedron.

A polygon with five sides is a pentagon. This shape gives rise to the little-known
pentagonal numbers pn. Figure 2.4 illustrates the geometric meaning of those numbers.
It can be shown that the nth pentagonal number is given by pn = n(3n� 1)/2 for n ↵ 1
(see sequence A000326 in [Sloane 08]).

Figure 2.4: Several Figurate Numbers.
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In biology, almost all amphibians, reptiles, and mammals with fingers or toes have
five of them on each extremity. In a two-body astronomical system, such as a planet
around a sun or a moon around a planet, there are five points where a small object is
at equilibrium. Once placed at such a point, the object will remain in orbit. It will not
escape and will not fall toward either of the bodies. These points are referred to as the
Lagrangian points of the system. (Only two of the five Lagrangian points are stable, and
they exist only if the masses of the two astronomical bodies satisfy certain conditions.)
The standard musical notation is based on a musical sta⌃ made of five horizontal lines.

In technology, many devices—such as computer keyboards, test instruments, and
telephones—have numeric keypads where the 5 key has a raised dot or bar to make
dialing easier for the visually handicapped.

Digression. The following Mathematica code shows a beautiful relation between
the integer 5 and the all-important, all-pervading constant �. This is one of the many
unexpected results that are often discovered by lovers of mathematics and are enjoyed
by many. It is illustrated in [Pi5 20].

a=5.;
Do[{Print[{a,Sin[(1./a) Degree]}],a=10a+5},{i,7}]

This code iterates several times, generates numbers of the form 5, 55, 555, . . . , and
computes the sine of their inverses. Surprisingly, the results approach �.

Like many other unexpected mathematical surprises and tricks, the explanation of
this result is simple and is based on the following facts:

1. The number 1/5, the inverse of 5, contains the digits 18 along with several zeros.
Thus, for example, 1/555555 = 0.0000018000 · · · � 1.8⇥ 10�6.

2. For small angles �, the trigonometric function sine satisfies sin � � �.
3. The relation between degrees and radians is 360⇤ = 2� radians, which is why

one degree equals �/180 radians.
With this in mind, the following expression explains the relation between 5 and �

sin
�

1
555555

�
=sin(1.8⇥ 10�6) degree = sin

*
1.8⇥ 10�6 ⇥ �

180

+
radian

�1.8⇥ 10�6 ⇥ �

180
= � ⇥ 10�8.

End of Digression.
6. Moving along, we now meet the integer 6. Six is a perfect number because it

equals the sum of its divisors, 6 = 1 + 2 + 3. It is also the smallest perfect number. Six
is the only number that is both the sum and the product of three consecutive positive
integers. The hexagonal numbers hn (sequence A000384 in [Sloane 08]), are defined
similar to pentagonal numbers (Figure 2.4) and it can be shown that hn = n(2n� 1).

The divisibility test for 6 is simple. An integer is divisible by 6 if it divisible by 2
and by 3. Thus, for example, 738 is divisible by 2 (because it is even) and also divisible
by 3 (because 7 + 3 + 8 = 18).

In geometry, a cube has six faces, which is why 6 is the largest number on a standard
die. Also, hexagons can tile the plane. In biology, the cells of a beehive honeycomb are
hexagons as also are snowflakes (Figure 2.5). The standard model of particle physics
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includes six types of leptons and six types of quarks. In consumer products, six is the
number of cans of soda or beer in a six-pack. In technology, six is the number of dots in
a Braille cell. “Sex-” is a Latin prefix meaning “six” which is why we have words such
as sextet and sextuplet.

Figure 2.5: The Number 6 in Biology.

⌅ Exercise 2.6: What are other occurrences of six in nature, in addition to beehives?

7. This integer has less claim to fame than its predecessors. As an integer, its main
interest is the little-known fact that it is the only integer less than 15 that cannot be
represented as the sum of the squares of only three integers (it requires four squares). In
1770, Lagrange proved the four-square theorem which states that every positive integer
is a sum of at most four integer squares. This is illustrated in Table 2.6 for the first 16
positive integers. The table lists each integer as the sum a2 + b2 + c2 + d2 and it is easy
to see that 7 equals the sum 22 + 12 + 12 + 12 and that the next integer that requires
four squares is 15 = 32 + 22 + 12 + 12.

i a b c d i a b c d
1 1 9 3
2 1 1 10 3 1
3 1 1 1 11 3 1 1
4 2 12 2 2 2
5 2 1 13 3 2
6 2 1 1 14 3 2 1
7 2 1 1 1 15 3 2 1 1
8 2 2 16 4

Table 2.6: The Four-Square Theorem.

The divisibility test for 7 is not trivial. Given an integer a, subtract twice its
least-significant digit from the remaining digits (alternatively, add five times the least-
significant digit to the sum of the remaining digits). If the result is divisible by 7, then
a is too. Thus, 357 yields 35�2⇥7 = 21 or 35+5⇥7 = 70, implying that it is divisible
by 7.

The integer 7 is also the base of the figurate heptagonal numbers that are defined
by hn = (5n2� 3n)/2 for n ↵ 1. The first few members of this sequence are 1, 7, 18, 34,
55, 81, 112, 148, 189, 235, 286, . . . (sequence A000566 in [Sloane 08]).
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Thus, seven is not very important or interesting in mathematics, but is common
and important in other areas of science and everyday life. Here are just a few examples.

Given a six-sided die, the sum of the numbers on each pair of opposite faces of the
die is 7.

In physics, as well as in poetry, there are seven colors of the rainbow, red, orange,
yellow, green, blue, indigo, and violet. In technology, any decimal digit can be displayed
by lighting some or all of seven segments. The seven-segment display has been common
in computers and instruments since the 1970s. There are also seven logic gates, NOT,
AND, OR, NAND, XOR, NOR, and XNOR. In history, mythology, and religion, the
world was created in seven days, the ancient world had seven wonders, the week has
seven days, there are seven deadly sins, the number seven was considered magical, Rome
was built on seven hills, and a cat is said to have seven lives. There are many references
to seven in the Harry Potter novels. In music, there are seven notes in the traditional
Western Major Scale.

For more examples of the importance of seven see [seven magazine 09].

As I was going to St. Ives, I met a man with seven wives. Each wife has seven kids,
each kid has seven cats, each cat has seven kittens, each kitten had seven fleas. Fleas,
kittens, cats, kids, wives, how many were going to St. Ives?

—A Traditional English Language Nursery Rhyme.

8. In computers, the octal number system, which is based on 8, used to be popular
with old computers (whose memories often featured words lengths that were multiples
of 6) because the relation 8 = 23 implies that each octal digit equals exactly three
bits, and it is easy to convert between binary and octal. Thus, short octal numbers
were sometimes used instead of the much longer binary numbers. Also, the smallest
addressable unit in most modern computer memories is the byte, which consists of eight
bits (but may sometimes have other lengths, a feature that introduces confusion).

An 8-sided polygon is an octagon. Figurate numbers based on octagons are called
octagonal. The first few such numbers are 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341,
and 408 (sequence A000567 in [Sloane 08]). The nth octagonal number has the form

n2 + 4
n�1&

k=1

k.

Here is the divisibility test for 8. Given an integer a, concentrate on its three
least-significant digits, because everything to their left is always divisible by 8. Add the
least-significant digit to twice the remaining digits. If the result is divisible by 8, then
a is too. For example, given ddd192, we add 2⇥ 19 + 2 = 40. If we are not sure about
the divisibility of 40, repeating the same process yields 2⇥ 4 + 0 = 8, which shows that
192 is divisible by 8. The proof of this divisibility test is simple and is similar to the one
described in the solution to Exercise 2.7.

The term “figure eight” is common in sports (skating and air races immediately
come to mind) and in knots (figure eight knots around cleats or pins are used to belay
heavy loads).
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In particle physics, the eightfold way [eightfold 00] is used to classify sub-atomic
particles.

In biology, all spiders (in general, all arachnids), have eight legs. The octopus and
its relatives have eight arms. In architecture, gazebos and certain pagodas tend to have
eight sides. In music, the interval between two notes x and y with frequencies f and 2f ,
is called an octave, because on a standard scale there are eight notes between x and y
(including x and y). In technology, many street signs, such as the well-known stop sign,
have eight sides.

The number 8 plays a special role in mathematics due to octonions, an 8-dimensional
number system where one can add, multiply, subtract and divide, but where the
commutative and associative laws for multiplication—ab = ba and (ab)c = a(bc)—fail
to hold. The octonions were discovered by Hamilton’s friend John Graves in 1843
after Hamilton told him about the quaternions. While much neglected, they stand at
the crossroads of many interesting branches of mathematics and physics.

—John Baez, 2008.

9. Nine is the largest decimal digit, and it is this simple property that makes it
the darling of merchants, business people, and sellers of all kinds. In today’s business
world, round prices have all but disappeared. Nothing costs 10 pounds, Euros, or dollars,
but 9.99 is a common price, as are 0.99, 24.99, 199.99, 549.99, and many others. The
Preface tells us that many people are ignorant of mathematics or are afraid of it, and it
is precisely those people who see a price tag of 15,999 and say “fifteen thousand, not bad.
Last year I paid 16,000 for the same item.” This property of nine makes it important
and interesting in marketing, the economy, and everyday life in general.

Subsection 2.5 discusses the unusual real number 0.999. . . (that is also denoted by
0.9̄, 0.9̇, and 0.(9)) and proves in several ways that this number equals 1. This is true for
other number bases, which is why the binary number 0.111 . . .2 equals 1. Similarly, any
number that ends with an infinite number of 9’s has a simpler, shorter representation.
Thus, 17.5725 can also be written 17.5724999. . . .

The divisibility test of 9 is similar to that of 3. An integer is divisible by 9 if the
sum of its digits is divisible by 9.

⌅ Exercise 2.7: Show how this divisibility test can be proved in general (compare with
Exercise 2.4).

People of my generation (and many younger ones) learned in school that there are
nine planets in our solar system. In 2006, Pluto was demoted to a minor planet, leaving
us with only eight planets.

A party trick. Take nine playing cards of any suit, labeled 1 through 9 (or nine
domino pieces valued 1 through 9) and ask a friend to shu�e them. Spread them to
form a nine-digit integer. Pretend to scrutiny this number thoroughly, and then claim
that it is divisible by 9. Any calculator would prove you right. Challenge your friend to
shu�e again, and repeat this trick several times. All those 9-digit integers would divide
evenly by 9 because the sum of their digits is 45, which is divisible by 9.

The digit 9 as an attractor. The following property of 9 is a direct result of its
being one less than the base 10 of the decimal numbering system. Start with a multi-
digit number and subtract from it the sum of its digits. The di⌃erence will always be a
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multiple of 9. Repeating this process eventually results in 9, which is why this digit is
often considered the attractor of the decimal system. A similar property exists for any
number base. Here is an example of a three-digit decimal number abc. When subtracting
the sum of digits from this value, the result is 100a + 10b + c� (a + b + c) = 99a + 9b,
which is obviously divisible by 9.

10. We have finally arrived at 10. The most-important attribute of 10 is that it is
the basis of our number system (because we have ten fingers or digits), and as a result it
is also the first 2-digit positive integer. Also, many monetary units (ruble, Euro, dollar,
and mark) are divided into 100 parts (kopeks, cents, or pfennig), and there often are
coins worth 10 parts.

This number has another property that makes it interesting (and perhaps also
unique). The well-known factorial function is defined by n! = n(n� 1)(n� 2) · · · 3 · 2 · 1
and it is easy to verify the identities n! = n(n�1)! and (n!)! = n!(n!�1)!. Thus, integers
of the form (n!)! are products of the factorials of two consecutive integers. The only
other known integer that can be written as such a product is 10, because 10! = 6!7!.

An integer is divisible by 10 if its least-significant digit is 0.
The Biblical ten commandments are fundamental laws in both Judaism and Chris-

tianity. A set of ten items (such as ten years) is called a decade. A perfect score is
sometimes referred to as a “10.”

11. There is not much to say about 11. Its divisibility test is slightly confusing. Scan
the digits from right to left and perform an alternating sum, i.e., a0�a1 +a2�a3 + . . ..
If the result is divisible by 11, then the entire number is.

We have looked into zero through 11 and have found interesting features, attributes,
and applications for each. What about other integers? Before listing interesting features
of larger integers, let’s look at a simple, funny proof of the following claim: Every integer
is interesting!

The proof (see also Page 2) is simple. Assume that there is an uninteresting integer
(or even several such integers). Denote the smallest of them by A. Thus, A is the lowest
uninteresting integer, an attribute that by definition makes A interesting (perhaps even
very interesting). The resulting contradiction proves that our assumption is wrong.

This “proof” can easily be extended to rational numbers. A rational number R can
be written as the quotient a/b of two integers where b is nonzero. Since a and b are
integers, they are interesting, so R can also be considered interesting.

This tongue-in-cheek proof is a paradox that stems from the vagueness of the words
“interesting” and “dull.” This topic is further discussed in [WikiInteresting 09].

The integers may be the “simplest” numbers, but even they have many surprising,
interesting, and perhaps also fascinating properties. Here are two examples.

The sum of any n consecutive natural numbers equals the sum of the n�1 numbers
that follow. Thus, 1 + 2 = 3, 4 + 5 + 6 = 7 + 8 and 9 + 10 + 11 + 12 = 13 + 14 + 15.

The sum of any n consecutive odd integers divided by the sum of the n following
odd integers is always 3.

We continue with several more interesting numbers.
1.618033. . . . This is the celebrated golden ratio (�), the topic of Subsection 2.9.4.

Here, we mention just a few interesting facts about this well-known number. The golden
ratio is the solution of the quadratic equation � = 1 + 1/�. This surprising equation
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implies many attributes of � as follows: (1) The inverse 1/� is the di⌃erence �� 1. (2)
Writing this equation in the form �2 = � + 1 shows us that the square of the golden
ratio is the sum �+1. (3) The relation � = �2�1 = (��1)(�+1) = (��1)�2 implies
that � = 1/(�� 1).

In addition to all its other beautiful and interesting properties, the golden ratio �
is the only real number that satisfies the three interesting relations above. See Subsec-
tion 2.9.4 for more information.

2.6854. . . . Khinchin’s constant. Continued fractions have been mentioned else-
where, see, for example, Equation (2.2). Consider the generic continued fraction

x = a0 +
1

a1 + 1
a2+ 1

a3+ 1
a4+ 1

...

.

It defines a sequence (possibly infinite) of coe⌥cients ai which are specific to x. It comes
as a surprise to realize that the limit of the geometric mean of these coe⌥cients (almost)
always converges to 2.6854520010. . . . Thus,

lim
n⇧�

(a1a2a3 . . . an)1/n = K.

This limit is called Khinchin’s constant and is denoted by K. Discovered by Aleksandr
Khinchin, this constant is defined as the limit of the product

K
def= ⇤�

r=0

�
1 +

1
r(r + 2)

�log2 r

.

The first few digits of K are listed as OEIS sequence A002210, reference [Sloane 08].
Even though K is known to many thousands of digits, it is not known if it is

irrational, let alone transcendental. On the other hand, this constant applies to itself.
The Mathematica statement
N[GeometricMean[ContinuedFraction[Khinchin, 5000]]]
produces 2.66235 (many more coe⌥cients are needed for a more accurate value).

We can claim that Khinchin’s constant K “knows” about almost all numbers, which
makes it one of the most important mathematical constants, and yet it is not widely
known.

2.718281828459045. . . . This is the important Euler constant e. The notation
here illustrates how easy it is to memorize its first 16 digits. This constant is normally
known as the base of natural logarithms, but it is also important in financial calculations
because it is the limit of the expression (1 + 1/n)n when n tends to infinity, which is
used to compute compound interest. In addition to its interest and importance, e is
an important part of the beautiful equation e⇤i � 1 = 0 and is also related to the
trigonometric functions sin and cos by the elegant expression ei⇥ = cos � + i sin �. In
calculus, the derivative of the function ex is itself. Thus, the rate of change of ex when
x varies is ex. A remarkable property!
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A mnemonic for e. How to remember our important friend e to more decimal places
than we will ever need? Just memorize 2 point 7 followed by birth year of Leo Tolstoy
(1828), followed by birth year of Jules Verne (1828), followed by angles of isosceles right
triangle (45, 90, 45), to obtain e = 2.7|1828|1828|45|90|45 . . ..

3.1415926. . . . This is �, the most famous, remarkable, and mysterious number.
Start with an arbitrary circle, measure its circumference (c) and its diameter (d) and
divide these numbers. The ratio c/d equals � regardless of the circle selected. Most
grownups are used to this fact and take it for granted, but when a child hears of it for
the first time, it comes as a surprise. Why should such property hold for all circles?
There is no satisfying explanation. The ancients already knew, or suspected, that this
ratio is constant and mathematicians throughout history tried to compute its value to
more and more digits.

A remarkable property of � is that it appears in many infinite series. The following
example is especially interesting

�2

6
= 1 +

1
22

+
1
32

+
1
42

+ · · · .

⌅ Exercise 2.8: Why is this example especially interesting?

Out of the vast number of applications of �, its use in popular culture, and its
many appearances in science, engineering, and mathematics, I would like to mention the
beautiful and surprising video at [PiCollision 19]. It shows an unexpected connection
between the digits of � and the number of perfect, elastic collisions between two ideal,
frictionless blocks of matter.

12. There are curious properties that make the integer 12 interesting. One is the
product 12 = 3 ⇥ 4, a pattern that continues with 56 = 7 ⇥ 8, and the other is that
122 = 144 and 212 = 441, curious indeed!

It has been pointed out that 12 would be better than 10 as the base of a number
system because it is divisible by 2, 3, 4, and 6, in contrast with 10, which is only divisible
by 2 and 5. Thus, in the decimal number system, the inverses of 2 and 5 are the short
fractions 0.5 and 0.2, but all other inverses of decimal digits are longer fractions, such
as 0.25, 0.333 . . ., and 1/6 = 0.1666 . . .. A number system based on 12 (duodecimal) has
12 digits, and the inverses of 2, 3, 4, and 6 (i.e., the halves, thirds, quarters, and sixths)
are short.

Most of the world uses the metric (or decimal) system of weights and measures,
but a few countries still struggle with 12 inches to the foot and 16 ounces to the pound.
Until 1971, England had a monetary system of 12 pence (d) to the shilling (s) and 20
shillings to the pound (£), in addition to units such as a crown (5s), half a crown (2s
6d), a florin (2s), half a sovereign (10s) and a guinea (21s). A statement such as “I only
paid two pounds, six and nine” meant two pounds, six shillings, and nine pence.

“I was born in 1943. The money used in our village was: farthing, Ha’penny, penny,
thrupenny bit, sixpence, shilling, two bob bit, half crown, ten bob note, pound note
and five pound note. The crown coin was limited. I don’t think there was a five pound
coin. I believe the guinea was, still is, just a value and not a coin or note.”

—John Curd.
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16. The equation ab = ba is simple and symmetric. Like any equation in two
unknowns, it has infinitely many solutions, but this particular equation has only one
integer solution, namely a = 4 and b = 2 (or a = 2 and b = 4). Thus, 42 = 24 = 16.

Computers use binary numbers and many current computer memories and devices
are organized around units of eight bits, bytes. This is why the hexadecimal (base-
16) number system is important. Binary numbers are simple because they employ just
two digits, but the tradeo⌃ is that these numbers tend to be long. The hexadecimal
system is more complex, having the 16 symbols 0 through 9 and A, B, C, D, E, and F,
but hexadecimal numbers are much shorter. In addition, it is easy to convert between
binary and hexadecimal numbers, because a group of four bits can have 16 values. Thus,
a byte can be divided into two groups of four bits each and thereby be expressed by
two hexadecimal digits. The digits 2A are equivalent to 0010|1001 and F0 denotes the
byte 1111|0000. Decimal numbers are also shorter than binary, but a decimal digit is
equivalent to about 3.32 bits, which complicates conversion between decimal and binary.

37. Reference [37everywhere 24] shows that when we are asked to produce a random
integer between 1 and 100, the most common choices are 3, 37, and 73. See Section 7.10
for an unexpected appearance of 37 in real life.

69. It is easy to verify that 692 = 4,761, that 693 = 328,509, and that between
them these two numbers employ each of the ten decimal digits once. It seems that 69 is
the only integer that has this interesting property.

⌅ Exercise 2.9: What is the next element of the sequence one, seven, eleven, twenty one,
seventy seven?

137.508. This irrational number is the little known golden angle.
The golden angle, the close cousin of the golden ratio, is con-

≈137.5o

structed by partitioning a circle into two arcs, large a, and small b,
such that a/b = ⌘. This happens when the angle between the radii
defining the arcs is approximately 137.5⇤, as illustrated in the figure.
The golden angle is often found in plants where it is the angle be-
tween successive leaves. Natural selection favors plants that receive
more sunlight, which is why the arrangement of leaves around a plant
is important. The worse phyllotaxis occurs when leaves grow under or over one another,
thereby blocking the sun.

The value of the golden angle is easy to compute (see Page 244). The circumference
of a circle is always 2� and in our case a + b. The ratio of the arc subtended by b to the
entire circumference is therefore

b

2�
=

b

a + b
=

a + b

b

�1

= 1 +
b

a

�1

=
1

1 + ⌘
=

1
⌘2

.

Thus, exactly ⌘2 golden angles fit in the 2� circumference of the circle, which results in

Golden angle =
2�
⌘2
� 2.39996 radian, or

360
⌘2

� 137.508.

276. This is currently (in 2024) the smallest number whose aliquot sequence is not
fully known due to the di⌥culty of factoring large number. See Page 237.
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495. This integer is the basis of the Kaprekar process. This is an algorithm dis-
covered (invented? originated?) in 1949 by Dattatreya Ramachandra Kaprekar, which
delights many mathematicians (mostly amateurs). Take any three-digit integer whose
digits are not all identical. Arrange the digits in ascending and descending order and
subtract the smaller resulting integer from the larger. Notice that the result may have
some identical digits. If the result has fewer than three digits, prepend zeros as necessary
to end up with three digits. Repeat this process and you will always end up with 495,
an integer that is transformed to itself by this process because 954� 459 = 495.

Repeating the same process with a four-digit integer results in 6174.

The integer 1,729 is known as the Hardy-Ramanujan number after a well-known
anecdote told by the mathematician G. H. Hardy. In his essay A Mathematician’s
Apology, Hardy tells of a hospital visit to the Indian mathematician Srinivasa Ramanujan
“I remember once going to see him when he was ill at Putney. I had ridden in taxi cab
number 1729 and remarked that the number seemed to me rather a dull one, and that I
hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it is a very interesting number;
it is the smallest number expressible as the sum of two cubes in two di⌃erent ways.’ ”

When hearing this anecdote, the mathematician J. E. Littlewood responded by
saying “every positive integer was one of Ramanujan’s personal friends.”

See [MathPages 09] for further discussion of 1,729 as an interesting or dull number.

⌅ Exercise 2.10: Find out (by searching or by direct computations) [1] the two pairs the
sum of whose cubes equals 1,729. [2] The two pairs of integers the sum of their 4th
powers equals 635,318,657.

1093. This is a Wieferich prime. These are prime numbers p such that p2 divides
2p�1 � 1. So far, only two members of this sequence, 1093 and 3511, are known.

142,857. This, apparently run-of-the-mill, integer has two beautiful properties.
Firstly, it is the periodic part in 1/7 = 0.142857 142857 142 . . .. Secondly, its first six
products are cyclic permutations of itself, Thus,

142,857⇥ 1 = 142,857, 142,857⇥ 2 = 285,714, 142,857⇥ 3 = 428,571,
142,857⇥ 4 = 571,428, 142,857⇥ 5 = 714,285, 142,857⇥ 6 = 857,142.

See Page 127 for more about this and other cyclic numbers.
73,939,133. This is a prime number with a very unusual property. If we remove its

least-significant digits one by one, the remaining integers—7,393,913, 739,391, 73,939,
7,393, 739, 73, and 7—are all primes! Other primes with this property are known.

381,654,729. A curious integer. It consists of the digits 1 through 9 and its
leftmost k digits are divisible by k (for example, 38,165 is divisible by 5). Reference
[Lanier 09] shows how Susie Lanier cleverly employs logic and elementary algebra to
determine this number.

10
3003. This number has the familiar-sounding but little-known name millillion.

See [Mufano 09] for ways to construct and name large and very large numbers. One
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such method, the up-arrow notation devised by Donald Knuth [Knuth 76], is described
here.

The up-arrow notation. Modern mathematical notation often employs iteration.
Thus, multiplication is iterated addition a ⇥ b = a + a + · · · + a6 54 7

b

and exponentiation is

iterated multiplication ab = a⇥ a⇥ · · ·⇥ a6 54 7
b

. The up-arrow notation also uses iteration.

The basic operation a ⌘ b is defined as ab. Its immediate extension a ⌘⌘ b is defined as

a ⌘⌘ b = a ⌘ (a ⌘ (. . . ⌘ a))6 54 7
b

= aa··
·a
/

b
.

Thus, 4 ⌘ 3 = 43 = 64 and 4 ⌘⌘ 3 = 4 ⌘ (4 ⌘ 4) = 444
= 4256. Notice that 444

is to be
computed from right to left, thus 4(44).

Other examples of double up-arrows are

3 ⌘⌘ 2 = 33 = 27, 3 ⌘⌘ 3 = 333
= 327, 3 ⌘⌘ 4 = 3333

= 3327
.

The definition of triple up-arrow is now obvious a ⌘⌘⌘ b = a ⌘⌘ (a ⌘⌘ (. . . ⌘⌘ a))6 54 7
b

.

and
a ⌘⌘⌘⌘ b

def= a ⌘4 b = a ⌘3 (a ⌘3 (. . . ⌘3 a))6 54 7
b

.

Thus, for example,

3 ⌘4 3 = 3 ⌘3 (3 ⌘3 3) = 3 ⌘3 (3 ⌘2 (3 ⌘2 3)) = 3 ⌘3 (3 ⌘2 27) = . . . .

It is easy to see how this notation is extended to any number of consecutive up-arrows
and how it provides very compact notation for extremely large numbers.

The integer 2 has the unique property that 2 + 2 = 2 ⇥ 2 = 22 = 2 ⌘⌘ 2 = 2 ⌘n 2
for any value of n.

95
106

. This unimaginably vast number gives us an idea of the size of the ultimate
library. A book may have artistic, scientific, or literary value, but reduced to its es-
sentials, it is a string of characters. A typical 300-page book may consist of about one
million characters, letters, digits, and punctuation marks. A book may also contain
mathematical expressions and figures, and the number of distinct characters depends
on the language, but let’s simplify our task and consider books that consist of a million
characters drawn from a set of 95 distinct characters (this is the number of printable
ASCII codes, including a blank space). Under these restrictions, total number of possi-
ble books is 95

106 � 4⇥ 10
1,977,723, a vast (close to two-million-digits-long) but as far

from infinity as any other number.

Tablets were replaced by scrolls, scrolls were replaced by books, and now we scroll
through books written on tablets.
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A little thinking shows that the vast majority of these books would be complete or
partial gibberish. Still, the number of meaningful books would be much greater than the
number of elementary particles in the observable universe (a number which is estimated
at about 1078 to 1082). An interesting conclusion is that, given enough time, all these
meaningful books might be written throughout history, during a long but finite interval
of time.

A large integer. Here is an example of another large number that is easy to
compute in principle, but impossible to compute with current technology. Start with
the integers from 1 to 10100. In this interval select the ones that are primes and compute
their median. (If a sequence consists of an odd number of items, its median is the middle
item. If it consists of an even number of items, its median is the average of the two items
at the center of the sequence. The prime numbers are odd, so the average of two primes
is an integer.)

Our sequence of primes starts with 2, 3, 5, and 7 and ends with

999 . . . 996 54 7
97

203.

It consists of very large integers, but such integers can be computed by current software.
The problem is the length of the sequence. Applying the prime number theorem to this
case yields

�10100 � 10100

ln(10100)
� 1098

2.3
� 1097.

This number is simply too large for any current computer to perform this computation
(to compute the elements of the sequence in order to find the middle ones) in any
meaningful period of time.

⌅ Exercise 2.11: We have looked at many integers that posses interesting features. Many
mathematics bu⌃s claim that every integer belongs in this category, and no integer is
boring. Search the mathematics world for an interesting property of the integer 196.

Self-describing numbers. A self-describing number is one that describes its own
content in some way. For example, the integer 10,213,223 is self-describing because it
consists (when viewed as 10|21|32|23) of one zero, two 1’s, three 2’s, and two 3’s. The
smallest self-describing number is 22. Self-describing numbers are easy to generate. Start
with any positive integer, describe it, then describe the resulting integer, and repeat until
the result is self-describing. Thus, starting with 101, we go through the sequence 1021,
102112, 103122, 10212213, 10313213, and end up with 10311233.

⌅ Exercise 2.12: Starting with 10, evolve it in 10 steps to obtain a self-describing number.

The following “look and say” sequence is an elegant variation on this concept, by
John Conway (see also Page 256).
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one
one one
two ones

one two and one one
one one, one two, two ones

three ones, two twos, one one
one three, one one, two twos, two ones

Tables 2.7 and 2.8 list beautiful pyramid patterns obtained by simple arithmetic
operations on integers. Figure 2.9 illustrates unexpected relations between odd numbers
and squares.

Another oddity of the odd numbers is the observation that the first odd number,
1, equals 13, the sum of the next two odd numbers 3 + 5 equals 23, the sum of the next
three odd numbers 7 + 9 + 11 equals 33, and so on.

Here is a surprising fact about multi-digit integers. Take an n-digit integer whose
digits are not all equal. Randomly select any of the n! permutations of the digits,
and subtract the permutation from the original number. If the di⌃erence is also a multi-
digit number, add its digits. Repeat adding digits until a single-digit integer is obtained.
This digit will always be 9. As an example, start with 108,473, subtract the permutation
470,813, to obtain (in absolute value) 362,340, add its digits to get 18, and add 1+8 = 9.
The world of mathematics is not just infinite; it is also full of unexpected results.

These relations and many others can be found at [numeropedia 09].

⌅ Exercise 2.13: (Tongue in cheek). At school, students learn the meaning of percents
and the fact that 100% of something equals that thing. In the school of life, however, a
person learns (often from bitter experience) that there can be more than 100%. Interest
rates, for example, are not limited to 100% and our leaders often ask us to produce
a 101% e⌃ort. To gain an insight into the meaning of 101%, try the following fun
experiment. Assign the integers 1 through 26 to the 26 letters A through Z. Given a
word, replace its letters with their numeric values and add. It is now easy to verify that
the sum of values for the word HARDWORK is 8+1+18+4+23+15+18+11 = 98, while
the code of KNOWLEDGE is 11+14+15+23+12+5+4+7+5 = 96. If we consider these
sums percentages, then hardwork is equivalent to giving 98% of yourself, knowledge is
equivalent to 96%, and ATTITUDE equals 1 + 20 + 20 + 9 + 20 + 21 + 4 + 5 = 100%.
Your task is to find the magic word or phrase that produces 101%.

God made the integers; all else is the work of man.
—Leopold Kronecker.

The above list of interesting integers becomes the tip of an infinitely big iceberg
when we consider the various types of numbers that have been proposed and studied
over the centuries. Here are three short lists of both common and rare types of numbers:

1. The elementary types, such as prime, integer, even, rational, irrational, real,
constructible (those that can be made with a ruler and compass), algebraic (solutions
to algebraic equations), transcendental (not a solution, but can be computed with an
algorithm), non-computable (those that can be defined only by writing their digits ex-
plicitly), normal, surreal, complex, and quaternions.
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1 ⇥ 8 + 1 = 9
12 ⇥ 8 + 2 = 98

123 ⇥ 8 + 3 = 987
1234 ⇥ 8 + 4 = 9876

12345 ⇥ 8 + 5 = 98765
123456 ⇥ 8 + 6 = 987654

1234567 ⇥ 8 + 7 = 9876543
12345678 ⇥ 8 + 8 = 98765432

123456789 ⇥ 8 + 9 = 987654321

9 ⇥ 9 + 7 = 88
98 ⇥ 9 + 6 = 888

987 ⇥ 9 + 5 = 8888
9876 ⇥ 9 + 4 = 88888

98765 ⇥ 9 + 3 = 888888
987654 ⇥ 9 + 2 = 8888888

9876543 ⇥ 9 + 1 = 88888888
98765432 ⇥ 9 + 0 = 888888888

Table 2.7: Numerical Pyramids.

1 9 + 2 = 11
12 9 + 3 = 111

123 9 + 4 = 1111
1234 9 + 5 = 11111

12345 9 + 6 = 111111
123456 9 + 7 = 1111111

1234567 9 + 8 = 11111111
12345678 9 + 9 = 111111111

123456789 9 + 10 = 1111111111

1⇥ 1 = 1
11⇥ 11 = 121

111⇥ 111 = 12321
1111⇥ 1111 = 1234321

11111⇥ 11111 = 123454321
111111⇥ 111111 = 12345654321

1111111⇥ 1111111 = 1234567654321
11111111⇥ 11111111 = 123456787654321

111111111⇥ 111111111 = 12345678987654321

296⇥ 333667 = 98765432
2996⇥ 33336667 = 99876654332

29996⇥ 3333366667 = 99987666543332
299996⇥ 333333666667 = 99998766665433332

2999996⇥ 33333336666667 = 99999876666654333332
29999996⇥ 3333333366666667 = 99999987666666543333332

299999996⇥ 333333333666666667 = 99999998766666665433333332
2999999996⇥ 33333333336666666667 = 99999999876666666654333333332

29999999996⇥ 3333333333366666666667 = 99999999998766666666663333333332
299999999996⇥ 333333333333366666666667 = 99999999998766666666665433333333332

Table 2.8: More Numerical Pyramids.

1 + 3 = 4 = 22,

1 + 3 + 5 = 9 = 32,

1 + 3 + 5 + 7 = 16 = 42,

1 + 3 + 5 + 7 + 9 = 25 = 52.

Figure 2.9: Odd and Square Numbers.
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An example of a non-computable number is Chaitin’s constant ⇧ (the proba-
bility that a random program will halt) discovered and defined by Gregory Chaitin
[WikiOmega 24].

An example of a normal number, one whose infinite sequence of digits is distributed
uniformly, is Champernowne constant, the concatenation of all the natural numbers.
Thus

C10 = 0.12345678910111213141516 . . .10 = 0.11011100101110111 . . .2 .

This number was proposed by David Champernowne in 1933.

⌅ Exercise 2.14: Search the mathematical literature for another known normal number.

2. Well-known number types such as polygonal, Fibonacci, factorials, factorions,
perfect, twin, amicable, sociable, Granville, twin primes, trigonometric, and computable.

A factorion is an integer which equals (in a certain number base) the sum of the
factorials of its digits. Thus, 145 is a factorion because 1!+4!+5! = 145. Other examples
of decimal factorions are 1, 2, and 40,585. Notice that this property of integers depends
on the number base. An integer which is a factorion in a base b may not be such in
other number bases.

3. Rarely used numbers that are often defined by various relations. The follow-
ing examples are mostly drawn from youtube channel numberphile: practical, witness,
quasiperfect (or weird), dungeon, kissing, hyperreal, boring, cyclic, illegal, spaghetti,
vampire, brown, deficient, abundant, hyperperfect, superperfect, definable, almost inte-
ger, and hypercomplex.

Chances are that many new types of numbers will be identified in the future, and
this because there are infinitely many numbers of the elementary type, and because so
many numbers have infinitely many digits. It is no wonder that such infinities of choice
produce so many di⌃erent types of numbers and relations between numbers.

This chapter started with a discussion of integers and their beautiful, interesting,
and unexpected properties and relations. We continue our exploration of beauty, sur-
prise, and fun in numbers by looking at other types of numbers.

2.3.1 Primes, composite, and their cousins

A prime number is an integer that has only itself and 1 as divisors. Prime numbers
are important in mathematics because they are the building blocks from which other
integers are constructed. This is summarized by the prime number theorem (also known
as the fundamental theorem of arithmetic) which states that an integer can be factored
into a product of prime numbers in one way only. For example, the prime factorization
of 5040 is 24 ⇥ 32 ⇥ 5⇥ 7.

We use the number 10 as the base of our number system because we have 10
fingers, but mathematicians know that 12 is a better base of a number system, because
it is divisible by 1, 2, 3, 4, 6, and itself, whereas 10 has only the four divisors 1, 2, 5,
and itself. This raises the question of whether there are numbers better than 12 to base
number systems on; whether highly-composite numbers exist, what makes then highly
composite, and how to define them rigorously.
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History teaches us that the Greek philosopher Plato had already realized that the
number 5040 has many divisors. In his book Laws he used this to propose a way to
organize a city according to some of those divisors. Plato perhaps even knew that those
60 divisors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36,
40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210,
240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, and
5040 itself.

It seems that 5040 is a highly composite number (or an antiprime) by any reasonable
definition, and the definition we have says that a highly composite number is a number
that has more divisors than any number smaller than it. Table 2.10 lists some numbers
(n) and the number d(n) of their divisors, and it is immediately clear that the distribution
of highly composite numbers, marked in italics in the table, is getting thinner as the
numbers themselves are getting larger. This is similar to the distribution of the prime
numbers.

n | 1 2 3 4 5 6 7 8 9 10 11 12 24 36 48 60
d(n)| 1 2 2 3 2 4 2 4 3 4 2 6 8 9 10 12

n | 120 180 240 360 720 840 1260 1680 2520 5040 7560 10080
d(n)| 16 18 20 24 30 32 36 40 48 60 64 72

Table 2.10: The First Highly Composite Numbers.

There is a simple relations between the prime factorization of a number n and
the number d(n) of its divisors. Take, for example, 5040. Its prime factorization is
24⇥ 32⇥ 5⇥ 7, which is why all numbers of the form 20 · 3, 21 · 3, 22 · 3, 23 · 3, and 24 · 3,
are divisors of 5040, as also are 3a ·5b for a = 0, 1, 2 and b = 0, 1. In general, if the prime
factorization of n is P a1

1 P a2
2 P a3

3 . . . P ak
k , then it has (a1 + 1)(a2 + 2)(a3 + 3) . . . (ak + k)

divisors. Thus, the prime factorization of 5040 implies that it has (4 + 1)(2 + 1)(1 +
1)(1 + 1) = 5 · 3 · 2 · 2 = 60 divisors.

In early 20th century, the amazing Indian mathematician Ramanujan studied the
properties of highly composite numbers and came up with three simple (necessary but
not su⌥cient) conditions that those numbers must satisfy.
1. The prime factors of a highly composite number must be consecutive primes. Thus,
if the prime factors of a number n are 2, 5, and 7 (with the prime 3 missing), then n is
not a highly composite number.
2. If the prime factorization of n is n = P a1

1 P a2
2 P a3

3 . . . P ak
k , then for n to be highly

composite, the sequence {ai} must be nonincreasing. Thus, the highly composite 5040 =
24 ⇥ 32 ⇥ 5⇥ 7, features the nonincreasing sequence 4, 2, 1, 1 of exponents.
3. The last exponent in the sequence {ai} of exponents must be a 1 for n to be highly
composite. This rule has two exceptions namely, 4 = 22 and 36 = 22 · 32.

Truncatable Primes. The following prime number L = 357686312646216567629137,
has a very special property. As we remove its digits one by one from the left, the
remaining part is always a prime. Even more, there are many numbers, known as left-
truncatable primes, that have this property, but L is the largest.

Such interesting numbers are easy to generate. Start with the rightmost digit. It
has to be one of 2, 3, 5, and 7, because once everything to its left is removed, it has to
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be a prime. Now prepend another digit to its left. This must be chosen such that the
resulting two-digit number will be a prime. We notice that the nine numbers 15, 25, 35,
. . . , 95 are all composite, as also are 12, 22, 32, . . . , 92. Of the nine numbers x3, only 6,
namely 13, 23, 43, 53, 73, and 83, are primes. Notice that digits such as 4 and 8, which
cannot be the rightmost digit, may appear in other positions. The case of 7 is similar.
Of the nine numbers x7, only 5, namely 17, 37, 47, 67, and 97, are primes. Thus, there
are 6 + 5 = 11 two-digit left-truncatable prime numbers.

Next, we prepend a third digit on the left of each of the chosen 11, and check the
resulting 5 ⇥ 9 + 6 ⇥ 9 = 99 numbers for primality. In this way, more and more digits
are added to the left until, at 24 digits, only the above massive number L remains; the
largest left-truncatable prime! The complete sequence is listed as sequence A024785 in
the OEIS, reference [Sloane 08].

⌅ Exercise 2.15: Can there be right-truncatable primes?

The Prime Constant

The first few primes are 2, 3, 5, 7, 11, one 13. Consider the unusual binary number
P = 0.r1r2r3 . . . whose bits are defined by

ri =
. 1 the ith integer is a prime,

0 otherwise.

This number, which starts with P = 0.011010100010100010100010000 . . .2, is known as
the prime constant (sequence A010051 in the OEIS). We can think of it as a summary
of all the primes.

There are many similar binary numbers whose 1-bits and 0-bits correspond to some
property (satisfied by or missing from) the integers. Such numbers are usually the ele-
ments of an infinite increasing monotonic sequence, where ai+1 > ai for all i. Examples
are the Fibonacci sequence, the number of divisors of the integers n, the sum of those
divisors, the triangular numbers, and the “look and say” sequence, Page 256. Even
something such as the positions of the odd integers can be expressed with the single
binary number 0.101010. . . .

More Types of Integers

Mathematicians, being both funny and rigorous, have defined the following types
of integers:

A composite number is a positive integer that can be formed by multiplying two
smaller positive integers. It can also be described as a positive integer that has at least
one divisor other than 1 and itself. Every positive integer except 1 is either composite
or prime.

A highly composite number is a positive integer with more divisors than any smaller
positive integer has. A typical example is 24, whose seven divisors are 1, 2, 3, 4, 6, 8,
12, and 24. This is more divisors than any of the integers 1 through 23 has.

An abundant number or excessive number is a positive integer for which the sum
of its proper divisors is greater than the number. The integer 12 is the first abundant
number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16.
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A deficient number or defective number is a positive integer n, the sum of whose
divisors is less than 2n. Equivalently, it is a number for which the sum of proper divisors
(the aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4,
and their sum is less than 8, so 8 is deficient.

A primitive abundant number is an abundant number whose proper divisors are all
deficient numbers.

A highly abundant number is a natural number with the property that the sum
of its divisors (including itself) is greater than the sum of the divisors of any smaller
natural number.

A superabundant number is a natural number n for which, for all m < n

⇣(m)
m

<
⇣(n)

n
,

where ⇣ is the sum of all positive divisors of n, including n itself. The first few super-
abundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, and 120.

A number n is said to be colossally abundant if there is an ⇧ > 0 such that for all
k > 1,

⇣(n)
n1+�

<
⇣(k)
k1+�

,

The first such numbers are 2, 6, 12, 60, 120, 360, 2520, 5040, and 55440.
A perfect number is a natural number that is equal to the sum of all its proper

divisors. Such numbers are rare and searching for them require powerful computing re-
sources. All the perfect numbers known so far are even, and the problem of whether odd
perfect numbers exist is often considered the oldest important unsolved mathematical
problem.

Poem on Odd Perfect Numbers

In the realm of numbers, rare and grand,
Lies a mystery, hard to understand.
Perfect numbers, even and bright,
Yet odd ones remain out of sight.

For centuries, the search goes on,
From dawn to dusk, from dusk to dawn.
Mathematicians with minds so keen,
Ponder this puzzle, unseen, serene.

Even perfect numbers, easy to find,
Their formula simple, defined and kind.
But where’s the odd one, elusive, rare?
In number theory, it’s a phantom there.

Legends whisper, proofs take flight,
Yet odd perfect numbers stay out of sight.
A mathematical quest, a timeless dream,
In the world of numbers, a silent scream.

By chatGPT 4o, June 2024.

A semiperfect (or pseudoperfect) number is a natural number n that is equal to the
sum of all or of some of its proper divisors. The first few semiperfect numbers are 6, 12,
18, 20, 24, 28, 30, 36, and 40.
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A weird number is a natural number n that satisfies the following:
1. It is abundant; the sum of its proper divisors (divisors including 1 but not itself)

is greater than n.
2. No subset of those divisors sums to n itself; thus, n is not semiperfect.
The smallest weird number is 70. Its proper divisors are 1, 2, 5, 7, 10, 14, and 35.

Their sum is 74, but no subset of these divisors sums to 70.
A deficient (or defective) number is a positive integer n, the sum of whose divisors

is less than 2n. It can also be described as a number for which the sum of proper divisors
(the so-called aliquot sum) is less than n. For example, the proper divisors of 8 are 1,
2, and 4, and their sum is less than 8, so 8 is deficient.

The following number types are not formally recognized. They may be how certain
recreational mathematicians spend their leisure time. An apocalyptic power is a number
of the form 2n whose decimal representation has the string “666” somewhere. Examples
are 2157, 2192, 2218, and 2666. The pair 22210 and 22212 are special, because they are
apocalyptic powers and also 666-digits-long each, which makes them apocalypse num-
bers. A Goliath number is one that has 666 consecutive 6’s in its decimal representation.
Obviously such a number must be very large, which complicates the search for Goliaths.
However, mathematicians, being hard workers and fun loving, may develop methods to
define and find such large (albeit not very interesting) numbers.

⌅ Exercise 2.16: Explain why the following relations exists:

Many keypads are organized in three rows, three columns, and two diagonals (a
total of eight) as follows

7 8 9
4 5 6
1 2 3 .

From each of these eight 3-digit numbers we can generate two 6-digit numbers as fol-
lows 123321, 321123, 456654, 654456, 789987, 987789, 741147, 147741, 852258, 258852,
963369, 369963, 753357, 357753, and 951159, 159951. Why are all 16 numbers divisible
by 37?

Why is the 12th prime number 37, while the 21st prime is 73?

How do we explain the fact that the seven numbers 31, 331, 3,331, 33,331, 333,331,
3,333,331, and 33,333,331 are all primes?

The figures listed in Table 2.11 were obtained by computing the first 21 powers of 2
and summing the digits of each again and again until only one digit is left in each of the
21 sums. Explain why the resulting sequence repeats every six numbers.

⌅ Exercise 2.17: Prove that if p is a prime, then "p is irrational.
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l1 = Table[Total[IntegerDigits[2^n]], {n, 0, 20}]
l2 = Table[Total[IntegerDigits[l1[[n]]]], {n, 0, 20}]
Table[Total[IntegerDigits[l2[[n]]]], {n, 0, 20}]

{1,2,4,8,7,5,10,11,13,8,7,14,19,20,22,26,25,14,19,29,31}

{Total[IntegerDigits[List]],1,2,4,8,7,5,1,2,4,8,7,5,10,2,4,8,7,5,10,11}

{Total[IntegerDigits[List]],Total[IntegerDigits[Total[IntegerDigits[List]]]],
1,2,4,8,7,5,1,2,4,8,7,5,1,2,4,8,7,5,1}

Table 2.11: Sum of the Digits of Power of 2.

2.4 Rationals and Irrationals

A rational number has the form n/m where n and m are integers and m is nonzero. The
set of rational numbers includes the integers as the special case m = 1. The decimal
expansion of a rational number is either finite or consists of a repeating pattern (a
repetend). The repetend can be a single digit, such as 1/3 = 0.333 . . ., or several digits,
such as 1/7 = 0.142857 142857 . . ., but it is finite.

The proof of this property is elementary. Each step in the long division n/m results
in a quotient and a remainder which is an integer in the interval [0,m � 1]. Once the
remainder produced by a division step is zero, the division terminates. Otherwise, no
remainder is ever zero, and each division step results in a remainder between 1 and
m � 1. If the first remainder appears again after the first k steps, the kth step starts
the same remainder pattern as the first k � 1 steps, and the repetend’s length is k � 1
digits. There can be at most m� 1 di⌃erent remainders in the first m� 1 steps, which
is why the longest repetend is m� 1 digits.

The converse is also true. any decimal number with a finite repetend must be
rational, as the following example makes clear. Given a number of the form A =
0.7 162 162 162 . . ., we notice that its repetend length r is 3. We first multiply it by
a power of 10, such that the decimal point is in front of the first repetend

10A = 7.162 162 162 . . . ,

then multiply by 103 or, in general, 10r, to obtain

10, 000A = 7162.162 162 . . . .

These two decimal expansions are still infinite, so subtracting them yields 10 000A �
10A = 9990A = 7155, which is the rational 53/74.

Once the basic properties of rational numbers are known, the irrational numbers
are simply defined as those real numbers that do not satisfy these properties. Thus, an
irrational number is one whose decimal representation is infinite and does not feature
any repeating patterns. It may come as a surprise to learn (in Chapter 4) that the sets
of integers and rationals have the same cardinality (the same “kind” of infinity).

To get a deeper understanding of the relation between integers and rationals, con-
sider the following: Between any two consecutive integers, such as n and n+1, there are
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no other integers; the integers form a discrete sequence. The rationals, however, form
a dense set. Between any two rationals, even if they are very close, there is another
rational. Given the two rationals r1 = a/b and r2 = c/d, the number r = (r1 + r2)/2 lies
between r1 and r2 and is rational because it equals the ratio (ad + bc)/2bd. Similarly,
there are other rationals between r1 and r, as well as between r and r2. This implies
that between any two rationals there are infinitely many other rationals.

This surprising result implies something even more ba�ing. Given two rationals r1

and r2 such that r1 < r2, there is another rational r3 between them, such that r1 < r3.
Similarly, there is another rational r4 between r1 and r3 such that r1 < r4, and so on.
We can construct infinitely many rationals r5, r6, . . . that are greater than r1 and get
closer and closer to it. None of those rationals, however, will be the immediate successor
of r1 because between r1 and any of them there will always be other rationals. We must
therefore conclude that r1 (and, in implication, any rational number) does not have
any successor. There simply does not exist a number that immediately follows r1, an
unexpected, unintuitive, and ba�ing conclusion.

Because of these properties, the set Q of rational numbers is dense, but Section 4.5
shows that it has the same �0 cardinality as the set of integers. This is because set
theory shows that it is possible to assign to every rational number an integer subscript
or tag. We therefore say that the rationals are countable.

The fact that a rational number has no immediate successor means that there are no
jumps in the sequence of rationals. We can move along this sequence and see the values
grow continuously, without any jumps between consecutive values because there are no
consecutive rational numbers. This is hard to accept because it contradicts everything
we know about the physical world. Objects in the world around us consist of discrete
particles, and energy comes in discrete photons. Everything in the physical world is
quantized and discrete; nothing is continuous.

When a rational number is expanded (in any number base), it becomes either a
finite string of digits or an infinite repeating sequence. Thus, in decimal, 12345/1234
is the finite string 10.0040518638574, but 4/3 becomes the repeating infinite sequence
1.3333 . . ., and 555/7 is similarly 79.285714 285714 . . ..

A fraction is reduced by dividing both sides by the same nonzero amount. Thus,
dividing both 16 and 64 by 16 reduces 16/64 to 1/4. Reducing 16/64 by eliminating
the 6 in the numerator and denominator is, of course, wrong, but accidentally leads to
the correct result. It turns out that such cases are rare. For 2-digit numbers, this style
of reduction works only for 19/95 = 1/5, 26/65 = 2/5, and 49/98 = 4/8. For bigger
numbers, we mention only the case 16,666/66,664 = 1/4.

The following rationals 1/3, 2/6, 3/9, . . . are equal, implying that every rational
r = a/b has infinitely many representations of the form na/nb for nonzero integers
n. The simplest such representation, the one where a and b do not have any common
factors, is called the irreducible representation of r (in our example 1/3). The irreducible
form of a fraction is obtained by dividing both the numerator and denominator by their
greatest common divisor. Let’s select such an irreducible representation a/b at random.
It seems reasonable to assume that in half the cases, the denominator b will be even, but
in fact it turns out that b is even in only 1/3 of the cases. This surprising, unintuitive
result is an example of beautiful mathematics.

Given two random integers p and q, we first apply Euclid’s algorithm to find their
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greatest common divisor G. We divide P = p/G and Q = q/G by this divisor to obtain
an irreducible fraction P/Q. It is obvious that the binary representations of P and Q
cannot both end with zeros. If P = pp . . . p0 and Q = qq . . . q0, then P and Q would be
even and would have 2 as a common divisor. Therefore, the rational number R = P/Q
must have one of the following binary forms

pp . . . p1
qq . . . q1

,
pp . . . p0
qq . . . q1

,
pp . . . p1
qq . . . q0

.

Since the original p and q were randomly selected, R can take each of these forms with
equal probability. The first two forms have an odd denominator, so the probability of
having an even denominator is 1/3. Elegant, simple, and surprising; in short, beautiful.

When I considered what people generally want in calculating, I found that it always
is a number.

—Muh.ammad ibn Mûsâ al-Khwârizmı̂.

An irrational number is any number that cannot be written as the ratio of two
integers. We intuitively feel that we “know” and can write any rational number. After
all, it is easy to come up with two arbitrary integers and divide them. The irrationals,
however, seem mysterious and unapproachable. If we feel or believe that a number a
may be irrational, we have to prove that it cannot be written as the ratio of two integers.
Such proofs are at least time consuming and may also be long, tedious, and di⌥cult to
devise and understand. As a result, only a handful of irrational numbers, such as �,

"
2,

and e, are known. (As an illustration of the di⌥culties presented by the irrationals it is
interesting to mention that it is still unknown whether combinations such as me ± n�,
for integers m and n, are rational or irrational.)

Even though only a few irrationals are known, set theory (Chapter 4) shows that
the cardinality of the set I of irrationals is greater than that of the integers and the
rationals. It is possible to assign each rational number an integer tag or subscript, but
it is impossible to do that with the irrationals because there simply are “too many” of
them (there are infinitely many rationals and infinitely many irrationals, but the latter
infinity is greater). This makes the irrationals ba�ing. There are so many of them, yet
so few are known.

Here are two examples of how to “construct” an irrational number.

1. Start with a right-angle triangle of sides 1 and 2 units. The hypothenuse of this
triangle must be

"
5 units long, because 12 + 22 = 5 = (

"
5)2.

2. Consider the number 0.12345678910|11121314151617181920|2122 . . .. Because of
the way it is constructed (consecutive integers, starting from 1), its expansion is infinite
and it does not repeat (because each integer is unique). Thus, this number is irrational;
clever!

Set theory shows that “most” real numbers must be irrational, but “most” mathe-
matical texts claim that only a few irrational numbers—such as �, e, and ⌘—are actually
known. However, it is easy to prove that the square roots of ALL integers (except perfect
squares such as 4, 9, and 16) are irrational. Here is the simple proof. Assume that the
integer n, which is not a perfect square, has a square root which is rational and of the



2.4 Rationals and Irrationals 73

form p/q where p and q are integers, the quotient p/q is in reduced form, and q ⇡= 1 (if
q = 1 then

"
n = p is an integer, implying that n = p2 is a perfect square).

Any integer can be uniquely expressed as the product of prime numbers, so we can
write "

n =
p

q
=

p1p2 · · · pm

q1q2 · · · qk
,

where, because of the reduced form, none of pi’s equals any of the qj ’s. This implies
that the integer n, which equals p2/q2, is a fraction, and not an integer (because q ⇡= 1);
and this is a contradiction to our assumption that

"
n is rational.

Hence we conclude that infinitely many irrational numbers are known and can easily
be specified.

The following simple arguments show why
"

2 is irrational. They are examples
of beautiful proofs, because both are simple, easy to understand, and short. See also
Page 4.

Assume that
"

2 is rational and has the form m/n for integers m and n. We divide
these integers by their greatest common divisor to obtain an irreducible fraction. Thus,
m and n cannot both be even because that would imply a common divisor of 2. The
relation

"
2 = m/n can be written m = n

"
2 or m2 = 2n2, implying that m is even

(and therefore n must be odd). Let’s write m = 2p and substitute (2p)2 = 2n2  4p2 =
2n2  2p2 = n2. This implies that n is even; a contradiction. Thus, our assumption
that

"
2 is rational was wrong.

A geometric proof. If
"

2 is rational then there exist integers a and b such that
a/b =

"
2 or

a2 = 2b2. (2.1)

Geometrically, this means that there is an a ⇥ a square whose area equals that of two
smaller b⇥b squares. We slide the two smaller squares into the large one, so they overlap
as shown in Figure 2.12a. The total area of the two smaller squares is supposed to equal
the area of the large square, which is why the area of the central overlap must equal the
sum of the two small uncovered areas, Figure 2.12b. Thus, (2b� a)2 = 2(a� b)2.

a-b

a-b

a-b
a-b

(2b-a)£
 (2b-a)

(2b-a)£
 (2b-a)

(a-b)£
 (a-b)

(a-b)£
 (a-b)

a

(a)

(b)

a

b

b

b

b

= +

Figure 2.12: The Irrationality of

"
2.
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This means that we have produced a new pair of integers (2b� a) and (b� a) that
are positive (being the sides of squares) and also satisfy the relation of Equation (2.1),
but are smaller than a and b. Clearly, we can continue in this way, producing an infinite
list of smaller and smaller pairs of positive integers that stand in the same relation.
This, however, is impossible, because integers cannot be smaller than 1, which leads to
a contradiction.

See [Conway 13] for more simple proofs of the irrationality of
"

2.

⌅ Exercise 2.18: (Easy). Search the mathematical literature for more irrational numbers.

The expansion of an irrational number, in any number system, is always infinite
and nonrepeating, which makes them even more mysterious; there is no way to write
such a number in its entirety using just digits and a decimal point.

The following discussion may shed some light on the nature of irrationals and may
help the reader to come to terms with these strange numbers. Imagine a rational number
r = a/b. We write a = r · b, and consider a ruler of length r. When b copies of this ruler
are laid end to end, they cover a distance of a units. Now imagine an irrational number
t. The definition of irrationals implies that there is no ruler of length t such that laying
it end to end b times (where b is any integer) will cover a units (where a is an integer).
Weird!

Imagine two line segments of lengths a and b, where the ratio a/b is irrational.
Such line segments are referred to as incommensurable, a term that means they have no
common measure.

Here is an example of this weird behavior. The irrational number
"

2 equals approx-
imately 1.414, a number that can be written as the ratio of two integers 1414/1000. If we
compute ten more digits of

"
2, we end up with the approximate value 1.4142135623731,

a number that can be written as the ratio 14142135623731/10000000000000. We can
continue in this way to compute and write better approximations of

"
2, but since this

number is irrational, its expansion is endless and nonrepeating, so there is no way to
represent it precisely as a ratio. Such “behavior” may repulse some people, but others
considers it interesting, mysterious, and beautiful. It certainly is very unintuitive.

⌅ Exercise 2.19: An irrational number contains infinitely many digits with no repeating
patterns. Can we therefore claim that such a number contains every conceivable pattern?
Does �, for instance, contain your birthdate or that best-seller book you plan to write?

⌅ Exercise 2.20: Can a sequence or a series of rational numbers converge to an irrational
number? The concept itself seems irrational.

⌅ Exercise 2.21: Show that there exist irrationals x and y such that xy is rational.

⌅ Exercise 2.22: Prove that tan 1⇤ is irrational.

Continued fractions and the concept of irrationality

How can we measure the irrationality of an irrational number? That elusive at-
tribute that makes it either quick and easy or very slow and tedious to compute a close
rational approximation of a given irrational number. After all, given an irrational num-
ber a, there are infinitely many rational numbers that get closer and closer to a. As
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an irrational, a has infinitely many digits after the decimal point, and if we cut o⌃ this
infinite sequence at some point, we are left with a rational that may be close to a. This
suggests the following measure of irrationality. Locate the first point where chopping
this infinite sequence of digits would leave a rational that is a good approximation of
the original irrational a, but chopping it at a later point would not significantly improve
that approximation.

As an example of such chopping, consider an irrational number a = 0.3540999325 . . ..
We replace the part 0999 with 1000 to obtain a number b = 0.3541000325 . . . that is
only slightly greater than a. We know that anything following the 325 will not change
the value of a significantly, which is why we can reasonably claim that the irrationality
of a is in the order of three digits. With just three digits we obtain a rational that
approximates a, but adding more digits would not improve that approximation.

On the other hand, an irrational number of the form 0.555 . . . 5556555 . . . is more
irrational than a, because none of its less-significant digits is significantly smaller than
the first digits. The question now becomes what is that most irrational number according
to our criterion? It should be a number of the form ddd . . ., but such a number is rational.
This is why using the actual digits of a number to determine its irrationality is not a
good choice.

A deeper understanding of irrational numbers is obtained when we try to estimate
the irrationality of an irrational number not by its digits, but by means of the coe⌥cients
of its continued fraction representation. This discussion follows the excellent video at
[mostIrrat 23].

We start with the best known irrational number, �, and show that it is not very
irrational, by showing that it is close to being a rational number. We know that it
equals 3.1415. . . , so we first write it as 3+(a bit), and then try to refine this using
fractions instead of simply adding digits to its decimal representation. The earlier “bit”
must be less than 1, so we try to write it as a fraction 3 + (1/x). Using a calculator or
mathematical software we solve the equation Solve[Pi == 3 + 1./x, x] and find out
that x = 7.06251, a little more than 7. Now we can write � = 3+1/(7+y) and with the
help of Solve[Pi == 3 + 1./(7+y), y] we obtain y = 0.0625133. Continuing in this
way, writing � = 3 + 1/(7 + 0.0625133) and looking for z that satisfies 1/z = 0.0625133,
we find that z = 15.9966, so we write

� � 3 +
1

7 + 1
15+ 1

...

.

After finding the solution w = 0.0625133 to 1/w = 15.9966, we proceed a few more steps
in this way to obtain

� = 3 +
1

7 + 1
15+ 1

1+ 1
292+ 1

...

. (2.2)

Equation (2.2) is an example of a continued fraction. Every real number can be
written uniquely as a simple continued fraction a0, a1, a2, . . ., with a0 a nonnegative
integer and all other ai positive integers. Figure 2.14 lists the first 100 coe⌥cients in
the continued fraction expansion of �.
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Given that the continued fraction of the rational number 1386/50 is short

1386
50

= 27 +
1

1 + 1
2+ 1

1+ 1
1+1

3

,

it is easy to verify this by starting from the bottom

1 +
1
3

=
4
3
; 1 +

3
4

=
7
4
; 2 +

4
7

=
18
7

; 1 +
7
18

=
25
18

; 27 +
18
25

=
693
25

,

and 693/25 = 1386/50 = 27.72.
The continued fraction of an irrational number, however, is infinite, which makes it

impossible to verify it. The best that can be done is to chop it level by level, compute
the part that remains, and see how fast the partial values seem to converge to a final
value. Tables 2.13 show that the partial values of the continued fraction of � converge
quickly, while those of the continued fraction of ⌘ converge very slowly.

� 3.1415926535
3 3.0
22
7 3.14 285714285714

333
106 3.1415 0943396226
355
113 3.141592 92035398

103993
33102 3.14159265301190

⌘ 1.6180339887
1 1.0000000000
2 2.0000000000
3
2 1.5000000000
5
3 1.6666666666
8
5 1.6000000000

Table 2.13: Converges of the Continued Fractions of � and ⌘.

The continued fraction expansion of a rational number is always finite. This is
because the continued fraction expansion of a rational number r can be obtained by re-
peatedly applying the Greatest Common Divisor (Euclidean) algorithm to r and 1. The
Euclidean algorithm terminates after a finite number of steps, so the continued fraction
expansion must also be finite. On the other hand, the continued fraction expansion
of an irrational number is always infinite, because repeatedly applying the Euclidean
algorithm to it and to 1 never terminates.

The complete Equation (2.2) cannot be written because it is infinite. Adding more
steps improves the approximate result that it produces, but the point is the last step
shown in this equation, 1/(292 + u). The first three steps add fractions that are a
bit larger than 1/7, 1/15, and 1/1. Those are large fractions, but step 4 adds the
much smaller fraction 1/(292 + u), and therefore constitutes a very little improvement
to the approximation of � (u, of course, is less than 1). Future steps may add larger
fractions, but this small contribution means that the continued fraction approximation
of � given by the previous steps was already accurate. Thus, �, which is irrational, can
be approximated very accurately by only three levels of continued fractions. Those three
levels (in fact, any finite number of levels) describe a rational number, which is why we



2.4 Rationals and Irrationals 77

ContinuedFraction[Pi, 100]
3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, \
84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, \
8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, \
6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, \
4, 1, 2, 24, 1, 2, 1, 3, 1, 2, 1, 1, 10

Figure 2.14: First 100 Coe⇥cients of the Continued Fraction of �.

can confidently claim that � is not far from being rational, and is therefore not a very
irrational number!

This is an unexpected result. We intuitively expect � to be a strange, unusual
number, especially since it is so universal, has many applications in mathematics, engi-
neering, and science, and shows up in so many unanticipated places.

An interesting conclusion that can be drawn from this experience with � is that the
more irrational a number is, the more large fractions its continued fraction approximation
features and the further down a small fraction will found. The extreme case is the most
irrational number, the one whose continued fraction approximation contains only 1’s.

Trusting to our mathematical intuition, we try the well-known and important ir-
rational number

"
2 and discover that it really is a bona fide irrational because its

continued fraction approximation is

"
2 = 1 +

1
2 + 1

2+ 1
2+ 1

2+ 1

...

.

Each step improves the approximation by adding a fraction that is slightly larger than
1/2, thereby declaring

"
2 to be quite good as an irrational. Notice also that this

continued fraction is simple, in the sense that each numerator is 1 and each denominator
is 2.

⌅ Exercise 2.23: Show how to derive the continued fraction expression for
"

2.

Surprisingly, it is easy to prove that the most irrational number, the one whose
continued fraction approximation contains only 1’s, is � (or ⌘), the golden ratio, Sub-
section 2.9.4. We start with the infinite continued fraction that contains only 1’s, i.e.,
the one where every step adds a fraction that is the largest possible and is slightly greater
than 1/2

x = 1 +
1

1 + 1
1+ 1

1+ 1
1+ 1

...

, (2.3)

and, being infinite, we simply rewrite it as x = 1 + 1/x, which is the quadratic equation
x2 � x � 1 = 0, that we solve by completing the square (x � 1/2)2 = 5/4, to obtain
x = (1±

"
5)/2. The “+” sign result in � while the “�” yields �1/�. The discussion of

sunflower seeds on Page 248 uses this unique property of �.
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And now, what is your opinion? Is � important because it is the most irrational
number or because it is the ratio that is the most pleasing to the eye? You, gentle
reader, be the judge.

⌅ Exercise 2.24: What is the continued fraction of e?

⌅ Exercise 2.25: Continued fractions are useful, but can also lead to confusion as the
following exercise demonstrates. Start with the simple identity

1 =
2

3� 1

and substitute this relation for the “1” in the denominator

1 =
2

3� 2
3�1

.

This can be the start of the infinite continued fraction

1 =
2

3� 2
3� 2

3� 2
3� 2

...

.

However, it is also true that

2 =
2

3� 2
,

which is why similar substitutions produce the following continued fraction

2 =
2

3� 2
3� 2

3� 2
3� 2

...

.

The surprise is that the right-hand sides of these continued fractions are identical,
suggesting that either 1 = 2 or that there is a mistake somewhere. Your task, if you still
believe that 1 ⇡= 2, is to explain this seeming paradox.

Quadratic equations are intimately related to continued fractions. Given the equa-
tion x2 � 4x � 12 = 0, whose solution is the integer 6, we can divide it by x (which
cannot be zero) and rearrange to obtain

x = 4 +
12
x

.

We now replace the x in the denominator by the entire right-hand side to end up with
the start of a continued fraction

x = 4 +
12

4 + 12
x

,
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and can continue in this way forever. Notice that this type of continued fraction can
be infinite even though its value is rational. Also, this continued fraction is not simple
because the numerators are not all 1’s.

This is not a practical way to solve the original quadratic equation, but it can
provide a way to compute a sequence of better and better approximate solutions. In our
example, the first few approximations are

x0 = 4, x1 = 4 +
12
4

= 7, x2 = 4 +
12

4 + 12
4

= 4 +
12
7

=
40
7

= 5.7,

and they oscillate about the final value of 6, while getting closer to it in each iteration.
Square roots and irrationality

Many (perhaps most) square roots of real numbers are irrational, but it is easy to
show that the square roots of the integers are irrational except for those integers that
are perfect squares. This simple, elegant proof, due to [Flanders 99], is based on an
ingenious idea of Theodor Estermann’s.

Given a positive integer m that is not a perfect square, we find the integer n which
satisfies n <

"
m < n + 1, and denote a

def=
"

m � n, which implies 0 < a < 1. We
prove that a is irrational by way of a contradiction. Suppose that a = p/q, where p and
q are positive integers, 0 < p < q, and q is already as small as possible (the latter is
Estermann’s key idea). Then we have

p

q
=

1"
m� n

=
1

(
"

m� n)

"
m + n

(
"

m + n)
=
"

m + n

m� n2
=

a + 2n
m� n2

.

We isolate a to obtain

a =
(m� n2)q

p
� 2n =

(m� n2)q � 2np

p
,

but this represents a as a fraction whose denominator is smaller than q, which creates a
contradiction.

Figure 2.15 illustrates graphically the di⌃erence between rational and irrational
numbers. The red lines correspond to rational numbers and go through one or several
grid points. The three lines marked �, e, and ⌘ correspond to well-known irrational
numbers and never pass through grid points, even though they may pass close to some
points, which then become good approximations to the irrationals.

⌅ Exercise 2.26: Show that the sum
"

2 + � of two irrationals is also irrational.

In short, I never yet encountered the mere mathematician who could be trusted out
of equal roots, or one who did not clandestinely hold it as a point of his faith that
x squared + px was absolutely and unconditionally equal to q. Say to one of these
gentlemen, by way of experiment, if you please, that you believe occasions may occur
where x squared + px is not altogether equal to q, and, having made him understand
what you mean, get out of his reach as speedily as convenient, for, beyond doubt, he
will endeavor to knock you down.

—Edgar Allan Poe, The purloined letter.
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Figure 2.15: Rational and Irrational Numbers.

2.5 Real Numbers

We believe we have an intuitive grasp on integers due to our ability to count cows, but
when considering real numbers, their unexpected properties and behavior render them
impossible to truly understand.

The set R of real numbers consists of the intermingled sets of the rationals Q and
irrationals I. The ancient Greeks already knew that

"
2 is irrational. The real numbers

can also be divided into algebraic and transcendental numbers. The former is the set of
all the reals that are solutions of algebraic equations with rational coe⌥cients.

We are familiar with many integers (0, 1, 7, 10, and 28 immediately come to mind),
but we know (and use) very few irrational numbers (

"
2, e, and � are the main examples).

This is why people intuitively feel that most real numbers must be rational and the
irrationals constitute a small minority. Similarly, it is easy to believe that most reals are
algebraic and the transcendental numbers are rare. However, set theory, the creation,
in the 1870s, of Georg Cantor, shows that there are di⌃erent kinds of infinities, that the
reals constitute a greater infinity than the integers (the integers are said to be countable,
while the reals are not), that the rational numbers are countable, while the irrationals
are uncountable, and similarly, that the algebraic numbers are countable, while the
transcendentals are uncountable; completely counterintuitive notions.

Today, we believe in the existence of atoms. If we start with a chunk of matter, cut
it into pieces, cut each piece into smaller pieces, and repeat this process a finite number
of times, we will eventually arrive at individual atoms or even their constituents. The
real numbers, however, are very di⌃erent. They can be represented as points along an
infinitely long number line, but they are everywhere dense on this line. Any segment
on the number line, as short as we can imagine, contains an (uncountable) infinity of
real numbers. By repeatedly segmenting and producing shorter and shorter segments a
finite number of times, we cannot arrive at a segment containing just one number.

Imagine a straight segment of unit length and denote its midpoint by M . Now assign
to each point Q on the segment a coordinate dQ that is its distance from M . Points to
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the right of M have positive coordinates up to 1/2, while points to the left of M have
negative coordinates down to �1/2. Now imagine an infinitely-long straight line. It does
not have a midpoint, so we select a point N at random as our midpoint. Each point P
on the line is assigned as its coordinate its distance dP from N . Clearly, these distances
vary from �⌫ to +⌫. We now show that our short segment and long line have the
same number of points (the same infinity) by associating a point Q on the segment for
each point P on the line. We do this with the simple function dQ = arctan(dP )/�.

For those who forgot their school trigonometry, the arctan function is the inverse
of tan (or tangent). This is a multi-valued function whose main branch varies from
arctan(�⌫) = ��/2 to arctan(0) = 0 to arctan(⌫) = �/2. Thus arctan(dp)/� varies
from �1/2 to +1/2 and covers the coordinates dQ of all the points Q on the 1-unit-long
segment.

This simple function associates a point Q on the segment with every point P on
the infinite line, thereby showing that the segment and the line have the same infinity of
points, an unintuitive result. This result is true for any segment, regardless of its length,
which implies that any interval of real numbers, even the shortest imaginable, contains
the same infinity of reals as the interval [�⌫,+⌫].

Even more surprises await the reader. It is easy to show that the (infinite) number
of two-dimensional points equals the (infinite) number of reals. All we need is a function
that maps each two-dimensional point (x, y) to a real number R, such that di⌃erent
points will map to di⌃erent reals and every point will map to some real number.

A two-dimensional point is a pair of coordinates (real numbers), such as 6.9226543
and 4.0358165. A simple way to map such a pair to a real number is to interleave their
digits. Thus, the two numbers above become the real number 0.6490232568514635. All
the digits of the two coordinates are used, each is used once, none is duplicated, and none
is deleted. It is clear that a di⌃erent point would be mapped to a di⌃erent real number
and that every point can be mapped in such a way, which shows that our mapping is
one-to-one.

We are familiar with the concepts of successor and predecessor. An integer N has
both a successor N + 1 and a predecessor N � 1. Cantor showed that the rational
numbers are countable; each can be assigned an integer subscript or tag. Thus, each
rational number can be said to have a successor and a predecessor. The real numbers,
again, are di⌃erent. Given a real number a, we cannot point to its successor. If we
find another real number b that may be the successor of a, then there is always another
number, namely (a + b)/2, that is located between a and b and is therefore closer to a
than b is. Thus, we say that a real number DOES NOT have an immediate successor
or a predecessor; it does not have any immediate neighbors. The reals are so dense
everywhere that they form a continuum, even though each real number corresponds to
a point! We cannot imagine any collection of points, numbers, or any objects that are
everywhere (extremely) dense but do not feature a predecessor/successor relation. The
real numbers are therefore very counterintuitive.

The concept of a continuum is ba�ing, so here is an attempt to illuminate it.
Imagine the interval [0, 1]. This is a closed interval that contains all the real numbers
between 0 and 1, including the endpoints 0 and 1. Now remove the two endpoints to
obtain the open interval (0, 1). Starting at the midpoint 0.5, move steadily to the right,
passing larger and larger numbers. We meet numbers such as 0.6, 0.8, 0.9, 0.95, 0.99,
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0.999, and so on, but regardless of how much time we spend going through those numbers
and regardless of how many numbers we pass, we will never reach the right end of the
interval; we can never get to the last, largest number at the right end of the interval,
because there isn’t such a number! The same is true of the left end of the interval. If
we move toward it, we reach smaller and smaller numbers, we move steadily toward
zero, but we can never reach the left end of the interval because that end (the smallest
positive real number) does not exist.

Here is another unexpected result. Pick up two real numbers x and y at random
(but with a uniform distribution) in the open interval (0, 1), divide them to obtain the
real number R = x/y, and examine the integer I nearest R. We intuitively feel that I can
be even or odd with the same probability, but careful calculations [Weisstein-picking 07]
show that the probability of I being even is 0.46460. . . instead of the expected 0.5.

This book contains text, tables, mathematical expressions, and figures, and it can
be stored in the computer as a PDF file. Such a file, like any data file, can be considered
an integer or a long string B of digits (decimal, binary, or to any base). A real number
is also a (finite or infinite) string of digits. Thus, it is natural to ask, is there a real
number that includes B in its string of digits? The answer is yes. If B = b0b1 . . . bn,
then 0.b0b1 . . . bn is such a number, and there are more such numbers.

Even more, there is a real number that includes in its infinite expansion all the books
ever written and all those that will ever be written. Simply generate all the integers (we
use binary notation) 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000,
0001, . . . and concatenate them to construct a real number R. From its construction,
R includes every possible bitstring and thus every past and future book. (Students pay
attention. Both the questions and answers of your next examination are also included
in this number. It’s just a question of finding this important part of R.) This R does
not even have to be large. We can write it as R = 0.01|00011011|000 . . . 111|0000 . . .,
which makes it less that 1.

The term “lexicon” generally refers to a dictionary, but in mathematics, a Lexicon
is a real number that contains in its expansion infinitely many times anything imagin-
able and unimaginable, everything ever written, or that will ever be written, and any
descriptions of every object, process, and phenomenon, real or imaginary. Contrary to
any intuitive feelings that we may have, such monsters are not rare. The surprising
result, due to [Calude and Zamfirescu 98], is that almost every real number is a Lexicon!
This may be easier to comprehend by means of a thought experiment. If we put all the
reals in a bag, and pick out one at random, it will almost certainly be a Lexicon.

Champernowne constant is an example of a lexicon. The digits of this real number
are the concatenation of all the natural numbers. Thus

C10 = 0.12345678910111213141516 . . .10 = 0.11011100101110111 . . .2 .

This number, which is also transcendental, was proposed by David Champernowne in
1933.

It is easy to come up with similar lexicons, such as a permutation of all the natural
numbers, the digits of the squares of all the natural numbers, and the digits of all the
prime numbers.

Gregory Chaitin, the originator of algorithmic information theory, describes in The
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Limits of Reason [Chaitin 07], a real number, denoted by ⇧, that is well defined and
is a specific number, but is impossible to compute in its entirety. This number is now
known as Chaitin’s constant.

Here is another ba�ing property of real numbers, known as the repeating 9’s. The
repeating real number 0.999. . .—which is also denoted by 0.9̄, 0.9̇, and 0.(9)—is espe-
cially interesting. At first look it seems to be less than 1. However, it is easy to show
(and to prove rigorously in many ways) that this real number equals 1. Here are several
simple proofs:

1. Denote a = 0.9̄. The number a cannot be greater than 1, so it must be either
less than 1 or equal to 1. Assume that a < 1, then there must be numbers between a
and 1, such as, for example, b = (a + 1)/2. A little thinking shows that b cannot exist,
because there is no way to write it. The number a already uses the digit 9, which is the
largest decimal digit, so b cannot use any larger digits. Also, a uses infinitely many 9’s,
so b cannot have any more 9’s in its representation. Thus, b cannot exist, which implies
that a cannot be less than 1 and must therefore be 1.

2. Using fractions, it is easy to see that

1 =
3⇥ 1

3
= 3⇥ 1

3
= 3⇥ 0.3̄ = 0.9̄.

3. Manipulating digits is also a simple procedure that proves our claim. Denote
a = 0.9̄, we obtain 10a = 9.999 . . ., and 10a�a = 9.999 . . .�0.999 . . . or 9a = 9 a = 1.

4. A geometric series has the form ar + ar2 + ar3 + · · ·. It is known that if the
absolute value of r is less than 1, the sum of the series is ar/(1 � r). Our number 0.9̄
can be written as the geometric series

9
�

1
10

�
+ 9
�

1
10

�2
+ 9
�

1
10

�3
+ · · ·

where r is 0.1. Its sum is therefore the finite quantity

9
⇤

1
10

⌅

1� 1
10

= 1.

These proofs demolish a long-held intuitive belief among students of mathematics,
namely that a real number has one representation. It is now clear that infinitely many
numbers have multiple representations. Thus, 52.8357 can also be written as the infinite-
repeating number 52.83569̄ and 1/3 also equals 0.3̄, 2/6, 4/12, and so on.

The following joke (from [Renteln and Dundes 05]) has long become a permanent
part of mathematical lore:

Q: How many mathematicians does it take to screw in a lightbulb?
A: 0.999999. . . .
Unusual, unexpected, counterintuitive. The real numbers are weird, which is why

we may also consider them beautiful!
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2.6 Complex Numbers

The fundamental theorem of algebra, proved by Gauss in 1799, states that a polynomial
of degree n has exactly n roots. However, it is easy to see that the simple polynomial
x2 + 1 (a parabola), which is of degree 2, has no roots, because x2 = �1 implies
x = ±

"
�1, and such a number does not exist. When a number, any number, positive

or negative, is squared, the result is either zero or positive; it cannot be negative.
This argument is one way to introduce the complex numbers. We simply say that in

addition to all the other numbers that we know and use, which from now on will be called
real, there is another number, the

"
�1, that will be denoted by i and will be referred to

as imaginary (a term coined by Descartes, although Gauss proposed the term “lateral,”
meaning relating to the sides of something). It is all a matter of definition, and new
mathematical definitions, objects, and theories can be freely introduced and explored,
especially since they may provide new insights into mathematics or other disciplines,
and provided they are consistent and do not give rise to contradictions or paradoxes.

Even more. Since people in general, and mathematicians in particular, like to extend
and generalize new ideas and concepts, it seems natural to extend the new imaginary
number and have compound (or hybrid) numbers that consist of both real and imaginary
parts, and that are known as complex. Reference [WikiComplex 23] is a general, detailed
introduction to this topic, complete with many applications of complex numbers.

Every high-school student “knows,” when learning about i, that of course it is
impossible to compute the square root of a negative number, and the imaginary i is only
“supposed” to be such a square root. Later, however, perhaps at a university or on the
job, the student learns to use i in calculations and designs that result in instruments,
devices, and machines that really work! Gradually, i loses its mystery, it becomes a
familiar tool or concept, and is routinely used every day.

Unfortunately, once the student gets used to working with i regularly, he often
becomes oblivious to the obvious question of why does such an imaginary quantity
work in our real world? This mystery is a special case of the general enigma of why
mathematics, a creation of the human mind, is so e⌃ective in discovering and describing
the world around us.

A complex number, usually denoted by z, is defined as a pair z = a + bi where a
and b are real numbers and i =

"
�1. Any product of the form b i where b is real is

referred to as an imaginary number.

History of Complex Numbers

Complex numbers first appeared when mathematicians became interested in solving
equations. A degree-1 equation is of the form ax+ b = 0, with a solution x = �b/a, but
already a degree-2 (quadratic) equation, whose form is ax2 + bx + c = 0, may exhibit
strange behavior. The solution to such an equation is

x =
�b ±

"
b2 � 4ac

2a
,
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and this is undefined when the discriminant b2 � 4ac is negative. (Discriminant: A
characteristic that enables things to be distinguished from one another.) The solutions
to cubic (degree-3) equations su⌃er even more from the same problem.

In the 1530’s, Italian mathematicians—among them Gerolamo Cardano, Niccolò
Tartaglia, and Scipione del Ferro—came up with elaborate equations for solving certain
types of cubic equations, and those equations made heavy use of square roots (and square
roots of square roots) that often became negative. While initially refusing to admit the
possibility of imaginary and complex numbers, those mathematicians slowly accepted
them, wrote about them, and discovered their properties. It was their work that brought
legitimacy to complex numbers and turned them into bona fide mathematical objects.

However, the person who is generally recognized as the “father” of imaginary and
complex numbers is Rafael Bombelli. He was the first to believe in their usefulness and
he published rules for operating on such numbers. If complex numbers are commonly
used today in mathematics (both pure and applied), in science, and in engineering, it is
to a large part due to his work.

One hundred years later, by the 1600’s, complex numbers and especially the special
number i, became part of mainstream mathematics. The little-known de Moivre formula
(cosx + i sinx)n = cos(nx) + i sin(nx)) was introduced by Abraham de Moivre in 1722.
It was finally extended for any real n and also proved by Euler in 1749, using Euler’s
formula.

Today, it is common to visualize a complex number as a two-dimensional point in
the so-called Argand diagram (Figure 2.16). This extremely useful graphics aid, the
brainchild, in 1806, of Jean-Robert Argand, had first been published in 1799 by the
land surveyor and mathematician Caspar Wessel in the little-known Proceedings of the
Copenhagen Academy, where it languished unnoticed. It had also been anticipated by
John Wallis in 1685.
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Figure 2.16: The Argand Diagram.

Finally, in the early 1800’s, the work of Augustin-Louis Cauchy and Bernhard Rie-
mann has made the branch of complex analysis a mature and well accepted part of
modern mathematics.

Operations on Complex Numbers
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The following arithmetic operations on complex numbers are immediate extensions
of the same operations on real numbers (a + bi) ± (c + di) =

�
a ± c, (b ± d)i

⇥
and

(a + bi) · (c + di) = ac + adi + bic + bidi =
�
ac� bd) + (ad + bc)i

⇥
. Division of complex

numbers z1/z2 is done by multiplying z1 by the conjugate of z2. A complex number
z = (a + bi) has no inverse, but has a conjugate z̄ = a� bi (sometimes also denoted by
z⇥) which is the reflection of the number about the real axis (Re) of the Argand diagram.

Once this diagram and polar coordinates are introduced, it becomes clear that
a complex number and its conjugate can also be written as z = eix and z̄ = e�ix,
respectively. Also, the product z · z̄ is the real number a2 + b2 or r2.

The last product is nicely illustrated by Figure 2.17. The conjugate z̄ = e�ix of
the complex number z = eix can be visualized as a rotation of z through an angle 2x
about the real axis. Similarly, the product z · z̄ is the real number produced by adding
the angles x and �x to obtain zero, and multiplying the lengths l of the two numbers
to obtain l2.

a+bi

Re

Im

l

l

a¡bi

2l

Figure 2.17: The Product z · z̄.

Useful relations and tools for dealing with complex numbers.

The relation i2 + 1 = 0 implies the identities i4k = 1, i4k+1 = i, i4k+2 = �1, and
i4k+3 = �i, which hold for all integers k.

Euler’s formula (or equation) eix = cosx + i sinx, introduced by Euler in 1748, is
useful because it relates complex numbers to trigonometry, thereby simplifying opera-
tions on and processing of complex numbers. Euler proved it by formally manipulating
complex power series, but the proof shown here is much simpler. It is based on the
inverse relation eln x = x between e and the natural logarithm. We start with the
as-yet-unknown complex number

z
def= cos � + i sin �

and prove that z must be our friend e. The first step is to di⌃erentiate z, which produces

dz

d�
= � sin � + i cos � = i cos � + i2 sin � = i(cos � + i sin �) = iz,

from which we derive dz
z = id�. When this is integrated, it yields

(
dz

z
=
(

id�,
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or ln z = i�, which we convert to eln z = ei⇥ +C, and which in turn gives us z = ei⇥ +C.
The last step is to show that the constant C must be zero, which is done by setting

� = 0. When � is zero, both our original unknown number z and ei⇥ become unities
cos(0) + i sin(0) = 1 and ei·0 = 1, indicating that C is zero and z = ei⇥ + C is therefore
reduced to z = ei⇥ to become our old trusted acquaintance.

The Argand diagram, published in 1806 by Jean-Robert Argand (although described
by others before him) is an important graphical tool which illustrates the important
relation between the Cartesian coordinates (a, b) of a complex number and its polar
coordinates (r, �), and implies the transformations (a, b) = (r cos �, r sin �) and (r, �) =�"

a2 + b2, arctan b
a

⇥
. These transformations, combined with Euler’s formula, also allow

us to write
z = x + yi = |z|(cos � + i sin �) = |z|ei⇥,

where |z| =
0

x2 + y2, � = arg(z) = 1
i ln z

|z| , where |z| is the absolute value of z and �

is the argument of z, which is normally used in the interval [0, 2�].
• (A messy example). What is the general complex exponentiation (a + bi)(c+di)?
The derivation below assumes that the following relations are known: r = eln r and
rdi = edi ln r where r is one of the polar coordinates of (a + bi). These relations justify
the step marked by *.

(a + bi)(c+di) =
⇤
rei⇥
⌅c+di

=
⇤
rei⇥
⌅c ⇤

rei⇥
⌅di ⇥= rceic⇥rdie�d⇥ = rce�d⇥ei(c⇥+d ln r)

= rce�d⇥ (cos(c� + d ln r) + i sin(cos(c� + d ln r)) .

A correct, but by no means beautiful expression.
• At this point it is natural to ask what is the square root of an arbitrary complex
number a + bi? This derivation is presented here, even though it is messy, because it
will be needed on Page 108 for the exercise on infinity. We assume that this square root
would itself be complex and we use the notation

"
a + bi = x + yi. When both sides of

this are squared
"

a + bi
2

= (x+yi)2, it is obvious that a = x2�y2 and bi = 2xyi, which
implies 2xy = b  y = b

2x and x2 � y2 = a  x2 �
⇤

b
2x

⌅2 = a. Multiplying both sides
by 4x2 produces the quadratic equation 4(x2)2� 4ax2� b2 = 0, whose messy solution is

x2 =
4a +

"
16a2 + 16b2

8
 x = ±

3
a +

"
a2 + b2

2
.

There is no minus sign in 4a +
"
· · ·, because the value of x2 must be nonnegative.

⌅ Exercise 2.27: Derive the expression for y in a similar way.

The final result is

"
a + bi = ±

3
a +

"
a2 + b2

2
± i

3
�a +

"
a2 + b2

2
. (2.4)

Notice that the relation 2xy = b implies b > 0  x · y > 0 and b < 0  x · y < 0. The
case b = 0 means that a + bi is real.
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The nth Roots of Unity

A typical dictionary definition of “unity” is “the quality or state of being made
one (unification).” In mathematics, the nth root of unity is any number z such that
zn = 1 for a positive integer n. However, it is easier to understand this concept by
considering the equivalent definition which says: the nth roots of unity are the roots of
the polynomials of the form xn � 1. For n = 2, we factor the equation x2 � 1 = 0 into
(x + 1)(x� 1) = 0 to immediately obtain the two roots +1 and �1. However, for larger
n, things quickly get more complicated. For n = 4, the roots of unity are the solutions
to x4�1 = 0, so we factor (x+1)(x�1)(x2 +1) to immediately obtain the three roots 1,
�1, and i. A little thinking may convince the reader that �i is also a solution because
(�i)2 = i2 = �1.

It turns out that most roots of unity are complex numbers, and are governed by
the fundamental theorem of algebra. This important statement proves that every nth-
degree polynomial has exactly n complex roots (although some of them may have a zero
imaginary part and may therefore be real). As a result, we conclude that the equation
xn = 1 has n complex solutions, which are nth roots of unity and also constitute ALL
the nth roots of unity. Figure 2.18 shows examples of the roots for several values of n.

ω1

ω2

ω7

ω3

ω4

ω 5

ω6=i

ω0=1eω      =ω       =8 -2πi/8

1i

-1

-1i

1
n=2

1i

-1

-1i

1n=4

1i

-1

-1i

1

n=3

Figure 2.18: Several Roots of Unity.

The figure suggests that the roots are uniformly distributed over the unit circle
(even if they don’t form opposite pairs) and that the complex number 1 +0i is always a
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root. The angle between consecutive roots on the circle is 2�/n, so we define ◆ = e2⇤i/n

and spread the roots over the circle at points that correspond to powers of ◆. Another
interesting algebraic property of the roots is that their sum is zero for any n.

⌅ Exercise 2.28: What are the roots of unity for n = 8?

⌅ Exercise 2.29: Plot several roots of a general complex number (r, �).

A note on how to multiply square roots of negative numbers. We know that in
a mathematical expression, with numbers, letters, and arithmetic operations, the rules
of operator precedence are: functions (including square roots), exponentiation, multi-
plication/division, and addition/subtraction. But what about square roots of negative
numbers? With positive numbers, we have the simple identity

"
a · b =

"
a
"

b, and this
can be applied to negative numbers by

"
�10 =

0
(�1) · 10 =

"
�1
"

10 = i
"

10. Thus,
for example,

"
�16 ·

"
�2 = i ·

"
16⇥ i ·

"
2 = �

"
32.

• Fractional powers. We now turn to fractional powers m/n of complex numbers. The
starting point is i = i1 = i

4
4 = (i4) 1

4 = 1 1
4 = 1, which is clearly wrong. The key to

understanding the problem is how to interpret it. Instead of considering it as “i equals
the fourth root of 1,” we should think of it as “i is one of the fourth roots of unity,” (the
four fourth roots are 1, �1, i, and �i).

In an attempt to understand why we got just one result, we try to compute i
4
4 in

two similar ways by swapping the exponents. We calculate it first as (i4) 1
4 and then as

(i 1
4 )4. We use the relation i4 = 1 and also notice that the polar coordinates of 1 as a

complex number are (r, �) = (1, 0), but also (1, 2�), (1, 4�), and in general (1, 2n�) for
n = 0, 1, 2, . . .. Here is the first case

(i4)
1
4 = (1)

1
4 = (ei2n⇤)

1
4 = ei n

2 ⇤.

For n = 0, 1, 2, and 3 this yields the correct, expected result namely, the four fourth
roots of unity e0 = 1, ei⇤/2 = i, ei⇤ = �1, and ei3⇤/2 = �i.

Next, we apply the same technique, using polar coordinates, to compute (i 1
4 )4. We

notice that the polar coordinates of i are (1, 2�) or, in general (1, 2�+2n�), which allows
us to write

(i
1
4 )4 =

��
ei 4n+1

2 ⇤
 1

4
�4

=
*
ei 4n+1

8 ⇤
+4

.

For n = 0, 1, 2, 3 this yields the four quantities (ei⇤/8)4 = ei⇤/2 = i, (ei5⇤/8)4 = ei5⇤/2 =
i, (ei9⇤/8)4 = ei9⇤/2 = i, and (ei13⇤/8)4 = ei13⇤/2 = i.

The obvious conclusion is that swapping the order of the exponents has produced
the single, wrong result i. For a better understanding we should wait until Exercise 2.30
is worked out.

⌅ Exercise 2.30: Compute the values of i3/4 both as (i3)
1
4 and as (i 1

4 )3.

After reading the examples above and Exercise 2.30, the following conclusion should
come as no surprise. When trying to raise an arbitrary complex number Z to the
fractional power m/n, we must distinguish two cases. If the GCD (greatest common
divisor) of m and n is 1, the order of the exponents does not matter. If, however, m and
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n have a common divisor, they should either be reduced first or the fractional power
should be computed in the form (Z 1

n )m (first the denominator and then the numerator).

The fifth roots of unity and the golden ratio.

To compute the fifth roots of unity, we need to solve the complex equation z5 = 1.
We start with the de Moivre formula

z = r(cos � + i sin �), (2.5)

which was introduced by de Moivre in 1722 and was later extended by Euler for any real
n, using his well-known formula. Armed with these results, we can rewrite Equation (2.5)

z1/n = r1/n

�
cos
�
� + 2�k

n

�
+ i sin

�
� + 2�k

n

�✏
, for k = 0, 1, 2, . . . , n� 1.

Substituting r = 1 and � = 0, this reduces to

z1/n = cos
�
2�k

n

�
+ i sin

�
2�k

n

�
= e

2⇥k
n i. (2.6)

Applying Equation (2.6) to (1/n) = 5, we obtain the five roots, for k = 0, 1, 2, 3,
and 4

k = 0: z1/5 = cos
0�
5

+ i sin
0�
5

= e
0⇥
5 i = 1,

k = 1: z1/5 = cos
2�
5

+ i sin
2�
5

= e
2⇥
5 i,

k = 2: z1/5 = cos
4�
5

+ i sin
4�
5

= e
4⇥
5 i,

k = 3: z1/5 = cos
�4�

5
+ i sin

�4�
5

= e
�4⇥

5 i,

k = 4: z1/5 = cos
�2�

5
+ i sin

�2�
5

= e
�2⇥

5 i.

In order to contain the five roots in the Argand diagram, we have to restrict � to the
interval [��,�]. Bearing in mind that the cosine and sine have period 2�, we use for
k = 3 and k = 4 the relations

6�
5
� 10�

5
=
�4�

5
and

8�
5
� 10�

5
=
�2�

5
, respectively.

The five roots are illustrated in the Argand diagram of Figure 2.19.
There are roots and then there are roots

It is important to point out that when it comes to roots, we sometimes have to
distinguish the real and complex cases, and a good example of this unexpected behavior
is the roots of negative numbers. If x is positive and n is a positive integer, then n

"
x

and x1/n are the same, but if x is negative, we have to consider complex roots.
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e2πi/5

e4πi/5

e-4πi/5

e-2πi/5

1n=5

Figure 2.19: The Fifth Roots of Unity.

From the previous discussion it is clear that the nth roots of a complex number z
are given by

z1/n =
*
rei(⇥+2⇤k)

+1/n
= n
"

r exp
�
i
� �

n
+

2k�

n

 �
,

For k = 0, 1, 2, . . . , n� 1. There are n such roots, and the one corresponding to k = 0 is
normally considered the principal root.

Thus, for negative x, the notation n
"

x means to take the real root, if it exists,
otherwise, the principal complex root. The notation x1/n means to compute the set of
n complex roots, while sometimes retaining only the principal root.

For illustration, we consider the cube root of �1. If we are only interested in the
real case, we can simple write 3

"
�1 = (�1)1/3 = �1, but if we need the complex roots,

then we first realize that z = (1,�) = ei⇤+2⇤k and then compute

z1/3 = 3
"

1 exp
�
i
��

3
+

2k�

3

 �
.

The three roots for k = 0, 1, 2 are, respectively

ei⇤/3 =
1
2

+
i
"

3
2

, principal root,

ei⇤ = (�1, 0), real number,

ei5⇤/3 =
1
2
� i
"

3
2

, for k = 2.

⌅ Exercise 2.31: What are the three cube roots of �1?

⌅ Exercise 2.32: Can the sum of two imaginary numbers be real?
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2.7 Hypercomplex Numbers?

Once we come to terms with complex numbers, their “existence,” and their operations,
the natural question is can we have multi-part- or hypercomplex numbers, numbers that
consist of three, four, or even more parts? This section shows why three-part numbers—
which might be referred to as 3D complex, triternions, triernions, or trinions—cannot
be defined in a way that makes sense. It is easy to show that such numbers cannot be
multiplied in a way that would make them natural extensions of the two-dimensional
complex numbers.

A complex number has the form a + bi, and the Argand diagram, with its real and
imaginary axes, allows us to consider such a number a point in two-dimensional space.
Therefore, a trinion should have the form a+bi+cj, and should be visualized as a point
in a three-dimensional Argand diagram with real, i, and j axes that are perpendicular
to one another. The real coe⌥cients a, b, and c of such a number are the lengths (or
scale factors) of the unit base vectors along the real, imaginary, and jth coordinate axes
of this diagram.

It is important to understand that the quantities i and j are perpendicular unit vec-
tors and are therefore independent. (They are the same length, but point in independent
directions.) Not only are they di⌃erent, but they cannot be related. It is impossible, for
example, to express j in terms of i. Also, since both are unit vectors and i2 = �1, it is
reasonable to assume that j2 also equals �1.

The problem with operations on trinions becomes apparent when we try to multiply
them. The first step in computing the product (a+ bi+ cj)⇥ (d+ei+fj) is to open the
parentheses. This results in a nine-term expression that starts with ad and ends with
cjfj, and includes terms of the form . . . ij. We now have to decide on the value of the
simple product i · j. In order for this multiplication to make sense, its value must be
a real number r, or an imaginary number ri, or of the form rj, or an arbitrary trinion
such as k + li + mj. We now show that none of these forms can be a candidate for i · j.

Assume that i · j = r and multiply both sides by i on the left. This results in
ii · j = ir or �j = ir, i.e., j is an imaginary number, it is related to i.

Assume that i · j = ir and multiply both sides by i on the left. This results in
ii · j = iir or �j = �r, i.e., j is real.

Assume that i · j = rj and multiply both sides by j on the right. This results in
i · j · j = rj · j or i = r, , i.e., i is real.

We assume that the product of the unit vectors i and j may perhaps be uncommu-
tative, but we want to maintain the property of associativity, because otherwise our 3D
hypercomplex numbers wouldn’t be true extensions of the complex numbers and would
not satisfy many of the basic properties of the real and complex numbers.

The last case to be checked is i·j = a+bi+cj, where a, b, and c are real. Multiplying
this by i on the left yields

i · i · j = ai + iib + cij = ai� b + c(a + bi + cj),

or �j = (ca� b)+ (a+ bc)i+ c2j. Since i and j are independent, this implies ca� b = 0,
a + bc = 0, and c2 = 1. However, already the relation c2 = 1 implies that c is the
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imaginary i, but c is real. Also, if we substitute i for c in a + bc = 0 it implies that a,
which must be real, is imaginary.

The conclusion is that the simple product i · j cannot be a point in the three-
dimensional Argand diagram, because it cannot lie on any of its axes and cannot be
an arbitrary point inside the diagram. Hence, trinions cannot be defined, in the sense
that it is impossible to define operations on them that would be compatible with the
operations on real and complex numbers.

Complex numbers and points

Complex numbers are similar to the two-dimensional points of Section 8.7, but there
are the following important di⌃erences.

The two components of a point (x, y) have their individual meanings. They describe
the distances of the point from the two coordinate axes. Similarly, the two components
of a complex number (a, b) are its distances from the real and imaginary axes, but they
constitute one unit and must be treated di⌃erently when the number is operated on. We
must keep in mind that the second component b is a multiple of the imaginary i =

"
�1,

because this a⌃ects the interpretation of the results of our computations.

Complex numbers are numbers and can be operated on. Specifically, they can be
added and subtracted. Points can be subtracted, but adding points is meaningless,
because the sum depends on the particular choice of coordinate system, as discussed in
Section 8.7.

Points exist in any number of dimensions, and can be treated and operated on
regardless of how many components they have. Complex numbers, on the other hand,
are two-dimensional and cannot easily be extended to more dimensions. It has taken
William Rowan Hamilton years to realize that there is no reasonable way to define the
multiplication of triplets, which is why he started thinking of complex 4-tuples, new
objects that he named quaternions. He was finally able to define a reasonable, but
not perfect, multiplication rule for those objects. His rule allowed for a reciprocal of a
quaternions, but was noncommutative. Thus, something was lost when extending the
two-dimensional complex numbers to the four-dimensional quaternions.

It has later been proved that it is possible to define reasonable rules of multiplica-
tion for hypercomplex numbers in spaces whose number of dimensions is a multiple of 2,
but as we climb up to those higher dimensions, the multiplication rules lose more of the
nice properties of real number multiplication. The multiplication of 8-dimensional com-
plex numbers, octonions, is nonassociative, while that of sedenions, the 16-dimensional
complex numbers, is noncommutative, nonassociative, and also lacks a property called
alternativity. Sedenions also include zero divisors, which means that there exist non-zero
sedenions a and b such that ab = 0.

⌅ Exercise 2.33: What would be the name of 32-dimensional complex objects?

⌅ Exercise 2.34: Why the term “complex numbers” and not duonions? Recall that
complex numbers are doubles, so they can be compared with quaternions, which are
quadruples, and octonions, which are octuples.
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Along the same lines, why is the term “imaginary” used for i =
"
�1? After all, this

quantity has many useful (real?) applications, and the term “imaginary” may mislead
many to consider i a useless quantity.

2.8 Transcendental Numbers

Definition: A transcendental number is a real or complex number that is not algebraic,
that is, not the root of a non-zero polynomial of finite degree with rational coe⌥cients.
The word “transcendental” comes from the Latin and means to climb over or beyond,
to surmount.

Transcendental numbers

“Transcendental numbers, like � and e, lie beyond the algebraic; they defy the solu-
tions of polynomial equations, transcending the simple roots and revealing the infinite
complexities of the mathematical universe.”
This quote encapsulates the essence of transcendental numbers, highlighting their
unique and complex nature in the realm of mathematics.

—By chatGPT 4o, May 2024.

Every real number is either algebraic (a solution of an algebraic equation) or tran-
scendental (not a solution of any such equation). However, very few transcendental
numbers are known (among them are � and e), which is why in the past, mathemati-
cians tended to assume that they are rare. Unexpectedly, in 1874, while developing his
set theory, Georg Cantor managed to prove that the transcendentals vastly outnumber
the algebraic numbers. Cantor did not discover any transcendentals, he only proved that
they exist, and yet this existence proof is a surprising result that is equivalent to the
following statement. If you select a real number at random among all the real numbers,
it will be transcendental with probability 1!

In 1844 Joseph Liouville proved that transcendental numbers exist, and in 1851 he
gave the first examples of such numbers, among them the Liouville constant

Lb =
�&

n=1

10�n!.

This strange number starts with “0.” followed mostly by zeros, where the nth digit is 1
only if n is the factorial of some positive integer.

Table 2.20 lists a few algebraic equations and their solutions. It is clear that the
solutions can be integers, rational, irrational, and even complex numbers, but all these
solutions are algebraic, and therefore not transcendental.

Transcendental numbers are di⌃erent. Consider, for example, e. This number can
be represented by the infinite sum

e =
�&

k=0

1
k!

,



2.9 Important and Interesting Numbers 95

Equation Solution
x� 5 = 0 5
5x� 4 = 0 4/5
x2 � 2 = 0

"
2

x2 + 1 = 0 i
x4 � 22x2 + 1 = 0

0
11 + 2

"
30

Table 2.20: Several Algebraic Numbers.

all of whose terms are algebraic, but because of the mysterious, unpredictable nature
of the infinite, it was possible for Charles Hermite to prove, in 1873, that no algebraic
equation yields e as a solution.

Ferdinand von Lindemann proved the transcendence of � in 1882. He first showed
that ea is transcendental if a ⇡= 0 is an algebraic number. Then concluded that i�
must be transcendental because ei⇤ = �1 is algebraic. But since i is algebraic, � must
be transcendental. As mentioned on Page 7, the transcendence of � implies that the
classical compass and straightedge geometric constructions of the ancient Greeks cannot
include transcendental numbers.

Die Mathematiker sind eine Art Franzosen; redet man mit ihnen, so übersetzen sie es
in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
(Mathematicians are [like] a sort of Frenchmen; if you talk to them, they translate it
into their own language, and then it is immediately something quite di⌃erent.)

—Johann Wolfgang von Goethe.

2.9 Important and Interesting Numbers

Some real numbers have unusual, unexpected, and interesting or useful properties. The
best known ones are �, e, � (the golden ratio), i =

"
�1, and zero. The next subsections

discuss those numbers and their applications.

2.9.1 Euler’s number e

The Euler number e is one of the important mathematical constants—the numbers �,
� (the golden ratio), i =

"
�1, and zero—that seem to pop out of nowhere while also

appearing everywhere. Notice that there is also an Euler’s constant, denoted by ⇤, which
is an extension of the well-known factorial.

Euler discovered the number e by studying the behavior of continuous compound
interest. In particular, he was interested what happens when interest on an investment is
continually compounded over time. He found that the rate of growth of a continuously
compounded investment is equal to the number e raised to the power of the interest
rate. This is known as Euler’s formula, and it is one of the most important results in
mathematics. Euler’s work on this topic was published in a paper called “Institutiones
calculi integralis” in 1748.
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Text by chatGPT, June 2023.

Many references claim that although commonly associated with Leonhard Euler
(pronounced “Oiler”) and named after him, e was first discovered, in 1683, by Jacob
Bernoulli as part of his research on how wealth grows when interest rates are compounded
often, instead of annually.

Over the years, it has been discovered that e appears in many mathematical and
physical contexts. This number is also irrational (it cannot be represented as a ratio
of integers), transcendental (it is not a root of any non-zero polynomial with rational
coe⌥cients), and is the base of the Natural Logarithms (introduced by John Napier).

The following sentence is a mnemonic that helps memorize some digits of e: “to
express e remember to memorize a sentence to memorize this.” The lengths of the words
of this sentence are 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, and 4, so they give e � 2.7182818284 to an
accuracy of 11 decimal digits.

There are various ways to introduce e, and here it is discussed and defined as a
special exponential function. A function f(x) of the form bx, where b is a real constant,
is referred to as exponential. Exponential functions are proportional to their derivatives,
which is why it makes sense to search for the base b of the special exponential function
bx whose proportionality constant is 1. Such a function, denoted by exp(x), has the
unique property that it equals its derivative.

The following paragraph derives this function from the condition that it be expo-
nential and will equal its derivative. Once we find the base b of this special bx function,
we name it e and try to compute its numeric value.

We start with the definition of the derivative of bx

d

dx
[bx] = lim

�x⇧0

bx+�x � bx

⇥x
= lim

�x⇧0

bxb�x � bx

⇥x

= bx lim
�x⇧0

b�x � 1
⇥x

.

We are almost there! The derivative of bx is now expressed as itself times a strange,
annoying limit that we must coerce to become 1. This turns out to be quite easy. From
the condition (b�x � 1)/⇥x = 1 we derive b = (1 + ⇥x) 1

�x . Finally, we rename b and
⇥x, e and n, respectively, to end up with

e = lim
n⇧�

(1 + n)n.

The above expression is often considered the definition of e. Mathematical rigor
requires that we prove that the limit exist. Numerical computations, especially easy
today, when fast mathematics software is available, produces its numeric value. Other
ways to look at e are (1) It is the unique positive number a such as the exponential
function ax has a slope of 1 at x = 0. (2) It is the sum of the infinite series

�&

n=0

1
n!

= 1 +
1
1

+
1

1 · 2 +
1

1 · 2 · 3 + · · · .
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The natural logarithm ln = loge (logarithm to base e) is the inverse of exp(x), so
the relation between and e and ln is

ln e
def=
( x

1

1
t
dt = 1.

The origin of the term “natural logarithm.”

In calculus, the general expression for a derivative is the limit

lim
h⇧0

f(x + h)� f(x)
h

.

When this is applied to computing the derivative of the logarithm, logb(x), the corre-
sponding expression is the limit

lim
h⇧0

logb(x + h)� logb(x)
h

,

which can be manipulated to become

1
x

logb

⇣
lim
h⇧0

⌦
1 +

h

x

↵x/h
⌘

=
1
x

logb e.

and it is this expression of the derivative that makes it natural to choose the Euler
constant e as its base b, and to refer to this base as natural.

⌅ Exercise 2.35: The following is actually a simple problem. What function equals the
reciprocal of its derivative?

• To understand the meaning of “ex equals its derivative,” imagine a car accelerating
on a racing course in such a way that its position, velocity, and acceleration remain the
same as it races. When it has covered 13 km, its speed is 13 kph and its acceleration is
13 kph-per-hour.
• Here is a mathematical game where e pops up unexpectedly. Given a real number a,
cut it into n equal pieces and multiply them together. The result r is a real number that
depends on both a and n. It turns out that r is at its maximum when the length a/n of
a piece is closest to e. The Mathematica code Solve[D[(a/n)^n, n]==0.] illustrates
why this is so, although this code is not a formal proof. The code first di⌃erentiates
the function (a/n)n with respect to n and then finds the value of n where the derivative
is zero. A zero derivative of a smooth function implies a maximum or minimum of the
function. Executing this code produces {{n->0.367879 a}}, very close to (1/e)a.
• Perhaps the easiest way to understand e is to consider its appearance in computations
of interest rates. For simplicity, we assume a $1 investment that earns 100% year. If
the interest is paid at the end of the year, the final payout is 1 + 1 = 2. However, if the
interest is paid every six months and is immediately reinvested, then after the first six
months the investment is worth 1.50 which after the next six months earns 1.75, for a
total payout of 1 + 0.50 + 0.75 = 2.25.
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Similarly, if the interest is paid every three months, the four 25% interest payments
would be 0.25, 0.325, 0.3906, and 0.4882, and the investment would grow during the
year from 1 to 1.25, 1.5625, 1.9531, and finally 2.4413.

It seems that the total payout increases as the interest is paid more often, but the
increases themselves get smaller and may prove to converge to a finite limit. Thus, the
obvious question is what happens at the limit, when the interest is paid continually.
This cannot be done in practice, as there is always a smallest unit of currency, but it
can be computed theoretically and it turns out to be a payout of of e = 2.718.
• The next example where e appears is in probability computations. Imagine a lottery
where the chance of winning is 10�6 (one in a million). Naturally, the chance of a loss
in each play is the much higher 0.999999 or

⌦
1� 1

1000000

↵
.

Playing again and again, the chance of winning or losing each time are the same 10�6

and 0.999999, respectively, but the chance of losing every time gets smaller with more
plays. This is because individual plays are independent events, so the chance of losing
every time is the product of the individual chances. For n plays, this chance is

⌦
1� 1

1000000

↵n

And the limit of this quantity when n approaches infinity is 1/e or approximately
36.79%).
• Consider the unusual infinite equation

xxx..
.

= 2.

This scary tetration is easy to solve when we write it as xy = 2 and then realize that
y, being an infinite ladder of x’s, equals the entire left-hand side of the equation and
therefore also equals the right-hand side, which is 2. We can then rewrite the equation
as x2 = 2 whose solution is x =

"
2. We have just proved that

"
2
�

2
⇥

2..
.

= 2.

Now consider the similar equation

xxx..
.

= 4.

We can similarly rewrite it as xy = 4 or x4 = 4, with a solution x2 = 2 and x =
"

2. We
have now proved that

"
2
�

2
⇥

2..
.

= 4.
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The conclusion is that either 2 = 4 or that we made a mistake somewhere. The
mistake was to treat infinity naively, without the respect it deserves. It turns out that"

2 is a solution to the first equation, but the second equation has no solutions because
the solutions of equations of the form

xxx..
.

= constant,

converge only if x ⇠ [e�e, e1/e] = [0.06599, 1.4447] and this interval contains
"

2 but
not

"
4. This unexpected result was also proved by Euler. See reference 23 in [WikiTe-

trat 23].
Other appearances of e in common situations are:

• Take a hot dish out of the oven and let it cool down naturally. The graph of its
dropping temperature as a function of time is an exponential of the form C +aekt where
the initial temperature is A + C, the final temperature is C, and k is a constant that
depends on the material of the dish.
• Imagine a weight hanging at the end of a spring. When pulled down in a uniform
gravity field and let go, the weight will oscillate up and down, losing amplitude contin-
ually. The curve of its amplitude as a function of time has an envelope (Figure 2.21)
that is given by an exponential expression of the form ae�kt. It drops from an initial
amplitude of a to zero.

20 40 60 80

- 0.5

0.5

Figure 2.21: Exponential Envelope of a Damped Oscillator.

Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it,
and we don’t know what it means. But we have proved it, and therefore we know that
it is the truth.

—Benjamin Peirce.

2.9.2 ⇤, Not Just a Circle

People like the title “king.” We often hear declarations such as He is the king of washing
machines or the king of bail bonds. Similarly, if you ask someone about the king of
numbers, a likely answer would be �. The number � is likely to show up whenever we
study mathematics, engineering, science, or any other field where numbers are used. It
is hard to believe that �, which is defined in relation to circles, is such an important
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part of our lives, yet no one has been able to explain the universality and importance of
this number.

As most everyone knows, � is defined as the ratio of the circumference of a circle
to its diameter, and its approximate value is 3.1415. Already the ancients have noticed
that this ratio is constant and applies to all circles, much as the trigonometric ratios
sin and cos apply to all right-angle triangles. We can check this claim by computing �
for various circles, but we cannot explain it or prove it formally. The interested reader
can try the simple Mathematica code Integrate[r/Sqrt[r^2-x^2],{x,-r,r}]/r for
various values of r. It is perhaps this generality of � that makes it so universal, but we
can only agree that this property of the circle is one of the mysteries of mathematics.

Already the Babylonians and Egyptians tried to compute the value of � and came
up with numbers close to 3, but the first serious attempt in this direction was made by
Archimedes. He imagined two regular polygons (polygon: a plane figure bounded with
straight segments) one circumscribing the circle from the outside and the other inscribing
the circle from the inside. The areas of the polygons are relatively easy to calculate, and
the area of the circle is somewhere between them. By gradually increasing the number
of polygon sides, Archimedes was able to obtain better and better approximations of �.

Over the centuries, many mathematicians and mathematical fans discovered other
techniques to compute � and came up with ridiculously long approximations, but it
was only in 1768 that Johann Lambert managed to prove that � is irrational and thus
can never be fully expressed as a decimal number. Finally, in 1882 Ferdinand von
Lindemann proved that ea is transcendental for every non-zero algebraic number a,
thereby establishing that � is transcendental (i.e., it is not the solution of any non-
constant polynomial equation with rational coe⌥cients).

The transcendence of a number is much more di⌥cult to prove than irrationality,
and has a number of mathematically important consequences, one of which is that a
transcendental number cannot be constructed with compass and straightedge. This is
why the transcendence of � implies that it is impossible to square the circle, an important
goal of ancient geometers. (This is also why the term “circle squarer” is derogatory, but
see story on Page 7.)

A curiosity. In 1897, an American circle squarer has almost succeeded in persuading
the Indiana legislature to pass a Bill that defined � as 3.2, because this value resulted
from his circle squaring method. Luckily for humanity, the bill never became a law
(imagine the response of visiting aliens to this.).

The Greek letter � (pi) was adopted, by William Jones in 1706, to denote this
important number.

The well-known Euler’s formula ei⇤ � 1 = 0 contains � among the other important
constants e, i, 1, and 0.
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We stared at the note. No one moved. On the paper he had written a single line, one
simple formula:

ei⇤ + 1 = 0.

No one spoke. The widow’s fingernails had ceased their tapping. Her eyes, so full of
suspicion and disdain a moment earlier, now looked at me with a calm, understanding
gaze, and I could tell then that she knew the beauty of math.

—Yōko Ogawa, The Housekeeper and the Professor, (2003).

Pi Day

It was Larry Shaw, a physicist, tinkerer, curator, and media specialist at the San
Francisco Exploratorium, who became the Prince of Pi when in 1988 he linked March
14 (3.14) first with the digits of � and later also with Einstein’s birthday (in 1879).

Since 1988, many math lovers, educators, and pi enthusiasts the world over celebrate
this day and even raise a slice of pie (a � pie) precisely at 1:59 (more � digits) to proclaim
the importance of the king. In March 2009, Pi Day became an o⌥cial U.S. national
holiday. Common activities on Pi Day include a parade at the exploratorium.

Observing that the fraction 22/7 is a common approximation of �, an anonymous
enthusiast, deciding not to lag behind Larry Shaw, came up with Pi Approximation Day,
which is observed on July 22 (22/7 in the day/month date format).

Pi Day in 2015 was so far the most important one, because at 9:26:53 the time was
3|14|15|9|26|53, reflecting the first 10 digits of �.

⌅ Exercise 2.36: (Fun). Search for other celebrities who were born or died on Pi Day.

The Pi Day website is at https://www.piday.org/

A coincidence? Denote the thickness of a pizza by a and its radius by z. Its volume
would be � · z2 · a = Pizza (by Presh Talwalkar).

Approximations of �

Because of the importance and universality of �, generations of mathematicians
have searched for ways to easily compute many of its digits. Most of these methods
employ infinite series, but here we present two ideas that approach this problem from
di⌃erent directions. The first idea is to use probabilities, and the simplest algorithm
in this family is the so-called Monte Carlo method, which simply counts the results of
multiple random trials.

Imagine a radius 1 circle inscribed in a unit square. A computer program draws
many pairs (a, b) of random numbers, each in the interval [0, 1]. Naturally, each such
pair can be considered a point that is located in or on the square, but certain pairs also
end up in or on the circle. Those are pairs that satisfy

"
a2 + b2 ⌦ 1. Simply count

the number m of such pairs and divide by the total number n of pairs generated and
checked. The ratio m/n should approach the ratio of the area of the square (which is 1)
to the circle’s area (which is �(12)), as more and more pairs are computed and tested.

Another probability-based algorithm for � is the Bu⌃on needle,
t

ba
illustrated in the figure. Parallel lines are drawn on a surface, t units
apart. A needle of length l is dropped many times at random on the
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surface. Sometimes, the needle end up crossing a line, and those cases
are denoted by a. In other cases, b in the figure, the needle ends up between lines. it
can be shown that the ratio 2(a + b)l/(at) is an approximation of �, which gets better
as the number of drops gets bigger.

The next approach to approximate � is the spigot algorithms, which first appeared
in 1995. Those algorithms produce individual digits of � where each is independent of
its predecessors. Thus, there is no need to save newly obtained digits for future use.
This is analogous to water droplets dripping from a spigot. These algorithms are too
long and involved to be described here, but here are a few words about each.

The first spigot algorithm was due to Stanley Rabinowitz and Stan Wagon. See
reference [Rabinowitz 95].

The Bailey-Borwein-Plou⌃e (BBP) algorithm, reference [WikiBBP 95], is sometimes
referred to as magical because it can produce any hexadecimal digit of � without having
to compute its predecessors. It is based on the series

� =
�&

k=0

1
16k

⌦
4

8k + 1
� 2

8k + 4
� 1

8k + 5
� 1

8k + 6

↵
.

The following mnemonic text, due to James Jeans, generates the first 24 digits of
�, each is the length of a word in this text.

“How I want a drink, alcoholic of course, after the heavy chapters involving quantum
mechanics. All of thy geometry, Herr Planck, is fairly hard . . . ”

The Gauss-Legendre formula; fast computation of �.

One of the many contributions of Gauss to science and mathematics is a formula
for computing � to any precision. Even though this formula is iterative and complex-
looking, it is useful because it converges rapidly. A precision of about 20 digits is
typically achieved after only three iterations! The main component of this formula is
the AGM function, so called because it produces the arithmetic-geometric mean of its
two parameters. Section 10.7 discusses arithmetic average and geometric mean, two
concepts that are employed by AGM.

The principle of AGM is simple. Start with two real values a0 and b0, and iterate
each according to

ak+1 =
ak + bk

2
and bk =

0
akbk.

In each iteration, ak and bk move toward each other. In fact, the number of leading
digits where ak and bk do not di⌃er, approximately doubles in each iteration, which is
why AGM features quadratic convergence. In his original work from around 1800, Gauss
started with a0 = 1 and b0 = 1/

"
2 and after only three iterations ended up with ak and

bk that agreed in their 19 leading digits.
Once the principle of AGM is clear, the Gauss-Legendre formula for � can be written

� =
2AGM2(1, 1/

"
2)

1
2 �
$�

k=1 2kc2
k

,
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where ck+1 = (ak � bk)/2 and c2
k+1 = a2

k+1� b2
k+1 = (ak+1� ak)2. The particular values

a0 = 1 and b0 = 1/
"

2 were chosen by Gauss, but may not be the only ones for which
this formula works and produces approximations of �.

The formula seems complex. It requires iterations both in the AGM function and
in its denominator, but it is still useful because of its rapid convergence. Its first three
iterations produce

3.140 . . .

3.14159264 . . .

3.1415926535897932382 . . .

3.141592653589793238462643 . . .

3.14159265358979323846264338327 . . .

.

Chapter 7 of reference [Arndt 06] has more about this formula, its properties and
history.

A beautiful, intriguing, but illusory relation

Let’s start with the simple expression �4 +�5 = e6 (this is not an equation; there is
no unknown). It shows an intriguing, hitherto unknown relation between two important
mathematical constants, so we decide to look deeper into it. Noticing that each of the
three terms is an exponent, we rewrite this expression as the sum of squares (�2)2 +
(�2.5)2 = (e3)2. It now looks like the Pythagorean theorem for a right-angle triangle, so
we check to see how true it really is.

3e

¼2.5

¼2

Figure 2.22: A Mock Right Triangle.

Using drawing software to draw a triangle with the above dimensions, Figure 2.22
shows what looks like a true right triangle, but the precise calculations listed here,
using the cosine rule, prove that the angle between its “perpendicular” sides is slightly
di⌃erent from 90⇤, thereby dashing our hopes for newly discovered mathematical beauty,
and allowing us to label this triangle as deceptive, deceiving, fallacious, or mock.

The close cousin of the well-known cosine rule yields the angle ⇤ between sides a
and b of a triangle if all three sides are known

⇤ = arccos
�
a2 + b2 � c2

2ab

�
, applied here, ⇤ = arccos

�
�4 + �5 � e6

2�4.5

�
,
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produces ⇤ = 1.57079637798, which in turn implies that the “right” angle in Figure 2.22
equals 180⇤/� = 90.0000029325⇤.

This curious result is due to youtuber polymathematic.
[Arndt 06], [Berggren 97], and [Posamentier 04] are three of the many thousands of

references that discuss, explain, and explore the “mysteries” of �.
Why does � appear everywhere? Because it is defined by the properties of the circle.

This definition implies that � is related to circles and therefore also to spheres and wave
motion, concepts that are at the foundations of many phenomena and objects in our
universe, from atomic structure to galactic scales. There are innumerable examples of �
appearing in mathematical results, relations, and theorems, but the following are a few
surprising examples of � showing up in non-mathematical connections:

Hiding a message in the infinitely many digits of �. This is mentioned in the 1985
novel Contact by Carl Sagan.

Whoever makes the universe hides messages in transcendental numbers so they’ll be
read fifteen billion years later when intelligent life finally evolves.

—Carl Sagan, Contact, 1985.

Donald Knuth started working on his popular TEX software in 1978. It was about
10 years later, when TEX was in good shape and started producing reasonable results,
that Knuth noticed that he was in version 3.14 of the software. He then decided to
number future versions by the consecutive digits of �. The current version of TEX (last
updated in 2021) is 3.141592653.

Aerial is the eighth album by the well-known singer-songwriter Kate Bush. It was
released in November 2005, and climbed the charts fast.

The second track, “�,” of Aerial, reference [Aerial 05], describes a man who has “a
complete infatuation with the calculation of �.” The digits of � are sung, with some
errors, from the first to the 78th, then from the 101st to the 137th. They later became
sequence A112602 in the OEIS.

A112602. Erroneous version of decimal expansion of Pi (see A000796 for the correct
version).
3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2,
8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8,
1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 8, 2, 1, 4, 8, 0, 8, 6, 5, 1, 3, 2, 8, 2, 3, 0, 6, 6, 4, 7, 0, 9, 3,
8, 4, 4, 6, 0, 9, 5, 5, 5, 2, 2, 3

—From OEIS.

The videos at t.ly/rnTh3 and t.ly/h3PM6, by YouTuber 3Blue1Brown, illustrate
surprising connections between � and certain physical phenomena.

The sinuosity index (or meandering ratio) of a stream or a river is the ratio of the
length of the stream to the straight line distance between its source and mouth. This
is the result of the tendency of a river to cut an easy meandering path in the ground,
rather than proceed in a possibly di⌥cult straight line. Hydrologists employ this fact to
define the terms sinuous river (when the sinuosity index is in [1, 1.5)) and meandering
river (when the sinuosity index is in [1.5, 4]).
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There is a scientific study, summarized in reference [Stolum 96], which claims that
the average of the sinuosity index of earth rivers tends to oscillate between a low of 2.7
and a high of 3.5, with an average of 3.14. However, there are many objections to this
conclusion.

The well-known Heisenberg’s Uncertainty Principle states that there is an inher-
ent uncertainty built into the universe that becomes apparent when measuring certain
properties of quantum particles. (It is too small to measure for everyday-size objects.)
A common example of this principle has to do with the position and momentum of a
particle, where the principle states that the more precisely the position is known the
more uncertain the momentum is, and vice versa.

The principle is expressed mathematically in the form

⇥x⇥y ↵ h

4�
def= h̄.

The product of the uncertainty in a quantity x and the uncertainty in a quantity y is
never less than the Planck’s constant h divided by 4�, a constant known as h-bar.

⌅ Exercise 2.37: Since the expansion of � is infinite, can it appear within itself? Can
the infinite sequence of � digits appear as a subsequence of itself?

⌅ Exercise 2.38: (Strange.) What if � were an algebraic number (non-transcendental)?

Probably no symbol in mathematics has evoked as much mystery, romanticism,
misconception and human interest as the number �.

—William L. Schaaf, Nature and History of Pi .

2.9.3 i, the
"
�1

A reminder. How to multiply square roots of negative numbers? We know that in a
mathematical expression, with numbers, letters, and arithmetic operations, the rules
of operator precedence are: functions (including square roots), exponentiation, multi-
plication/division, and addition/subtraction. But what about square roots of negative
numbers? With positive numbers, we have the simple identity

"
a · b =

"
a
"

b, and this
can be applied to negative numbers by

"
�10 =

0
(�1) · 10 =

"
�1
"

10 = i
"

10. Thus,
for example,

"
�16 ·

"
�2 = i ·

"
16⇥ i ·

"
2 = �

"
32.

The notation i for
"
�1 was originally introduced (by Gauss in 1831) to remove

ambiguities in complex number arithmetic, such as in
"
�12 which prompts one to write

it as
"
�1
"
�1, and thus obtain the wrong result �1.

Another look at i. We normally think of i as
"
�1, but Euler’s formula provides

another way to express this important constant. We start with eiZ = cos(Z)+i sin(Z) for
an arbitrary complex number Z, and add this to its negative ei(�Z) = cos(Z)� i sin(Z)
to obtain eiZ + ei(�Z) = 2 cos(Z). When this is multiplied by eiZ on both sides, it
becomes the quadratic equation (eiZ)2 � 2 cos(Z)eiZ + 1 = 0, whose solution is

eiZ =
�(�2 cos(Z)) ±

0
(�2 cos(Z))2 � 4 · 1 · 1
2 · 1 =

2 cos(Z) ± 2
0

cos2(Z)� 1
2

,
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which produces the new expression i = 1
Z ln
�
cos(Z) ±

0
cos2(Z)� 1

⇥
. The familiar

constant i is now expressed in terms of an arbitrary complex number Z.
Note. I tried this with Mathematica, but it seems to depend highly on the internal

precision of Z and seems to work only for complex numbers Z where both the real and
imaginary parts are on the order of up to 3.

Z = 2 + 3 I;
a = Cos[Z]; b = a + Sqrt[a^2 - 1];
(1./ Z) Log[b]

And now, for a few elegant, simple examples of operations that involve i. They all
follow the excellent videos of youtube channel blackpenredpen.
• What is the

"
i? Arithmetic operations on complex numbers normally result in

complex numbers, but sometimes such a result may be real. As a first guess, we assume
that

"
i is complex, and start with the general expression

"
i = a + bi, with a and b to

be determined. Not knowing what else to do with this, we square both sides, to obtain
i = a2 + 2abi� b2. Since i is imaginary, its real part is zero and its imaginary part is i.
We can therefore write 0 + i = a2 + 2abi � b2, which implies a2 � b2 = 0 and 2ab = 1.
These two equations are easily solved to produce the final result

"
i = ± 1"

2
(1 + i) = ±

�
1"
2

+
1"
2
i

�
. (2.7)

This technique of deriving
0

(i) can be termed algebraic computation. The same
quantity can be derived using polar coordinates. We start with an arbitrary complex
number Z = a + bi = r cos(�) + ir sin(�), and square it to obtain

Z2 = [r(cos(�) + i sin(�))]2 =
⇤
rei⇥
⌅2

= r2ei2⇥ = r2(cos(2�) + i sin(2�)).

Because of the use of polar coordinates, the relation between Z = (r, �) and Z2 = (r2, 2�)
is now clear. The radius r of Z is squared, and its angle � is doubled (Figure 2.23a).
Thus, to get from a complex number to its square root we need to halve its angle and
compute the

"
r.

This is for an arbitrary Z, but we are interested in the particular Z that satisfies
Z2 = i. The polar coordinates of i are (1, 90⇤), so those of

"
i should be (1, 45⇤). When

converted back to Cartesian coordinates, these result in

"
i = cos(45⇤) + i sin(45⇤) =

1"
2

+
1"
2
i.

Equation (2.7) promises two square roots, and the other one can be obtained in
polar coordinates by adding 180⇤ to the 45⇤ (Figure 2.23b). This results in

cos(225⇤) + i sin(225⇤) = � 1"
2
� 1"

2
i.



2.9 Important and Interesting Numbers 107

Re

Im

Z

Z2

r=
1

r=1
2θ

θ
a

b
Re

Im

i

225o

45o

(b)(a)

Figure 2.23: Square Root of Z.

⌅ Exercise 2.39: (Funny.) Consider the following long, but elementary derivation:

1"
i

(1)
=
"

1"
i

(2)
=
2

1
i

(3)
=

3
1"
�1

(4)
=

3 "
1"
�1

(5)
=

32
1
�1

(6)
=
1"

�1
(7)
=
"

i.

It suggests that i = 1. Where is the error?

• The next candidate to explore at this point is i
"

i. From the Argand diagram it is
obvious that the polar coordinates of �1 are (�1,�), which is why �1 equals ei⇤. From
this and from

"
�1 = i we deduce that

(�1)
1
i = i

"
i =
⇤
ei⇤
⌅ 1

i = e⇤ � 23.1407.

Another complex computation that results in a real quantity.
• What is ii? Applying the identity a = eln a, we start with ii =

⇤
eln(i)

⌅i = ei·ln(i).
We now recall that a complex number with polar coordinates (r, �) can be written as
Z = rei⇥, which implies

ln(Z) = ln r + ln[ei⇥] = ln r + i �.

However, in the Argand diagram, i is the point with coordinates (0, 1), which translates
to polar coordinates (r, �) = (1,�/2). Based on this, we write ln i = ln(1) + i⇤

2 = i⇤
2 ,

which gives the final result

ii = ei·ln(i) = ei·i ⇥
2 = e�

⇥
2 � 0.20788.

This is a real surprise; a complex power of a complex number turns out to be real.
Incidentally, it turns out to be transcendental.
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⌅ Exercise 2.40: Based on the ii example above, show how easy it is to compute the
tetration ii

i
.

⌅ Exercise 2.41: What is 1/i?

⌅ Exercise 2.42: Compute the value of
"

i +
"
�i.

• What is sin(i)? This simple derivation starts with the two identities ei⇥ = cos(�) +
i sin(�) and e�i⇥ = cos(�)� i sin(�), which are subtracted to yield ei⇥ � e�i⇥ = 2i sin(�)
or sin(�) = (ei⇥ � e�i⇥)/2i. Selecting � = i produces the final, complex result

sin(i) =
ei·i � e�i·i

2i
= �1

2
(e�1 � e)i =

⌦
e� e�1

2

↵
i = sinh(1)i � 1.1752i.

A digression. We are familiar with the ordinary trigonometric functions sin and cos.
They are defined in relation to circles, because the curve (cos t, sin t) is the circle x2+y2 =
1. Similarly, the hyperbolic functions sinh and cosh (pronounced “shine” and “kosh”,
respectively) are defined in relation to the hyperbola, and the curve (cosh t, sinh t) is the
right half of the unit hyperbola x2 � y2 = 1. The definitions are

sinhx =
ex � e�x

2
, and coshx =

ex + e�x

2
.

There are also hyperbolic tangent and cotangent. The argument of the hyperbolic
functions can also be complex. (End of digression.)
• What is ln(i)? We already know that i can be written in polar coordinates as ei ⇥

2 ,
which implies that ln(i) = ln

�
ei ⇥

2
⇥

= i⇤
2 . Simple!

⌅ Exercise 2.43: Solve the equation (�5)x = 5 in two ways.

• Now for something strange. We know that the first four powers of i (corresponding
to exponents 1, 2, 3, and 4) are i, �1, �i, and 1, and that this repeats for the next
groups of four consecutive exponents. However, this is true only for integer exponents.
With a real exponent x, The power ix can take other values, and here we will look at
ix = 2. What real power of i results in the integer 2? The simple answer is easily
obtained when we consider the natural log of both sides of this equation

ix = 2 x ln(i) = ln(2) x =
ln(2)
ln(i)

=
ln(2)
i�/2

= �2i ln(2)
�

.

A simple check with mathematical software verifies that yes, i�
2i ln(2)

⇥ equals 2.
The equation xi = 2 is a related computation with i. The first step is i

"
xi = i

"
2,

which can be massaged to yield

x = 2
1
i = 2

i
i·i = 2�i =

⇤
eln 2
⌅�i

= e�i ln 2 Euler= cos(ln 2)� i sin(ln 2).

• An exercise in infinity. What is the sum Z of the infinite expression

Z =

2

i +
1

i +
"

i + · · ·?
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Like many other problems involving infinite series and continued fractions, this
example is also solved in a concise, elegant way, similar to the problem of Page 98, by
noticing that any infinite part of this sum equals the entire sum Z, or that Z = i + Z.
This produces the quadratic equation Z2 � Z � i = 0 whose solution is 1

2 + 1
2

"
1 + 4i.

We can stop at this point, but leaving i under the square root is inelegant and can be
avoided, so we continue and employ Equation (2.4) to write

1
2

+
1
2
"

1 + 4i =
1
2

+
1
2

�

⇠

3
1 +

"
17

2
+

3
�1 +

"
17

2
i

⌫

⇡

=
1
2

+

�

⇠

3
2 + 2

"
17

4
+

3
�2 + 2

"
17

4
i

⌫

⇡

= 0.5 + 0.800243 + 0.624811i = 1.300243 + 0.624811i.

⌅ Exercise 2.44: (Easy.) Given a positive integer n, what is in+1 � in?

Tetration of i. The term “exponentiation” is used for repeated multiplication.
Thus, xb implies x⇥ x⇥ · · ·⇥ x6 54 7

b

. Similarly, the term “tetration” (or hyper-4) means

repeated exponentiation. The common notation for tetration is the left-exponent nx,
which denotes the power tower

xx..
x

6 54 7
n

.

Exercise 2.40 mentions the tetration of i, an interesting topic which is discussed
here in some detail. We denote the nth tetration of i by qi, and we already know the
first few values of qi, which are

q1 = i, q2 = ii = e⇤/2 q3 = ii
i

= cos
*�
2

e�
⇥
2

+
+ i sin

*�
2

e�
⇥
2

+
,

and in general qn+1 = iqn . In order to compute the limit of qn, we assume that it exists,
i.e., that the sequence {qn} converges to a finite, complex-valued number Q, which equals
the infinite power tower

Q = ii
iii..

.

.

Since the tower is infinite, we try to write this equation in the form Q = iQ. From
the identity i = e

⇥
2 i we get Q = e

⇥
2 iQ, and because Q is assumed to be complex (as a

special case it may be real), we write it in the form Q = a + bi to obtain

a + bi = e
⇥
2 i(a+bi) = cos

*�
2

a
+
e�

⇥
2 b + i sin

*�
2

a
+
e�

⇥
2 b,

which produces the two equations

a = cos
*�
2

a
+
e�

⇥
2 b, b = sin

*�
2

a
+
e�

⇥
2 b.
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Applying iterative methods, these can be solved to yield

Q = a + bi � (0.438283 + 0.360592i).

Figure 2.24 illustrates the result of computing the power tower tetration of i for 30
iterations. Part (a) of the figure displays the successive points in the complex plane,
labeled and joined by edges. Part (b) shows just the points and it seems that they form
three spirals. Part (c) proves that there really is just one spiral and the three spirals
are only an optical illusion. The green circle is the vanishing point Q whose complex
coordinates are (0.438283, 0.360592).

Reference [redditI 20] includes a diagram similar to Figure 2.24a,b. reddit users
alexlozovsky and Chand_laBing shed more light on the unexpected shape of the dis-
tribution of points in Figure 2.24. Here are some of their comments:

Well, apparently, there is a reason why we can see 3, 5, 7, or 9 spirals. If
we connect consecutive points on the plot for n(i/k) and determine the angles
between adjacent segments of the polygonal chain, we would find that the
angles oscillate around some value �(k), which determines the “shape” of the
polygonal chain.

Thus, we get the following star-like polygrams:
�(0.56) � 180/3 = 60⇤ (which gives us triangular shape and 3 spirals),
�(2.08) � 180/5 = 36⇤ (which gives us pentagram and 5 spirals),
�(4) � 180/7 = 25.7⇤ (which gives us heptagram and 7 spirals),
�(6.75) � 180/9 = 20⇤ (which gives us enneagram and 9 spirals).
So the answer to the question why does it form three distinct spirals? is

because the angles between adjacent segments of the polygonal chain �(1) �
50.55⇤, which is close enough to the triangular shape of the chain.

You can play with it with the help of Wolfram Mathematica (or Wolfram
Cloud) using the following function:
T[z_]:=ComplexListPlot[NestList[N[z^#]&,0,1000],PlotRange->All]

Executing T[I/7] would plot the graph for the base i/7.
It can be proved that successive iterations are asymptotically rotated 129⇤

about the sequence’s limit. Since this is approximately 120⇤, every third it-
eration maintains approximately the same angle and lies on one of the three
branches. The overshoot of 9⇤ in part causes the spiraling.

2.9.4 ⌅, The Golden Ratio

Start with a straight segment of length l and divide it into two parts a and b such that
a + b = l and l/a = a/b.

l

a b

The ratio a/b is a constant called the Golden Ratio and is denoted by ⌘ or � (the
Greek letter phi). It is one of the important mathematical constants, like �, i, and e, and
was already known to the ancient Greeks. It is also known as the extreme and mean ratio
and the divine proportion. Other names for it are golden mean, golden section, golden
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n = 30;
Tetration[a_, k_Integer] := Nest[Power[a, #] &, 1, k];
data = Table[N[Tetration[I, k]], {k, 1, n}];
ldata = Table[k, {k, 1, n}]; (*Label the points*)
ComplexListPlot[
data -> ldata, Mesh -> Full, Joined -> True,
PlotRange -> {Automatic, {0, 1}}]
ComplexListPlot[data, PlotRange -> {Automatic, {0, 1}},
PlotStyle -> Red]

(*The following is proposed by reddit.com user alexlozovsky.
Try small values for k, such as 0.56, 0.58, 2.08, 4, and 6.75 to \
obtain different spirals.
T[z_]:=ComplexListPlot[NestList[N[z^#]&,0,100],PlotRange->All];
T[I/k]*)

Figure 2.24: The Tetration of i as a Spiral.
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cut, golden proportion, golden number, medial section, and divine section. [WikiPhi 23]
a general detailed reference to the golden ratio. See also Page 56.

Page 59 discusses the golden angle, a close relative of �.
The simple construction above is only one of many ways to create this important

number. Figure 2.25 illustrates three geometric constructions that contain ⌘ and its
inverse. In part (a) of the figure, the parabola y = x2 � 1 and the straight line y = x
intersect at (⌘,⌘) and (1/⌘, 1/⌘). In parts (b) and (c), the ratio AC:BC equals ⌘.
(Part (b) consists of a semicircle circumscribing a square. In part (c), the horizontal
segment passes through the midpoints of the equilateral triangle’s sides.)

1

1

2

2

y

x

(1/Á,1/Á)

(Á,Á)

A B C

A B C

(a) (b)
(c)

Figure 2.25: Three Geometric Constructions For ⌘.

It is often claimed that geometric figures can be made more pleasing to the eye if
they involve this ratio, but such a claim to beauty is always in the eye of the beholder.
One example of such a figure is the golden rectangle, whose sides are 1 and ⌘ (or a and
a⌘) long. Many classical buildings and paintings employ this ratio. [Huntley 70] is a
lively introduction to the golden ratio. It illustrates properties such as

⌘ =

3

1 +

2

1 +
1

1 +
"

1 + · · · and ⌘ = 1 +
1

1 + 1
1+ 1

···

.

History

The golden ratio (⌘ or �), its definition as a ratio, and its numeric value, were
already known to the ancient Greeks. Even before Euclid, Pythagoras and his followers,
while studying the properties of the pentagon around 540 b.c., came across the golden
ratio which they considered special. This section is a short summary of the history of
the terms “golden ratio,” “golden mean,” “golden number,” and “golden proportion.”
Reference [Fowler 81] has more about this topic.

In Book VI, Proposition 30 of his great series the Elements, Euclid defines the
golden ratio as follows “A straight line is said to have been cut in extreme and mean
ratio when, as the whole line is to the greater segment, so is the greater to the less.”

It seems that the term “golden ratio” first appeared in print in 1835 as the German
goldener schnitt, in a book by Martin Ohm. It first appeared in English as “golden
section” in the ninth edition of the Encyclopaedia Britannica (1875). Its first use in
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English as a mathematical term is found in the 1898 book Introduction to Algebra by
George Chrystal.

In Italian, the term divina proportione is due to Luca Pacioli who chose it as the
title of his book La Divina Proportione, (Venice, 1509). The Latin term proportio divina
seems to have originated in a 1608 letter from Johannes Kepler who also used it later in
a 1611 book. The Oxford English Dictionary credits the term “golden mean” to D’Arcy
W. Thompson, who used it on page 643 of his famous 1917 book On Growth and Form.
The term “golden mean” is unfortunate because it normally refers to the Aristotelian
principle of moderation (to avoid extremes). The terms “golden rule,” “golden number,”
and “golden proportion” are also used by various authors.

The following are a few of the many major references to the golden ratio, its history,
its name, and its many properties:

H. S. M. Coxeter, Introduction to Geometry, John Wiley, 1961. See Ch. 11.

The Fibonacci Quarterly, published by The Fibonacci Association. See fq.math.ca

Mario Livio, The Golden Ratio: The Story of PHI, the World’s Most Astonishing
Number, Crown, 2003.

Gary B. Meisner, The Golden Ratio: The Divine Beauty of Mathematics.

H. E. Huntley, The Divine Proportion: A Study in Mathematical Beauty, Dover,
1970. (Notice, the last equation on page 99 is wrong)

Unfortunately, perhaps because of human nature, the golden ratio, which is “only”
an important mathematical constant, has given rise to a vast body of literature that
(often based on nothing more than wishfulness to see beauty where none exists) purports
to find ⌘ in many places in art, architecture, and nature. An excellent reference is
[Livio 24]. This is why subsection 2.10.1 shows how the original definition of ⌘ in terms
of two equal ratios can be generalized to many extreme mean ratios whose geometric
and algebraic properties resemble those of ⌘.

Claims similar to the following are not uncommon “We sometimes behave as if this
ratio (⌘) is nature’s favorite number. It is divine and is blessed with an eighth wonder
that makes it an ideal of beauty and perfection. Is it reasonable to claim that the ratios
and proportions of successful works of art, design, and commerce are the chief secret
behind their success? I believe that other features—such as composition, detail, and
the correct use of colors—are more important. Golden ratio enthusiasts have tried to
find their sweetheart in places such as the Mona Lisa, the Parthenon in Athens, and the
logo of Apple computer. Even type design is sometimes purported to be beautiful if it
includes this proportion. I say that ⌘ is bullshit.”

On the other hand, cooler heads point out that one definition of ⌘ is as the limit of
the ratio Fn+1/Fn of consecutive Fibonacci numbers. The larger n, the closer the ratio
is to ⌘. Hence, there are infinite pairs of consecutive Fibonacci numbers that an artist,
a designer, or an architect can use. None of them yields the exact value of ⌘, which is
why measuring a work of art and finding its proportions very close to ⌘ should not be
a reason to assume that its creator had ⌘ in mind.
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⌅ Exercise 2.45: Dear reader. The discussion on Page 77 shows that ⌘ is the most
irrational number. How special does this make ⌘?

The following quotation is from Clement Falbo, The Golden Ratio: A Contrary
Viewpoint, reference [Falbo 05].

Over the past five centuries, a great deal of nonsense has been written about
the golden ratio, its geometry, and the Fibonacci sequence. Many authors
make claims that these mathematical entities are ubiquitous in nature, art,
architecture and anatomy. Gardner . . .has shown that the admiration for this
number seems to have been raised to cult status. Fortunately, however, there
have been some recent papers, including Fischler . . . in 1981, Markowsky . . . in
1992, Steinbach. . . in 1997, and Fowler . . . in 1982, that are beginning to set the
record straight.
Finally, a long quotation from Mario Livio, The Golden Ratio: The Story of Phi,

the World’s Most Astonishing Number, (2003).
Some of the greatest mathematical minds of all ages, from Pythagoras and Eu-
clid in ancient Greece, through the medieval Italian mathematician Leonardo
of Pisa and the Renaissance astronomer Johannes Kepler, to present-day scien-
tific figures such as Oxford physicist Roger Penrose, have spent endless hours
over this simple ratio and its properties. . . .Biologists, artists, musicians, his-
torians, architects, psychologists, and even mystics have pondered and debated
the basis of its ubiquity and appeal. In fact, it is probably fair to say that the
Golden Ratio has inspired thinkers of all disciplines like no other number in
the history of mathematics.

The value of ⌘ is easy to calculate. The basic ratio l/a = a/b = ⌘ implies (a+b)/a =
a/b = ⌘, which, in turn, means 1 + b/a = ⌘ or

1/⌘ = ⌘� 1, (2.8)

an equation that can also be written

⌘2 = ⌘ + 1. (2.9)

The latter equation is easy to solve, yielding ⌘ = (1 +
"

5)/2 � 1.618 . . .. Both equa-
tions (2.8) and (2.9) have interesting properties that o⌃er deeper insight into ⌘. The
former shows that subtracting 1 from ⌘ produces its inverse 1/⌘, while the latter indi-
cates that adding 1 to ⌘ generates its square ⌘2.

Being the root of an algebraic equation means that ⌘ is an algebraic number, not
transcendental. However, it is irrational, and is even the most irrational number, as
shown on Page 77, in the sense of being as far as possible from any rational number.

Equation (2.9) also generates an interesting sequence of consecutive powers of ⌘
that relates to ⌘ itself. From ⌘2 = ⌘ + 1 we derive

⌘3 = ⌘2⌘ = (⌘ + 1)⌘ = ⌘2 + ⌘ = 2⌘ + 1,
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⌘4 = ⌘3⌘ = (2⌘ + 1)⌘ = 2⌘2 + ⌘ + 1 = 3⌘ + 2,
⌘5 = ⌘4⌘ = (3⌘ + 2)⌘ = 3⌘2 + 2⌘ = 5⌘ + 3,
⌘6 = ⌘5⌘ = (5⌘ + 3)⌘ = 5⌘2 + 3⌘ = 8⌘ + 5,

...
⌘n = Fn · ⌘ + Fn�1 = Fn+1 + Fn�1. (2.10)

Thus, the powers ⌘n are related to products of the form Fn�1⌘; a strong relation to the
Fibonacci numbers! The powers of ⌘ can be said to contain “deep within them” the
celebrated Fibonacci numbers. This should be compared with Equation (5.2), which
relates the powers of ⌘ to the Lucas numbers Ln.

1

1 11/φ 1/φ
1/φ

1/φ3
1/φ2

(a) (c)(b)

φ

Figure 2.26: The Golden Ratio.

The equation ⌘ = 1 + 1/⌘ illustrates another unusual property of ⌘. Imagine the
golden rectangle with sides 1 ⇥ ⌘ (Figure 2.26a). Such a rectangle can be divided into
a 1 ⇥ 1 square and a smaller golden rectangle of dimensions 1 ⇥ 1/⌘. The smaller
rectangle can now be divided into a 1/⌘ ⇥ 1/⌘ square and an even smaller golden
rectangle (Figure 2.26b). When this process continues, the rectangles converge to a
point. Figure 2.26c shows how the golden spiral—a special logarithmic spiral based on
powers of ⌘, whose equation in polar coordinates is r = ⌘

2�
⇥ —can be drawn through

corresponding sides of the rectangles.

⌅ Exercise 2.46: Show how to draw a golden rectangle with a ruler and compass.

⌅ Exercise 2.47: (Tricky, but mathematically simple.) Why does the golden ratio exist?

2.9.5 Unusual Appearances of ⌅

Much has been written about the golden ratio and its close relatives, the Fibonacci
numbers. They seem to appear everywhere, in nature, art, literature, and even in music
(reference [FibonacciMusic 22]). This Subsection describes two little-known and unusual
cases where this ratio rears its beautiful head.

The slope of tanx. One reference for this is [DrBarker 24]. At the point the
graphs of tanx and cosx intersect, the slope of tanx is ⌘. The coordinates of the
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f[x_] := 0.08x^4+0.25x^3-1.2x^2-1.6x+1.2;
Plot[{Tan[x], Cos[x], 1.618 x - 0.291824}, {x, -1, 1.5},
PlotRange -> {{-1, 1.5}, {-1, 1.5}}, Frame -> True,
AspectRatio -> 1]

Figure 2.27: Tangent and Cosine Meet.

point are (0.666239, 0.786151) and the graphs are shown in Figure 2.27. The proof is
straightforward.

At the intersection, cos � = tan � =
sin �

cos �
,

cos2 � = sin �,

sin2 � + sin � � 1 = 0,

4 sin2 � + 4 sin � = 4,

(2 sin � + 1)2 = 5,

So at the point, sin � =
�1 ±

"
5

2
,

d tan �

dx
=

1
cos2 �

,

cos2 � = 1� sin2 � = sin �, (since sin2 x + sinx� 1 = 0),

1
cos2 �

=
2

�1 +
"

5
=

2(
"

5 + 1)
4

=
"

5 + 1
2

= ⌘.

The inflection points of a quartic polynomial. A quartic (degree-4) polynomial is
an elementary function of the form f(x) = Ax4 + Bx3 + Cx2 + Dx + E. Because of the
two terms x3 and x4, the graph of this polynomial can take many di⌃erent and complex
shapes and can also have two inflection points.

An inflection point of a curve is a point where the curve changes its concavity.
Imagine a point sliding down a curve in the form a large letter “S.” While sliding in the
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top part of the curve, the point moves along a semicircle in a counterclockwise direction.
After reaching the midpoint of the curve, the direction of the point changes to clockwise.
The midpoint of this curve is an inflection point, a point where the curvature of the curve
changes sign between positive and negative. At the inflection point, the curvature of the
curve is zero; on one side of the point the curvature is positive, while on the other side
the curvature is negative.

- 5 5

- 5

5

P

Q

R

R

f[x_] := 0.08x^4+0.25x^3-1.2x^2-1.6x+1.2;
Plot[f[x], {x, -5, 5}, AspectRatio -> Automatic,
Ticks -> {{-5, 0, 5}, {-5, 5}}]

Figure 2.28: A Quartic Curve with Three Points.

Points P and Q of Figure 2.28 are inflection points of the quartic polynomial
0.08x4 + 0.25x3 � 1.2x2 � 1.6x + 1.2, and the interesting feature that is discussed here
has to do with the two points R. Those are the points on the curve that lie on the
straight line that passes through P and Q. As long as the curve has two inflection
points P and Q, the ratio PR/PQ always equals ⌘ for both points R, regardless of the
individual values of the five polynomial parameters and of the particular shape of the
curve. Reference [GoldenQuartics 20], by Adi Mittal, presents an elegant proof of this
little known fact.

Here is some more information about inflection points, for the benefit of inquisitive
readers. The definition of an inflection point implies that this is a point where the curve
moves in a straight line (a straight line that has shrunk to a single point). The slope of
a curve f(x) is its first derivative f ⌥(x), which can also be visualized as a curve. At an
inflection point, where f ⌥(x) is straight, its slope, which is f ⌥⌥(x), is zero, Therefore, given
a curve f(x), its inflection points can be located by computing its second derivative.
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In the case of a quartic polynomial, the derivatives are

f(x) = Ax4 + Bx3 + Cx2 + Dx + E

f ⌥(x) = 4Ax3 + 3Bx2 + 2Cx + D

f ⌥⌥(x) = 12Ax2 + 6Bx + 2C.

The second derivative is therefore a quadratic (degree-2) polynomial, so equating it to
zero produces a quadratic equation whose solutions are

P =
�3B �

"
9B2 � 24AC

12A
, Q =

�3B +
"

9B2 � 24AC

12A
.

Once this point in the derivation in reached, the analysis is trivial. If the term 9B2 �
24AC is negative, the curve has no inflection points. If this term is zero, there is one
infection point. Otherwise, there are two such points.

2.10 Complex Golden Ratios

The golden ratio ⌘ is defined in Section 2.9.4 as the ratio a/b that is obtained when we
start with a straight segment of length l and partition it into two parts a and b such
that a + b = l and l/a = a/b.

l

a b

This section extends this definition by partitioning segment l in four di⌃erent ways
to obtain four ratios as follows

⌘ =
a

b
=

a + b

a
, ⌘j =

a

b
= �a + b

a
,

⌘i =
a

b
=

a� b

a
, ⌘k =

a

b
= �a� b

a
.

Equation (2.9) serves as a guide to produce a set of four quadratic equations

⌘2 � ⌘� 1 = 0, ⌘2
j + ⌘j + 1 = 0,

⌘2
i � ⌘i + 1 = 0, ⌘2

k + ⌘k � 1 = 0.

These are easy to solve and produce the set of four general golden ratios, three of which
are complex numbers

⌘ =
1 +

"
5

2
, ⌘j =

�1 + i
"

3
2

= e2⇤i/3,

⌘i =
1 + i

"
3

2
= ei⇤/3, ⌘k =

�1� i
"

3
2

= e�2⇤i/3.
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Each of the four golden ratios has a simple relation with its inverse as follows

⌘ = 1 +
1
⌘

, ⌘j = �1� 1
⌘j

⌘i = 1� 1
⌘i

⌘k = �1 +
1
⌘k

.

The recursive relation between the original golden ratio and the Fibonacci numbers
has similar relatives which apply to all four general golden ratios

Fn = Fn�1 + Fn�2, Fj,n = �Fj,n�1 � Fj,n�2,

Fi,n = Fi,n�1 � Fi,n�2, Fk,n = �Fk,n�1 + Fk,n�2.

The Binet formula, due to Jacques Philippe Marie Binet, provides a closed expression
for the nth Fibonacci number in terms of ⌘ and its inverse ✓ = �1/⌘

Fn =
⌘n � ✓n

⌘� ✓
.

This formula applies to all four generalized golden ratios, where each has its own ✓
inverse.

Section 2.9.4 also shows how ⌘ can be expanded as an infinite nested square roots
and an infinite continued fraction

⌘ =

3

1 +

2

1 +
1

1 +
"

1 + · · · and ⌘ = 1 +
1

1 + 1
1+ 1

···

. (2.11)

This also applies to the three complex golden ratios. All four can be expanded into
continued fractions whose compressed definitions are

⌘ = [1 : 1, 1, 1 . . .], ⌘j = [�1 : �1,�1,�1, . . .],
⌘i = [1 : �1,�1,�1, . . .], ⌘k = [�1 : 1, 1, 1, . . .].

Finally, the four ratios can be expressed as nested square roots in the forms

⌘ =

3

1 +

2

1 +
1

1 +
"

1 + · · ·, ⌘j =

3

1 + i

2

1 + i

1
1 + i

"
1 + · · ·,

⌘i =

3

�1 +

2

�1 +
1
�1 +

"
�1 + · · ·, ⌘k =

3

�1 + i

2

1� i

1
1� i

"
1� · · ·.

References for this section are [mathforum 11], [stackexchange1851698 23], and [stack-
exchange4856811 24].

⌅ Exercise 2.48: How can we construct imaginary and complex numbers that will be
non-real “equivalents” of the golden ratio?
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2.10.1 Generalizing the Golden Ratio

The original definition of ⌘, the golden ratio, is by means of ratios. This definition is
generalized here by using areas instead of ratios. Euclid himself, in Book III, Proposi-
tion 11 of his Elements explains how to construct ⌘ geometrically. One only has to cut a
given straight line so that the rectangle contained by the whole and one of the segments
equals the square on the remaining segment. Figure 2.29a illustrates what this means
(see also Exercise 2.46). Start with a 1⇥1 square ABCD and place point M midway on
segememt AB. Rotate segment MD to determine point E.

From the right triangle ADM it is clear that (DM)2 = 12+(1/2)2, so DM =
"

5/2,
but from the construction it is also obvious that DM = ME. Therefore BE = ME �
MB = (

"
5�1)/2, which implies that AE = AB+BE = 1+BE = (

"
5+1)/2 = ⌘. Our

rectangle is golden, and satisfies the defining golden ratio AE/AB = AB/BE, which is
similar to the relation l/a = a/b (see the beginning of Section 2.9.4).
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PolarPlot[E^(2t/Pi), {t,-4Pi,5Pi},PlotRange->{{-10,55},{-25,5}}]

Figure 2.29: Golden Rectangle and Spiral.

A well-known property of the golden ratio, illustrated in Figure 2.26b and in many
other places, is that it can be partitioned into smaller and smaller subrectangles, all
featuring the same ratio and forming a spiral. However—and this is the first “nail in the
co⌥n of ⌘”—this property of the golden ratio is shared by almost all other rectangles,
as the following statement makes clear:

Any rectangle, except the square, can be partitioned into subractangles that
share the same ratio of length to height.
This fact is illustrated, following the notation of [Fowler 81], by the construction

of Figure 2.30a, which is a generalization of Figure 2.29a. Start by selecting a positive
integer n (3 in the figure). Construct a 1⇥1 square ABCD and set point Mn at a
distance n/2 from A. Construct segment DMn and rotate it to determine point E. The
extended segment AE has length n +

"
n2 + 4/2, a quantity which was coined noem

(nth order extreme mean) by Fowler. The generalized defining ratios (noem) are

MnE + AMn

AB
=

AB

MnE �AMn
, or

AE

AB
=

AB

GE
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Which for n = 1 equals the original golden ratio ⌘, a ratio which can now be termed
the first order extreme mean. For n = 3, Figure 2.30a includes point G such that
AMn = MnG as implied by the red arc. Since AM3 has length 3/2, we conclude that
the length of noem AE, the third order extreme mean, is

GE = M3E �M3G = M3D �AM3

=
0

12 + 1.52 � 3/2 =
0

13/4� 3/2 = (
"

13� 3)/2,

AE = AM3 + M3G + GE = 3/2 + 3/2 +
"

13/2� 3/2 = (3 +
"

13)/2.

(b)

p/2 p/2M

p

r
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F
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M3A 1

1
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EGB
noem

Figure 2.30: Noem and Poem Rectangles.

⌅ Exercise 2.49: What is the noem for n = 2?

The generalized golden ratios (or extreme means) are not limited to integers, and
can be obtained, following [Fowler 81], from Figure 2.30b for any real number p. The
result is denoted by r and is dubbed poem (pth order extreme mean). It starts with
a p⇥1 rectangle ABCD, where side AB has length p. Point M , the midpoint of AB,
is constructed, and segment MD, whose length is

0
p2 + 4/2, is rotated to determine

point E. The length of AE is r = (
0

p2 + 4 + p)/2, which yields the length of BE as
BE = AE �AB = (�p +

0
p2 + 4)/2. The latter value equals 1/r because

0
p2 + 4 + p

2
⇥ �p +

0
p2 + 4

2
=

(p2 + 4)� p2

4
= 1,

so we conclude that r � p = 1/r or r2 = pr + 1, which is the generalization of the
basic golden equations (2.8) and (2.9). Similarly, the relation AE/EF = FE/BE is the
generalization of the defining golden relation l/a = a/b, which appears at the beginning
of Section 2.9.4.

A generalized golden rectangle for r = 1.4 is shown in Figure 2.31, making it clear
that this rectangle is not much di⌃erent from the one for ⌘, shown in Figure 2.26. To
construct this rectangle, start with a 1⇥1 square (small brown) and append a 0.4⇥1
rectangle to it (white). This is already a generalized golden rectangle for r = 1.4, and
it can be extended indefinitely by appending bigger and bigger squares (pink, brown,
orange, cyan, blue, green, and red in the figure) in a spiral pattern.
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1.4

1
P 3P 6

P 5

P 4P 1

(0,1) (r,1)

(r,0)

P 2

Figure 2.31: A Golden Rectangle with Ratio 1:1.4.

Reference [Falbo 05] derives the coordinates of various strategic points on such a
rectangle, and provides the list

P2 = (r � 1/r, 1),

P3 = (r, 1/r2),

P4 = (r � 1/r + 1/r3, 0),

P5 = (r � 1/r, 1/r2 � 1/r4),

P6 = (r � 1/r + 1/r3 � 1/r5, 1/r2),

which converges at ⌦
r3

1 + r2
,

1
1 + r2

↵
.

There are other constructions that lead to rectangles whose ratios converge to ⌘.
A simple example is to start with a rectangle of sides a0 > b0 and apply the simple
recursion an+1 = bn and bn+1 = an � bn to construct smaller rectangles. The ratio rn

of sides of consecutive rectangles is derived by

1
rn+1

=
bn+1

an+1
=

an � bn

bn
=

an

bn
� 1 = rn � 1,

and this relation approaches the limit r2 � r � 1 = 0 whose familiar solution is r =
(1 +

"
5)/2 = ⌘, thereby proving that this construction extends the golden rectangle.

A similar example is to start in the same way, and apply the simple recursion an+1 =
an+, bn and bn+1 = an, to construct bigger rectangles with ratios rn+1 = 1 + 1/rn, that
also converge to ⌘.

One can therefore claim that there is nothing special about the golden rectangle,
but there is still something special about ⌘, because it is the limit of the ratios of so
many general rectangles.

Notice that the golden rectangle, as well as the rectangles described earlier, are
self-similar, which is why we can claim that ⌘ is somehow associated with self similarity.

Figure 2.31 also illustrates the generalized golden spiral that fits inside this rectan-
gle. In the figure, it is easy to see how this spiral was created out of several circular arcs.
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The centers of the arcs are shown, as well as several radii. The golden spiral, original or
generalized, is self similar, because the golden rectangle in which it fits can be extended
indefinitely by appending more squares.

The golden spirals are special cases of logarithmic (equiangular) spirals, a family of
curves that is described by the general polar equation r = aeb⇥, or equivalently,

� =
1
b

ln(r/a),

where a is the radius for � = 0, and b determines the shape of the curve. The golden
spiral is obtained when the ratio r/a equals ⌘. Also, b has to satisfy eb⇥r = ⌘, where �r

is a right angle (either 90⇤ or �/2). In this case, the expression eb⇥r = ⌘ becomes

b =
ln⌘

�r
=
. 0.0053468 for degrees

0.3063489 for radians.

The original (not generalized) golden spiral is depicted in Figure 2.30b.

An Extended Fibonacci sequence

The Fibonacci sequence, Section 5.6, is based on the relation Fn = Fn�1 + Fn�2,
which is extended here to become

xn = pxn�1 + xn�2, (2.12)

with x0 = x1 = 1, n ↵ 2, and for p that satisfies p = r � 1/r for a positive real r.
Reference [Falbo 05] lists closed expressions for the general term of this sequence, but
even following the recursive relation (2.12), it is easy to see that the first few terms are

x2 = p + 1, x3 = p2 + p + 1, and x4 = p3 + p2 + 2p + 1.

For p = 1, this is the original Fibonacci sequence, but for other values of p, the resulting
sequence features properties that permit us to consider it a valid extension of the basic
sequence.

We start with the basic equation of the golden ratio x2 � x� 1 = 0 and extend it,
in the spirit of relation (2.12), to x2 � px� 1 = 0, a quadratic equation whose solutions
(because p = r � 1/r) are r and �1/r, as can be seen by direct substitution. The
following properties derive from relation (2.12):

1. Square of the nth term. It is well known that the original Fibonacci sequence
has the unusual property that the square of any term is always one less or one more
than the product of its immediate two neighbors. Thus, for example, 32 = 2 · 5 � 1,
52 = 3 · 8+1, and 82 = 5 · 13� 1. This property is reflected in relation (2.12), because it
can be proved by induction that for any three consecutive terms of it, the square of the
middle term is always p more or p less than the product of its successor and predecessor.

2. Square roots and continued fractions. Equation (2.11), duplicated here, illus-
trates how ⌘ can be expanded as an infinite nested square roots and an infinite continued
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fraction

⌘ =

3

1 +

2

1 +
1

1 +
"

1 + · · · and ⌘ = 1 +
1

1 + 1
1+ 1

···

. (2.11)

Relation (2.12) yields the corresponding extensions

⌘ =

3

1 + p

2

1 + p
1

1 + p
"

1 + · · · and r = p +
1

p + 1
p+ 1

···

.

In summary, the above generalizations of the golden ratio, the golden rectangle,
and the golden spiral seem to somehow reduce the importance of the golden ratio and
demote it somewhat from its traditional prominent position. Those who see ⌘ in art,
architecture, and in nature and commercial design, should at least consider some of the
extensions proposed here. There may, perhaps, be some application where an extension
of ⌘ may serve better than the original ⌘.

2.11 Approximating Formulas

Irrational numbers cannot be fully written with just digits, so we use letters and other
symbols such as e, �, and

"
· · ·. The best that can be done to represent an irrational

number is to write many digits or to develop a compact expression that yields an excellent
approximation. One such expression, a surprising approximation of Euler’s number e,
is explained here.

The following definition is from Wikipedia: A pandigital number is an integer that
in a given base has, among its significant digits, each digit used in the base at least
once. The binary number 102, for example, is pandigital, as are also 2013, 201023,
and 012345678910. A similar concept is a pandigital formula. This is a mathematical
expression that uses each digit (of its base) at least once, together with arithmetic
operations and perhaps also variables.

With this in mind, it may come as a surprise to learn that the following pandigital
formula provides an insane approximation of the all-important Euler’s number e

*
1 + 9�46·7

+3285

. (2.13)

Computing this formula results in more than 18⇥ 1024 (18 septillion) correct first digits
of e; astonishing!

This esoteric, pandigital formula, due to Richard Sabey in 2004, is not a wild guess
but the result of careful thinking and experimenting. It starts with the observation that
one of the definitions of e is the limit of the simple, unusual expression (1+1/n)n. Sabey
(likely after several tries) started with the simple power N = 3285

and manipulated it to
become

N = 3285
= 9284

= 9442
= 946·7

.
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Poem on the Golden Ratio

In ancient times, a ratio was found,
A hidden thread through forms unbound,
From nature’s hand and mind’s keen eye,
Phi’s beauty takes to the sky.

Golden mean, divine proportion,
In flowers’ bloom, in ocean’s motion,
From galaxies to nautilus shell,
In art and life, it casts its spell.

A line divided, so precise,
A harmony in every slice,
The larger part to whole relates,
A magic math that fascinates.

Fibonacci’s sequence, simple and pure,
Unfolds a pattern, allure so sure,
Add two terms, the next reveals,
A spiral’s grace, its charm appeals.

In Parthenon and pyramids grand,
Phi’s presence lies, like nature’s hand,
Da Vinci’s art, a master’s stroke,
In golden lines, his secrets cloak.

A leaf’s unfurl, a petal’s grace,
The curve of space, in endless chase,
DNA’s twist, life’s very code,
In golden spirals, life’s road.

In music’s chord, in symphony,
A golden thread of harmony,
Architects and poets know,
In golden ratio, ideas flow.

Beyond mere numbers, a cosmic link,
In every form, a common ink,
Phi connects the great unknown,
In every seed its pattern sown.

A universe of stars and space,
In golden spirals, we find our place,
From smallest cell to grand expanse,
Phi’s elegance, a timeless dance.

In every form and every fold,
A story of the world is told,
Through golden ratio, life aligns,
A sacred script in endless lines.

So trace the spiral, round and round,
In nature’s code, Phi is found,
A wondrous math, forever bright,
In golden curves, the world’s delight.

By chatGPT 4o, May 2024.

Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth Symphony
beautiful. If numbers aren’t beautiful, nothing is.

—Paul Erdős.
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This basic application of the rules of exponentiation expresses the same N with (on the
left) the digits 3, 2, 8, 5, and on the right with the digits 9, 4, 6, and 7. Only a 0 and
a 1 are needed in order to arrive at pandigital perfection.

With this in mind, the expression (1 + 1/N)N can be written

�
1 +

1
N

�N

=
�
1 +

1
946·7

�3285

,

which now looks unmysterious and has lost the incomprehensibility of Equation (2.13).
There does not seem to be a direct reference to Richard Sabey, but his formula is

discussed in several places on the Internet. It is possible to get better approximations
to e by starting with even larger numbers such as N = 9999

, but the particular choice
of 3285

makes sense because it leads to a pandigital formula.

⌅ Exercise 2.50: What happened to zero? The Sabey formula is not pandigital because
it misses the digit 0.

Reference [kexue.fm 23] is a summary of this and many other formulas (not pandig-
ital) that approximate several mathematical constants.

The following pandigital formula, due to B. Ziv, reference [Weisstein-Ziv 23], pro-
duces an approximation of �, but it is only accurate to 10 decimal places

250.4
� 0.6�

�
0.39

7

�0.80.1

.

When computed at high precision, it yields 3.1415926535|904 . . ., where only the first 10
digits are correct.

Another pandigital formula, due to G. W. Barbosa, produces a 17-digit approxima-
tion of �

ln
.
[2⇥ 5! + (8� 1)!]

�
9 + 4! + (3!)!

/

"
67

.

One could claim that this is also weakly pandigital, because the (8�1) is a trick employed
to obtain the digit 8.

There are , of course, much more accurate approximations of �, but they are not
pandigital.
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2.12 Cyclic Numbers and Metadromes

We start with the inverses of the decimal digits

1/2 = 0.5, 1/3 = 0.333 . . . , 1/4 = 0.25, 1/5 = 0.2, 1/6 = 0.1666 . . . ,

1/7 = 0.142857142857 . . . , 1/8 = 0.125, 1/9 = 0.111 . . . .

Four of these inverses are infinite, repeating fractions. Of those, 1/7 is di⌃erent,
because its repeating part is the integer 142857. It is this property of 1/7 that turns
142857 into a cyclic number. Here is what it means.

Let’s first multiply 1/7 by 10. On one hand this equals 1.42857142857 . . . and on
the other hand it equals 10/7, which is also 1 + 3/7. Thus 3/7 = 0.42857142857 . . .,
a fraction whose six most-significant digits 428571 are a permutation of 142857. Simi-
larly, multiplying 1/7 by 132 results in 18,857,124, which produces, after separation and
addition, 18 + 857124 = 857142, another permutation.

Two more examples are (1) 142857 ⇥ 13 = 1857141. Separating this product into
1 + 857141 and adding produces 857142, another permutation. (2) 142857 ⇥ 316 =
45142812. Separating this product into 45+142812 and adding produces the permutation
142857.

However, when we try this with 84, which is a multiple of 7, the result is 142857⇥
84 = 11999988, which, after separation and addition, yields 11 + 999988 = 999999. In
general, when multiplying 1/7 by a multiple 7a, the result is a, which can be any number
and has nothing to do with the unusual properties of the inverse 1/7.

The cyclic number 142857 is based on 7 which is prime. There are infinitely many
prime numbers p that give rise to cyclic numbers. The inverse 1/p of such a prime has
the form

1
p

= 0.[cycle][cycle] . . . ,

with p� 1 digits per cycle. Multiplying such an inverse by 10p�1 shifts it p� 1 digits to
the left, obtaining

10p�1

p
= [cycle].[cycle][cycle] . . . .

When we subtract these two expressions, the result is

10p�1

p
� 1

p
=

10p�1 � 1
p

= [cycle],

which is why each cycle is of the form (10p�1�1)/p, and an integer of the form 10p�1�1
consists of (p� 1) 9’s.

Metadromes. An integer is a metadrome in a given base b if its digits are in strictly
increasing order in that base. For example, 1234, 268 and 13479 are all metadromes in
base 10. A close cousin is the plaindrome (not to be confused with palindrome), an
integer whose digits are in nondecreasing order, such as 2334779. Second cousins are
integers whose digits are in strictly decreasing (or nonincreasing) order.

The total number metadromes in base b is 2b�1. In base 2 there are two metadromes,
namely 0 and 1 (because 012 equals 1). In base 3 there are 23�1 = 4 metadromes (0, 1,
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2, and 123 = 5). In base 10 there are 210�1 = 512 metadromes, from 0 to 123456789.
Thus, the first few metadromes are 0, 1, 5, 27, 194, 1865,. . . .
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A Poem on Real Numbers

In realms of numbers, vast and wide,
Two worlds within the mind abide,
The rational, precise and clear,
The irrational, strange and near.

From counting sheep to measuring lands,
Rationals serve our clear demands,
A fraction’s form, a decimal’s grace,
A number line, they firmly place.

One-half, three-quarters, simple, neat,
In finite terms, they stay discreet,
With patterns that are easy to trace,
In rationals, we find our space.

But then we delve to deeper grounds,
Where numbers hum with endless sounds,
Irrationals, where logic bends,
A mystery that never ends.

Pi circles round in endless quest,
An unbound number, never at rest,
Its digits dance without repeat,
A constant curve, a rhythmic beat.

Square roots of primes, a wondrous sight,
Where rationals can’t find their light,
In endless streams, they flow unbound,
In them, infinity is found.

The golden ratio, Phi’s bright glow,
In nature’s art, its numbers flow,
A spiral’s curve, a petal’s span,
Irrational, a cosmic plan.

Yet both these realms, in tandem, lie,
In every thought, in every sky,
They weave together, form and void,
In harmony, they are deployed.

From simple sums to vast expanse,
In rationals, we take our stance,
But in the infinite’s grand domain,
Irrationals break the chain.

They whisper secrets of the vast,
Of time and space, of future, past,
In endless digits, they confide,
A universe that won’t divide.

Thus numbers dance in endless play,
Both rational and wild array,
In every thought, in every line,
A balance struck, a truth divine.

So honor both, the clear and wild,
In numbers’ realm, the free and styled,
For in their dance, our minds expand,
In rational and irrational, we understand.

By chatGPT 4o, May 2024.

[Numbers] are the only characters which can actually
be “read” by all people of this earth, regardless of language.

—Hermann Zapf, (1985).
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Symmetry

Symmetry comes from the Latin words sym (meaning together) and metron (meaning
measuring). This term is frequently utilized in daily life to evoke ideas of aesthetics,
beauty, harmony, and balance. It pertains to our inclination to establish, or at least
understand, organization and attractiveness, and maybe even flawlessness. Symmetry is
a characteristic that an object can have in mathematics. It is a process that keeps the
object unchanged, restoring it back to its original state, position, and alignment, despite
the majority of its points shifting. A circle exhibits strong symmetry as it appears the
same after any rotation or reflection. Similarly, a square can maintain its shape and
orientation when rotated in increments of 90⇤ or reflected across four di⌃erent axes.

This leads to the realization that symmetry is somehow related to transformations.
Imagine a magician holding an object. He asks you to close your eyes while he does
something to the object. When you open your eyes, the object looks the same. Did
he do nothing? Possibly, but he could also have transformed the object through one
of its symmetry transformations, perhaps by rotating or reflecting it. Thus, in some
sense, symmetry is a set of transformations, but in practice, the term symmetry also
has an esthetic meaning that cannot be defined just by considering transformations.
An interesting example is palindromes. Words such as refer, rotator, deified, and
racecar, which are spelled the same left-to-right and right-to-left. When encountering
such a word and realizing that it is a palindrome and therefore symmetric, we also feel
something. A feeling that has to do with esthetics and cannot be defined rigorously. A
similar example is the fact, discovered by researchers, that people and animals prefer
those with a symmetric face. Beauty, as we know, is in the eye of the beholder, but a
lopsided mouth or a broken nose are very noticeable. When someone declares “I love
broken noses,” people generally think, “a weirdo.”

Symmetry also has practical applications. An engineer designing a bridge may
decide to give it a four-fold symmetry, because he then has to do only a quarter of the
computations needed. Crystals often have rich symmetries, which is then magnified in
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a large piece of material made from the crystal. For all practical purposes, such a chunk
of material may be considered infinite.

Symmetry is also related to art, because a great many art works are either symmetric
or include elements of symmetry. It is this relation which raises the question of why living
objects tend to exhibit certain types of symmetry, mostly bilateral. The best answer
that we can o⌃er is natural selection and how it works. It is generally believed that
natural selection works blindly. When life starts somewhere, it starts with unicellular
forms that slowly grow but remains essentially shapeless blobs. As those living beings
become more complex and start moving on their own, be it in water, land, or in the
air, they may benefit from certain symmetries, so those individuals that feature such
symmetries survive and may become more complex.

One symmetry that is beneficial to movement is a front-back axis, where the front
has sensory organs. The di⌃erence between top and bottom is also important for a
moving animal. In a land animal, the top must be able to resist attack, while the
bottom should contain the means of locomotion. On the other hand, there is nothing
to prefer left over right or the opposite. This must be the reason why the interiors of
current animals exhibit a weak left-right bilateral symmetry (our hearts are slightly to
our left), while the exteriors benefit from strong left-right symmetry of the legs, fins, or
wings.

Many animals and flowers (butterflies and orchids come to mind) have a bilateral
symmetry; their left and right halves are identical or almost so. In contrast with the gen-
eral concept of symmetry, which is vague and not rigorously defined, bilateral symmetry
is geometric and precise. An object has bilateral symmetry with respect to a plane P ,
if it is identical to its reflection about P . Rotational symmetry is similarly also easily
defined. An object has complete rotational symmetry around an axis a if any rotation
about a carries the object into itself. Because of the paucity of such objects (only the
circle and sphere), we also talk about incomplete rotational symmetry, the kind that
transforms an object into itself only for certain rotation angles. A starfish immediately
comes to mind.

⌅ Exercise 3.1: What symmetry is featured in Figure 3.1?

At the opposite of symmetry there is asymmetry, which very often is part symmetry
or broken symmetry rather than the complete lack of symmetry. We can say that if
symmetry implies rest, then asymmetry implies motion; if symmetry implies law and
binding, then asymmetry implies accident and loosening; and if symmetry implies rigor
and cooperation, then asymmetry implies leniency and discord. Thus, (1) the two front
towers of many Gothic cathedrals are di⌃erent, thereby breaking the bilateral symmetry
of the rest of the structure, and (2) the human face is partly symmetrical.

Symmetricity. Many English speakers claim that symmetricity is not a word, but
some propose to validate its use in certain contexts, similar to words such as transitivity
and reflexivity. Wiktionary mentions the term symmetricity and defines it as the con-
dition of being symmetric, or the extent to which, or the manner in which something is
symmetric.

Chirality. An object or a figure is chiral (has chirality) if it cannot be mapped to
its mirror image by rotations (in the plane) and translations alone. Familiar examples
are hands, shoes, clock faces, non-isosceles triangles, and screws or helices. Intuitively,
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Figure 3.1: Symmetry in Ancient Art.

chirality is the lack of mirror symmetry, while achirality, its opposite, means the existence
of mirror symmetry. A chiral object has no reflection symmetries. An object with such
symmetries is achiral.

⌅ Exercise 3.2: What are examples of left-handed threads?

Why are we attracted to symmetry? A psychologist might claim that symmetry
represents order, and we intuitively look for order in this unfamiliar and frightening
universe we find ourselves in.

By the word symmetry. . . one thinks of an external relationship between pleasing parts
of a whole.

—Johann Wolfgang von Goethe.

3.1 A bit of History

Before we delve into the details of symmetric objects and transformations, here is a
short survey of a few important milestones in the development of the study of symmetry
over the centuries. Perhaps the first person who noticed the beauty and usefulness of
symmetry was the unknown inventor of the wheel. This familiar and practical object
has infinite rotational symmetry. Even more, a two-dimensional wheel, a circle, which
is infinitely thin and has no front and back, also has infinite reflection symmetry. It can
be flipped about any axis that passes through its center.

The next major step in understanding symmetry was taken by the ancient Greeks,
who discovered the five Platonic solids, those highly symmetric objects, the study of
whose properties did much to advance Greek mathematics.

Much later in history, many important contributions to symmetry were made by the
anonymous muslim artists who decorated the floors, walls, and ceilings of the Alham-
bra in Granada. Perhaps because of religious restrictions they never depicted images of
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people or animals. All their creations are ornamental and many feature complex sym-
metries. In 1922, the Alhambra symmetries inspired Maurits Escher and became the
source of his interest and future work on tessellations (regular divisions of the plane).

Skipping forward, we meet the young Évariste Galois, who as a teenager originated
the branch of mathematical groups, the abstract objects used today to express, denote,
and study symmetries.

But the real revolution in our understanding of symmetry came in the 20th century,
where group theory became a powerful tool in the hands of many mathematicians.
The study of symmetries and their properties and representations has culminated, in
1985, with the publication of the ATLAS of Finite Groups, a seminal work by several
mathematicians, which lists all the finite simple groups, including much information
about each.

Symmetry

Symmetry is a balance
Between two equal parts
It is a harmony
That pleases our eyes and hearts
Symmetry is a pattern
That repeats itself in space
It is a structure
That gives order and grace
Symmetry is a beauty
That we often admire
It is a reflection
That sparks our desire
Composed by ChatGPT Jan 2024

3.2 Symmetry Groups

In a mathematical sense, symmetry is a set of transformations. Several di⌃erent objects
may feature the same symmetries, which is why it is useful to develop a mathematical
language or notation that captures the essence of symmetry by expressing symmetries in
terms of transformations. This language has become known as groups or group theory.
The collection of symmetries of any object is a group, and every group expresses the
symmetries of some object. Thus, a mathematical group is a set with structure. It
encapsulates algebraically the intuitive notion of the symmetry of an object, where by
symmetry we mean an operation that leaves the object unchanged.

In other words, a symmetry group is a mathematical structure that characterizes
the symmetries of an object, both 2D and 3D. It is the set of all the isometries that a
leave the object unchanged. (Isometries are transformations that preserve the distance
between any two points.)

Perhaps the first question that comes to mind, when we hear about symmetry
groups is how to actually “see” such a group. Can we have a diagram, a list, a table,
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or a mathematical expression that would visualize such a group. There are such tools,
and some of them, such as the Cayley table (see Table 3.5) and the orbifold notation of
Section 3.3 are explained in this book.

The advantage of applying mathematics to the study of symmetry is that objects
may exist in higher dimensions, more than just two or three. Such objects cannot be
visualized, but can still be investigated and their symmetries identified and summarized
in a symmetry group. An extreme example of this power of groups is the so-called
monster group, first discovered in 1973 and then constructed in 1980. This vast group
expresses the symmetries of an object (a polytope) that “exists” in a 196,883-dimensional
space.

A polygon is a plane (two-dimensional) convex shape bound by straight lines. A
polyhedron (plural: polyhedra or polyhedrons; from Greek poly “many,” and hedron
“base or seat”) is a three-dimensional shape with flat polygonal faces, straight edges
and sharp corners or vertices. A polytope is the generalization of three-dimensional
polyhedra to any number of dimensions.

In general, polygons may be considered two-dimensional polytopes, and polyhedra
may be considered three-dimensional polytopes. Thus, the term polytope is most general
and, in the spirit of Tolkien, we may refer to it as one term to rule them all. One of the
simplest higher-dimensional polytopes is the tesseract, the four-dimensional cube.

So a group captures the essence of symmetry by expressing symmetries in terms of
transformations, but what are these transformations? Let’s start with scaling. Mathe-
matically, an object can be stretched or shrunk or in general scaled by a certain factor.
Being familiar with symmetry in real life, we intuitively feel that scaling is not a symme-
try transformation, and a little thinking shows why. Scaling is not a symmetry because
it changes the distance between points of the object. Scaling changes the size of the
object but not its overall look, and yet we feel that this should not be considered a sym-
metric transformation. On the other hand, transformations such as rotation, reflection,
and translation preserve distances, which is why they, or at least some of them, may be
considered symmetry transformation.

This is why in mathematics, symmetry is an isometry (a function that preserves
the distance between any two points) of the Euclidean space. Such a function may
move points of the object, but leaves unchanged the footprint, the general shape, or the
topology set of the points that constitute the object.

Symmetry is found in many mathematical objects, not just in geometric objects.
Shifting every real number up by an amount a preserves the order of the numbers, as
well as their relative distances, which is why this operation is a symmetry. Shifting the
real numbers by a = 1 is a special case where integers remain integers. This is even
more symmetric. Another example of symmetry in mathematics is swapping x and y in
x3 + y3 + z3. In music, we perform a symmetric transformation when transposing a set
of notes a half-step down.

We can therefore claim that mathematics, and especially group theory, deals with
symmetry in the very broad sense of “reversible (or invertible) transformations that
preserve some kind of structure.”
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Group theory is the study of symmetry. When an object appears symmetric, group
theory can help us study it. We apply the label “symmetric” to anything that is
invariant under some transformations. This can apply to geometric figures . . . but
also to algebraic objects like functions . . . .

—Keith Conrad.

⌅ Exercise 3.3: Is every group a symmetry group?

A mathematical group G is a set of objects (the group’s elements) with a binary
operation denoted by “+” or by “⇤” that is defined on the elements and that satisfies
the following requirements.

1. Closure: for any a, b ⇠ G, the sum (a + b) is an element of G.
2. Associativity: any a, b, c ⇠ G we have (a + b) + c = a + (b + c).
3. Identity: there exists e ⇠ G such that for all a ⇠ G (a + e) = (e + a) = a.
4. Inverses: for each a ⇠ G, there exists a unique element a�1 ⇠ G such that a+a�1 =

a�1 + a = e.
5. If the group operation is commutative, i.e., if a + b = b + a for any a, b ⇠ G, the

group is called Abelian.

Question: What’s purple and commutes?
Answer: An Abelian grape.

Examples of groups:
1. The set of all the integers with integer addition. The identity element is the integer

0. This is an infinite group.
2. The (finite) set of the integers 0, 1, 2,. . . ,m� 1 with modulo-m addition.
3. The integers 1, 2,. . . ,q � 1 for a prime q with modulo-q multiplication.
4. The set of all rotations in two dimensions under the operation: The sum of the two

rotations by � and ⇥ degrees is a rotation by � + ⇥ degrees.
The set (0, 1, 2, 3) with modulo-4 addition is a group denoted by G(4). It obeys the

addition table
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

The order of a group (its cardinality) is the number of elements. It is denoted by
ord(G). The order of G(4) is 4.

The order of a group element. An element a of a group has an order, which is
defined as the smallest positive integer n such that an = e. The order is denoted by
Ord(a) = n or |a| = n. If such an n does not exist, then a is said to have order infinity.

A simple example is the set of integers {0, 1, 2, 3, 4, 5} with the operation of addition
modulo 6. Its identity under this operation is the element 0. Choose an element a = 5
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and examine its powers 51 = 5, 52 = 4, 53 = 3, 54 = 2, 55 = 1, but 56 = 0, which is why
this element has order 6.

Example. The group of all positive rational numbers with arithmetic multiplication
as the operation. The identity element is 1 and every element has an inverse, because
there is no question of dividing by zero. It is easy to see that element 2 of the group has
order infinity, because its powers under this operation are 2, 4, 8, 16, . . . and none is the
identity.

Example. The symmetric group S6 of all permutations of six objects. Its elements
are the permutations. Its identity is e =

�1 2 3 4 5 6
1 2 3 4 5 6

⇥
, and its operation is permuting

the components of an element. Consider element a =
�1 2 3 4 5 6

6 1 3 2 5 4

⇥
. How many times do

we have to “multiply” it by itself (i.e., to permute each of its six components in the
same way) in order to bring it to the identity? We check component 1 and observe
that 1 ⇣ 6 ⇣ 4 ⇣ 2 ⇣ 1. The Mathematica statement PermutationPower[{6, 1,

3, 2, 5, 4}, 4] shows that this permutation is transformed to the identity after four
multiplications.

Example. The dihedral group D2·4 of all symmetries of the regular polygon with four
sides (square). The elements of the group are the symmetries. The group operation ⌥ is
composition of transformations (rotations and reflections). We examine group element
r2, a 180⇤ rotation. Obviously, two consecutive 180⇤ rotations in the same direction
bring the square to its original orientation, which is why r2 ⌥ r2 = e or Ord(r2) = 2.

Two interesting results can be proved from this definition of order: (1) If an = e,
then the n di⌃erent powers a0 = e, a1, a2, a3, . . . , an�1 are included in the group. (2)
If Ord(a) =⌫, then all the powers of a are di⌃erent.

A subgroup is a subset of the elements of a group that is closed under the group’s
operation. A theorem by Lagrange states that if S is a subgroup of G, then ord(S)
divides ord(G). For example, if S is the subgroup (0, 1) of G(4), then ord(S) = 2 divides
ord(G(4)) = 4 and G(4) can be partitioned into the cosets S and S + 2.

Reference [math.wrath 23] is a list of videos that illustrate many basic concepts and
terms related to groups.

Note. In plain talk, we can say “if this then that,” but mathematics is rigorous,
which is why it is common to see the phrase “if and only if” (often shortened to “i⌃”)
in mathematical writings.

Here is a short discussion of the three main types of functions. Given two sets with
elements A and B, respectively, the following terms are used:

A general function maps each member of A to a member of B. It never maps an A
to more than one B (i.e., it is not a one-to-many function), but it may map more than
one A to the same B (it can be many-to-one).

An injective function (also known as One-to-One) will not map have two or more
A’s to the same B. It is not many-to-one, so it is more restrictive than a general function.
Also, there may be a B without a matching A.

A surjective has at least one A that maps to every B; no B is left out.

A bijective function (or a bijection] is one that is both injective and surjective. It
provides perfect matching of the two sets (its domain and its range) in the sense that
every element has a partner and no one is left out. This is referred to as a one-to-one
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correspondence between the two sets. An important feature is that bijective functions
have an inverse. There is always a function that maps B back to A.

Isomorphism is an important concept in group theory. Two groups are said to
be isomorphic if they have the same structure. The groups may be very di⌃erent, their
elements, their operations, and their applications may be di⌃erent, but they may still
be isomorphic. It’s like saying that the groups have di⌃erent substances, but the same
form.

Formally, two groups G1 (with group operation ⌥) and G2 (with group operation
•) are isomorphic if there exists a bijection f : G1 ⇣ G2 such that for any elements
a, b ⇠ G1, f(a ⌥ b) = f(a) • f(b). In other words, if f maps a to x and b to y, then it
maps the G1 product a⌥ b to the G2 product x•y. The function f is referred to, in such
a case, as an isomorphism from G1 to G2, which is denoted by G1 )= G2.

Table 3.2 is an example of isomorphism. The operation of G1 is modulo 4 addition
and the • operation of G2 is similar but is performed on letters. The mapping is the
bijection

f =



 
0 1 2 3
✓ ✓ ✓ ✓
e a b c

�

! .

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

• e a b c
e e a b c
a a b c e
b b c e a
c c e a b

G1 G2

Table 3.2: Isomorphic Groups.

Proving that two given groups are isomorphic may be challenging, but the opposite
is often easy. If we can show that one of the groups has a feature that the other doesn’t
share, then the two are not isomorphic. Here are several examples of such features:

One is commutative while the other one is not.

One is cyclic and the other one is not.

One has an element of order n (it generates a subgroup of order n) but the other
one is lacking such an element.

The two groups are finite and have di⌃erent orders (di⌃erent number of elements).
An important result that has to do with isomorphism is Cayley’s theorem, which

states that every group G is isomorphic to a subgroup of a symmetric group. An example
of this kind of isomorphism is the group Z4 = 0, 1, 2, 3 with addition modulo 4, listed in
Table 3.2, whose elements correspond to the subgroup {e, (0123), (02)(13), (0321)}.

There is no symmetry in nature. One eye is never exactly the same as the other.
—Édouard Manet.
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Groups and Symmetry

In mathematics, an important application of groups is to represent symmetry. The
elements of a symmetry group are not numbers but rather symmetry operations (or
transformations) on an object. The symmetry group of a geometric object is the group
of all the transformations that leave the object unchanged. We say that the object is in-
variant under these transformations. The elements of the group are the transformations,
and the group operation is composition of transformations.

A group is the perfect mathematical concept to represent symmetries, because sym-
metric transformations (or in short, symmetries), the transformations that preserve ob-
jects and preserve distances, must satisfy the following properties:

A composition of symmetries is also a symmetry.

A composition of symmetries is associative a(bc) = (ab)c. This is illustrated in
Figure 3.3a with a pentagon. On the left side of the figure, composition P(QR) of three
transformation is performed by applying R, Q, and P in this order. Transformation R
is a reflection about an axis through vertex 4. Transformation Q is a reflection about a
vertical axis, and transformation P is a 72⇤ clockwise rotation. On the right side of the
figure, composition (PQ)R is performed by first executing Q and P (on the top line),
which produces PQ (in green), and then applying, on the bottom line, first the same
PQ and then R to obtain (PQ)R. Notice that the vertex numbers are considered parts
of the transformed object.

Not perturbing an object is also a symmetry, because it preserves the object and
all distances between its points. This symmetry is therefore the identity element of the
symmetry group of the object.

Any symmetry has an inverse which is also a symmetry.

However, a symmetry group is often non-commutative, because a composition a+ b
of symmetry transformations may be di⌃erent from its reverse b + a. Figure 3.3b is an
example. In the left part of the figure, transformations Q and P are performed in this
order, to obtain the composition PQ. On the right part, the order is reversed, and it
is clear that the results are di⌃erent. Again, in order for the result to be obvious, the
vertex numbers, which are non-symmetric, must be considered part of the object.

For simple geometric objects such as polygons and polyhedrons, it is possible to
express rotations and reflections by listing the new position of each vertex of the object
after the transformation. When the square of Figure 3.3c is rotated 90⇤ clockwise, for
example, vertex 1 moves to 2, 2 moves to 3, and so on, which can be expressed as the
permutation ⌦

1 2 3 4
2 3 4 1

↵
.

Reflections of the square about a vertical axis and about the main diagonal are expressed
by ⌦

1 2 3 4
2 1 4 3

↵
,

⌦
1 2 3 4
1 4 3 2

↵
.

However, the important connection between symmetry transformations and groups be-
comes clear when we consider combinations of transformations.
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Figure 3.3: Associativity and Non-commutativity of Symmetries.

The rectangle is a simple example of this relation. It is transformed to itself after
(1) a 0⇤ rotation, (2) a reflection about a central horizontal axis, (3) a reflection about
a central vertical axis, and (4) a 180⇤ rotation. Examining any diagram of a rectangle,
the following properties become clear:

1. Transformation 1 followed by any transformation t (or t followed by 1) is equivalent
to just transformation t. Thus, transformation 1 is the null transformation or the
identity element of the rectangle’s transformation group.

2. Any of the four transformations followed by itself returns the rectangle to its original
shape. Each of those transformations therefore equals its inverse.

3. Transformation 3 followed by 2 is equivalent to transformation 4.

An analysis of all the combinations of two transformations of the rectangle yields
Table 3.4a. The table can be considered the definition of a symmetry group of four
elements, because it specifies the group operation for the elements. A direct check verifies
that element 1 (the null transformation) is the group’s identity, that the operation is
closed, and that it is noncommutative. This symmetry group is denoted by D4. The D
stands for dihedral, meaning an angle formed by two plane faces; anhedral means the
opposite. In aeronautics, dihedral or anhedral is the angle—up or down, respectively—
between the two wings of an aircraft.

(A dihedral group is a group whose elements correspond to a closed set of rigid
motions, i.e., rotations and reflections, in the plane. The dihedral group with 2n elements
is denoted by either Dn or D2n. The group consists of n reflections, n�1 rotations, and
the identity transformation.)

The trivial group. The identity transformation is included in any symmetry group,
and is important because it is the identity element of the group. As a result, an asym-
metric object, such as the letter “J,” has a symmetry group that consists of a single
element, the identity transformation e. This group is referred to as the trivial group or



3.2 Symmetry Groups 141

the zero group. It is cyclic of order 1 and is denoted by Z1 or C1. Some may claim
that the existence of this group implies that there is no such thing as a completely
non-symmetric object, but this seems a philosophical, not a mathematical, question.

⌅ Exercise 3.4: Explain the meaning of the phrase “Group G has no nontrivial proper
subgroups.”

A cyclic group, denoted by Cn, is a group generated by a single element g, the
generator of the group. Every element of the group is obtained by repeatedly applying
the group operation to g or to its inverse.

The complex roots of unity, discussed on Page 88, are a good example of a cyclic
group. The set of complex 6th roots of unity is a cyclic group G generated by the six
powers of the generator (or the primitive root)

z =
1
2

+
"

3
2

i = e2⇤i/6.

Thus G = {1, z, z2, z3, z4, z5}, where z6 = 1.
Also, all cyclic groups of order 6 are isomorphic (have the same structure as) the

standard cyclic group G6 = {1, g, g2, g3, g4, g5}, where g6 = g0 = 1 and (symbol ⌥ is the
group operation) gi⌥gk = gi+k(mod6).

* 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

* 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 6 7 5 4
2 2 3 0 1 5 4 7 6
3 3 0 1 2 7 6 4 5
4 4 7 5 6 0 2 3 1
5 5 6 4 7 2 0 1 3
6 6 4 7 5 1 3 0 2
7 7 5 6 4 3 1 2 0

⇤ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

(a) (b) (c)

Table 3.4: The D4, D8, and D10 Dihedral Symmetry Groups.

Similarly, the rhombus has limited symmetry. Its four symmetry transformations
are (1) the null transformation, (2) a reflection about the line bd, (3) a reflection about
line ac, and (4) a 180⇤ rotation. An analysis of all the combinations of two of these trans-
formations results in the same symmetry group as the rectangle. Thus, even though the
rhombus and rectangle are di⌃erent geometric objects and their symmetry transforma-
tions are di⌃erent, we say that they have the same symmetries and we refer to them as
isometric.
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Intuitively, a square is more symmetric than a rectangle or a rhombus. More trans-
formations leave it unchanged. It is easy to see that these are the four rotations by
multiples of 90⇤ and the four reflections about the vertical, horizontal, and two diagonal
axes. These eight transformations can be written as the permutations

0 =
⌦
a b c d
a b c d

↵
, 1 =

⌦
a b c d
b c d a

↵
, 2 =

⌦
a b c d
c d a b

↵
, 3 =

⌦
a b c d
d a b c

↵
,

4 =
⌦
a b c d
b a d c

↵
, 5 =

⌦
a b c d
d c b a

↵
, 6 =

⌦
a b c d
a d c b

↵
, 7 =

⌦
a b c d
c b a d

↵
,

which can immediately be used to construct the symmetry dihedral group D8 listed in
Table 3.4b.

Finally, the pentagon is used to create the larger symmetry group D10, because it
has 10 symmetry transformations. Figure 3.3a shows that the pentagon is transformed to
itself by any rotation through a multiple of 72⇤ as well as reflections about five di⌃erent
axes. These ten transformations give rise to the D10 symmetry group of Table 3.4c.
Symmetries of the square

Figure 3.3c shows that the square has eight rigid symmetries, three rotations, four
reflections, and the identity e. However, only one rotation, by 90⇤, and one reflection
(any reflection, but we select the vertical, the one about the horizontal axis) are enough
to construct the group of the square. They are denoted by r and f , respectively, and
they, together with their compositions, constitute Table 3.5, the Cayley table (or multi-
plication table) of the square.

⇤ e r r2 r3 f rf r2f r3f

e e r r2 r3 f rf r2f r3f
r r r2 r3 e r3f f rf r2f
r2 r2 r3 e r r2f r3f f rf
r3 r3 e r r2 rf r2f r3f f
f f rf r2f r3f e r r2 r3

rf rf r2f r3f f r3 e r r2

r2f r2f r3f f rf r2 r3 e r
r3f r3f f rf r2f r r2 r3 e

Table 3.5: The Cayley table D2·4 of the Square.

Isomorphism of groups is discussed on Page 138. The reader should notice that the
two representations of the D2·4 groups listed in Table 3.4b and Table 3.5 are isomorphic.

Every triangle is a love triangle if you love triangles.
—pythagoras.

Pythagoras (c. 569–475 b.c.)
Symmetries of the triangle

Triangles are such simple geometric figures that their symmetries can be visualized
without any diagrams. Starting with the equilateral triangle. This highly-symmetric
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figure transforms to itself after several rotations and reflections, transformations that
are denoted here by r and f , respectively. If r denotes a 120⇤ counterclockwise rotation,
then r2 denotes the similar 240⇤ rotation. However, the e⌃ect of r2 is identical to �r
(a 120⇤ clockwise rotation), which is why group elements r2 and �r are inverses of
each other. Similarly, transformation r3, with is a full 360⇤ rotation equals the group
identity, denoted by e. The rotation part of the symmetry group of this triangle can be
summarized by either the short list

e, r, r2 = �r, r3 = e,

or by writing the group elements in terms of the vertex numbers, using cycle notation

e =
⌦

1, 2, 3
1, 2, 3

↵
= (1)(2)(3), r =

⌦
1, 2, 3
3, 1, 2

↵
= (1, 3, 2), r2 =

⌦
1, 2, 3
2, 3, 1

↵
= (1, 2, 3).

A symmetric reflection fi of the equilateral triangle is a flip about the axis that
passes through vertex i. There are three such reflections and it is easy to visualize them
and convince ourselves that f2

i = e and fi = �fi is its own inverse. Thus, reflections
add more cycles to the symmetry group of the equilateral triangle (the dihedral D2·3
group), which is summarized in Table 3.6.

f =
⌦

1, 2, 3
1, 3, 2

↵
= (1)(2, 3), rf =

⌦
1, 2, 3
2, 1, 3

↵
= (1, 2)(3), r2f =

⌦
1, 2, 3
3, 2, 1

↵
= (1, 3)(2).

e r r2 f1 f2 f3

e e r r2 f1 f2 f3

r r r2 e f3 f1 f2

r2 r2 e r f2 f3 f1

f1 f1 f2 f3 e r r2

f2 f2 f3 f1 r2 e r
f3 f3 f1 f2 r r2 e

Table 3.6: Symmetry Group of the Equilateral Triangle.

The isosceles triangle features lower symmetry. It only has one reflection in addition
to the identity, so its symmetry group consists of only e and f . A scalene triangle has
no rotation or reflection symmetries.
Symmetric groups and cycle notation

Permutation groups are a special case that shows up in connection with symmetry.
The elements of a permutation group are permutations of a given set M of symbols, and
the group operation of the permutation group is composition of permutations (which
are thought of as bijective functions from the set M to itself). The connection between
permutation groups and symmetry is the group action, the way in which the elements of
a permutation group permute the symbols of set M. This is easily grasped with examples.
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The group of all permutations of a set M is the symmetric group of M, often written
as Sym(M). A permutation group is therefore a subgroup of some symmetric group. If
M is the set {1, 2, . . . , n}, then Sym(M) is normally denoted by Sn, and may be called
the symmetric group on n symbols (not to be confused with symmetry groups). The
well-known Cayley’s theorem states that every group is isomorphic to some permutation
group.

Some permutation groups are also symmetric groups, which is not the same as
symmetry groups. Symmetric groups are denoted by Sn where n is the number of
symbols in the permutation. The elements of the group itself are the n! permutations,
not the symbols that are permuted. Thus, for example, symmetric group S3 is the set of
six permutations of three basic elements. It can be written in cycle notation (see below)
as

S3 =
��

1, 2, 3
1, 2, 3

�
,

�
1, 2, 3
1, 3, 2

�
,

�
1, 2, 3
3, 2, 1

�
,

�
1, 2, 3
2, 1, 3

�
,

�
2, 3, 1
1, 2, 3

�
,

�
1, 2, 3
3, 1, 2

�
,

✏
(3.1).

Notice that the order S 3 of this group is the same as that of D3 (the dihedral group of
order 3 or the group of the symmetries of an equilateral triangle), but this is not always
the case. The order of S4 is 4! = 24, which is di⌃erent from |D4| = 8. Every element of
D4 is a permutation, and is also an element of S4,

The notation used in Equation (3.1) is cumbersome, which is why the cycle notation
of permutations is sued in practice. Using this notation, group S3 is written

S3 = {(1, 2, 3), (1)(2, 3), (1, 3)(2), (1, 2)(3), (2, 1, 3), (1, 3, 2)} ,

where the cycle (1)(2, 3) means 1 ⇣ 1, 2 ⇣ 3, 3 ⇣ 2. Often, in cycles such as (1, 2)(3),
and (1)(2, 3), an author may omit the short cycle with a single element and write only
(1, 2) or (2, 3).

When composing symmetry transformations, we end up with a cycle for each trans-
formation and then combine them in a simple way as follows. Given the transformations
Q, with cycle (1, 3, 5, 2), and P, with cycle (2, 4, 3), if P is applied first, then the compo-
sition is written QP and it corresponds to the combined cycle (1, 3, 5, 2)(2, 4, 3). Going
from right to left, we notice that 1 is first permuted to 1 and then to 3, so in the com-
bined cycle 1 goes to 3. Similarly, 2 first goes to 4, and later, 4 goes to itself, so when
these are combined, 2 goes to 4. Similarly 3 ⇣ 2 ⇣ 1 and 1 ⇣ 1 ⇣ 3. The combined
cycle is now (1, 3)(2, 4, 5).

⌅ Exercise 3.5: Try your hand with the two cycles left (2, 9, 7, 4) and right (1, 6, 4).

⌅ Exercise 3.6: Write the cycle notation of dihedral group D8 = D2·4.

Symmetry in three dimensions can be richer and much
more complicated than its two-dimensional equivalent. It is
also much harder to analyze and visualize. A cube is a good
example. This simple geometric object can be rotated and
reflected in many ways and it features high symmetry. We
concentrate on dice, which are cubes with their faces labeled
and therefore distinct. The figure shows three views of one
of the eight corners of a die, the corner adjacent to the faces
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labeled 1, 2, and 3. Each view can be obtained from any of
the other ones by a rotation, for example, a rotation that places one of the faces on top.
This is why these three rotations are part of the symmetry group of the die.

Having eight corners, the group therefore features 24 rotation symmetries. However,
the particular labeling of the die gives rise to another group of 24 rotation symmetries. A
careful examination of the dice in the figure will convince the reader that the faces seen
at the one/two/three corner are arranged counter-clockwise. In principle, it is possible
to have dice where the same faces are arranged clockwise, which results in 24 additional
rotation symmetries of the die, for a total of 48.

(The opposite faces of a die are traditionally arranged to always sum to seven. This
gives two possible mirror image arrangements in which the numbers 1, 2, and 3 may be
arranged in a clockwise or counterclockwise order about a corner. Figure 3.7 illustrates
this chirality of dice. The cube faces may be placed counterclockwise (top) or clockwise
(bottom).)

3
6
4
5 1 2

4
6
3
5 1 2

Figure 3.7: The Chirality of Dice.

⌅ Exercise 3.7: The six faces of a standard die are numbered 1 through 6. The arithmetic
mean of these numbers is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5), which is what we expect
when a single die is thrown many times. Throwing two dice results in 2 through 12,
with a mean of 7. Design a numbering system for a six-sided die that produces the same
means.

It is clear that symmetries in plane (two-dimensional) figure can be quite com-
plicated and may be di⌥cult to visualize. Symmetries in three-dimensional geometric
figures can be much more complex and harder to see. An important di⌃erence to keep
in mind is the behavior of reflections. A two-dimensional figure has infinite thickness
and therefore no front and back. When reflecting such a figure, we see the same side
which is both the front and the back. This is why certain two-dimensional reflections are
symmetry operations. A three-dimensional figure does have a front and a back, so when
it is reflected (flipped) about any axis, we see its back. If its back and front are di⌃erent
(have di⌃erent colors or patterns) the reflection is not a symmetry transformation. See
also Exercise 3.8.
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⌅ Exercise 3.8: Given the red, two-dimensional, two-part asymmetric figure of Fig-
ure Ans.8, show how to transform it to itself, ending up in the same location and using
just rotations and reflections, no translation.

Symmetries of the cube

A cube is a polyhedron, so it consists of surfaces, which are bounded by edges, which
in turn are delimited by corner points (vertices). Thus, any symmetry of a cube is a
special permutation of its eight corners, a permutation that transforms edges to edges.
The pair of corners of an edge are moved by a symmetry transformation to become
the pair of corners of some edge. A cube has 48 symmetries of which 24 are rotations
and can be performed physically on a real cube. The other 24 are reflections or rotary
reflections, and can be visualized with the help of diagrams or videos.

The 24 rotational symmetries of the cube can be counted and understood in three
steps as follows:

1. Rotation about the faces. Imagine an axis through the center of a face of the
cube and its opposing face. Turning the cube about this axis by 90⇤, 180⇤, and 270⇤,
are symmetry transformations. The six faces of the cube make three pairs of opposing
faces, which produces 3⇥ 3 = 9 symmetry rotations. This is particularly easy to see if
the faces are numbered or painted di⌃erent colors.

2. Rotations about the edges. A cube has 12 edges which can be organized in six
pairs of opposing edges. Imagine an axis from the center of an edge, through the center
of the cube, to the center of the opposing edge. A 180⇤ rotation abut this axis produces
a symmetric transformation. These make six more symmetry rotations of the cube.

3. Finally, there are rotations about the eight corner points. These can also be
organized in four sets of two opposing points each, and rotations by 120⇤ in one direction
and 120⇤ in the opposite direction—about the axis going from a point, through the cube
center, to the opposite point—produce two more symmetry transformation for each pair
of points, for a total of 2⇥ 4 = 8 rotations.

This brings the total of symmetric cube rotations to 9 + 6 + 8 = 23, which together
with the ubiquitous identity transformation, brings the total to 24.

We turn to the reflections. This kind of symmetry transformation is performed
about a plane and cannot be done on a real, solid cube. Figure 3.8 shows three planes
centered in the cube, each between two pairs of faces. These give rise to three reflections.
The figure also shows six more planes, each located between two opposing edges and
each allows for a reflection. The total number of reflections is therefore nine.

Is that all? No, because the 24 rotations form a subgroup of symmetries, and
the nine reflections indicate that the order of the full group must be greater than 24.
Lagrange’s theorem implies that the total number of symmetries must be a multiple of
24. We know that it is strictly larger than 24, and we later show that it cannot be
higher than 48, so there must be 15 more symmetry transformations of the cube. Those
transformations are referred to as rotary (or turn) reflections. They either start with a
reflection which is followed by a rotation, or start with a rotation and follows it by a
reflection. The result of a rotary reflection cannot be achieved by a rotation alone. The
15 rotary reflections of the cube fall into three categories as follows:

1. Choose any pair of opposite faces, reflect the cube about this pair, and then
rotate it about the axis connecting the two faces, by 90⇤ in one direction and 90⇤ in
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Figure 3.8: Symmetry Operations in a Cube.

the opposite direction. The results of these transformations cannot be obtained by a
rotation alone. There are three pairs of opposite faces, which contributes six symmetries
to the symmetry group of the cube.

2. Select a pair of opposite vertices, reflect the cube about the axis that connects
them (a diagonal that passes through the center of the cube), and rotate the result about
that axis 60⇤ in one direction and 60⇤ in the opposite direction. The four diagonals
contribute eight additional rotary reflection symmetries to the group.

3. Finally, reflect every vertex about the center of the cube. No need for an extra
rotation. Shown in Figure 3.8, this includes the last symmetry transformation in our
symmetry group of the cube.

The total of the rotary reflections is therefore 6 + 8 + 1 = 15, which completes the
order of the symmetry group to 1 + 23 + 9 + 15 = 48.

Something to think about. Given a solid cube, any transformation on it, symmetric
or not, moves many points and may leave some points unchanged. A rotation leaves
unchanged all the points on its axis. A reflection leaves unchanged all the points on the
reflection plane. A rotoreflection leaves only the center point unchanged.

Can there be more than 48 symmetric cube transformations? A simple answer
(although not a formal proof) is to look at a corner of a cube. You see three edges
emanating from it, leading to three other corners. These three corners can be arranged in
six ways, since each arrangement is a permutation of the corners. There are eight corners
with six permutations each, so the maximum number of transformations is 6⇥ 8 = 48.

⌅ Exercise 3.9: What is the multiplication table of the symmetry group of the cube

Symmetries of the tetrahedron
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In everyday talk, a tetrahedron is a triangular-based pyramid. It is therefore sur-
prising to learn the this simple, familiar object (the simplest Platonic solid) features rich
symmetry, some of which is di⌥cult to visualize. Even a cursory look at a real pyramid
suggests that it has rotational symmetry, and it doesn’t take much imagination to guess
some of its reflection symmetries, but the full group of tetrahedron symmetries takes
time to construct. While we are at it, we should mention that the tetrahedron does not
have a center, which is why it does not have inverse symmetry (where every vertex is
swapped with its opposite).

We start with the rotations. Figure 3.9 depicts the 12 symmetry rotations, and it
is clear that most are about a vertex. Each row of the figure shows two 120⇤ rotations
as seen from a vertex. The left column includes the clockwise rotations and the right
column has the counterclockwise rotations. They total eight rotations. Three more 180⇤
rotations are shown in the center column. They are done about an axis that passes
from the midpoint of an edge to the midpoint of the opposite edge (Figure 3.10a). The
six edges of the tetrahedron provide for three pairs of opposing edges. Together with
the identity transformation, the group of rotations is of order 12. The permutations of
vertex numbers are listed in cycle notation.
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Figure 3.9: 12 Symmetry Rotations of the Tetrahedron.
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Reflections are more di⌥cult to visualize. Figure 3.10b Shows one of six reflection
symmetries of the tetrahedron. Each reflection is about a plane that goes from an edge
to the midpoint of the opposite edge. There are also six rotoreflections by 60⇤ (part (c)
of the figure) for a total of 24 symmetries.
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Figure 3.10: Reflections and Rotoreflections of the Tetrahedron.

A careful analysis of the permutations of the vertices of the tetrahedron shows
that there is exactly one symmetry transformation for each permutation. The set of
24 tetrahedron symmetries is therefore isomorphic (has the same structure as) group
S4, the symmetric group of permutations of four objects. (The word “symmetric” here
means the full set of 4! = 24 permutations.)

Table 3.11 lists all 24 symmetries in cycle notation, where R1 means a rotation
about vertex 1, and F means reflection. A curious fact is that reflections (2,1,3,4),
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(1,3,2,4), and (1,2,4,3) are a basis of this group of symmetries, because each of the 24
symmetries can be expressed a product of two of these three. Here are some examples.

(2, 1, 3, 4) ⌥ (1, 3, 2, 4) = (2, 3, 1, 4), (2, 3, 1, 4) ⌥ (2, 1, 3, 4) = (3, 2, 1, 4),
(2, 3, 1, 4) ⌥ (2, 3, 1, 4) = (3, 1, 2, 4), (2, 1, 3, 4) ⌥ (1, 2, 4, 3) = (2, 1, 4, 3)
(1, 3, 2, 4) ⌥ (1, 2, 4, 3) = (1, 3, 4, 2).

(1, 2, 3, 4) E (1, 3, 4, 2) R1 (1, 4, 2, 3) R1

(4, 2, 1, 3) R2 (3, 2, 4, 1) R2 (2, 4, 3, 1) R3

(4, 1, 3, 2) R4 (3, 1, 2, 4) R4 (2, 3, 1, 4) F
(2, 1, 4, 3) F (3, 4, 1, 2) F (4, 3, 2, 1) F
(1, 2, 4, 3) F (1, 3, 2, 4) F (2, 1, 3, 4) F
(1, 4, 3, 2) F (4, 1, 2, 3) F (2, 4, 1, 3) F
(3, 1, 4, 2) F (3, 2, 1, 4) F (2, 3, 4, 1) F
(4, 3, 1, 2) F (4, 2, 3, 1) F (3, 4, 2, 1) F

Table 3.11: The 24 Symmetries of the Tetrahedron.

⌅ Exercise 3.10: Why does a triangular-based pyramid have more symmetries than a
square-based pyramid?

Isometry, also called rigid motion, is a transformation that preserves distances. It
can be shown that there are only four plane isometries: translation, reflection, rotation,
and glide reflection. Together, the four are known as the basic rigid motions of the
plane.

Glide reflection. A glide reflection (or a miracle, a term coined by John Conway),
is a composition of a reflection and a translation along the line of the reflection. This
symmetry is commutative; a reflection followed by a translation is the same as a trans-
lation followed by a reflection. Figure 3.12 is an example. Notice that a glide reflection
can be seen as an improper rotation with an infinite radius (a circle with infinite radius
is a straight line)

Figure 3.12: Glide Reflection Symmetry.
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In addition to the isometries, the following symmetric transformations exist.
Gyration. Consider an object that has both rotation and reflection symmetries.

Normally, any point that is the center of a symmetric rotation is also located on some
line of reflection. However, the Roman letters N S Z have a 180⇤ rotation symmetry
about their center but no reflection symmetry. This is an example of gyration symmetry,
a term coined by John Conway.

Figure 3.13 illustrates a more complex gyration. The red point is the center of a
120⇤ symmetric rotation, but is not on any line of reflection. The nearest reflection line
(in green) is shown, together with another center point of rotation. The red point is the
center of a gyration symmetry.

Figure 3.13: Gyration Symmetry.

⌅ Exercise 3.11: A summary. Identify the symmetries of an infinite wall of bricks.

Mathematicians like to extend and generalize new concepts and term, so they have
also assigned an order to a gyration point. The order of such a point is n if the smallest
angle of any rotation about it is 2�/n.

Wikipedia o⌃ers the following formal definition of gyration. In geometry, a gyration
is a rotation in a discrete subgroup of symmetries of the Euclidean plane such that the
subgroup does not also contain a reflection symmetry whose axis passes through the
center of rotational symmetry.

Some people may prefer the following, more visual, definition: A gyration point is
a rotation point that does not lie on a mirror.

Improper rotation, also called rotoreflection or rotary reflection, is an isometry in
Euclidean space that is a combination of a rotation about an axis and a reflection in a
plane perpendicular to that axis.

[John] Conway’s o⌥ce was a shrine to symmetry.
—Marcus du Sautoy, Symmetry, Journey into the Patterns of Nature.

Kaleidoscopic Points

A kaleidoscopic point is the center point of reflections and often also rotations in an
image. There may be several kaleidoscopic points in an image. This insert talks about
kaleidoscopes and how they generate their images.
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A kaleidoscope, a simple optical instrument with mirrors, is a familiar object, nor-
mally used as a toy. It uses two or three mirrors to create complex symmetrical patterns
out of a simple input pattern which is reflected multiple times. The input is colored
pieces of glass, ribbon, confetti, glitter, feathers, flower, beads, or disks, which are con-
tained inside the instrument and change positions as it is rotated. In a teleidoscope, a
near cousin of the kaleidoscope, the pattern is created outside the instrument.

The kaleidoscope was invented by David Brewster in 1817 and was named after the
Greek words ⌦�↵ó� (kalos, “beauty”), ⇧̂i⌅o� (eidos, “that which is seen”), and ⇣⌦o�⇧́◆
(skopeo, “to look to”).

Every little development that arises is like the shake you give to a kaleidoscope—the
thing changes entirely in aspect.

—Agatha Christie, The Murder of Roger Ackroyd, 1926.

Most kaleidoscopes have three mirrors, tilted to one another at 60⇤, but several
variations are possible, some even proposed by Brewster himself. They are listed here
and are recommended to anyone who would like to experiment with a home-made kalei-
doscope:

Two mirrors, tilted to each other at 60⇤, with a black rectangle instead of a third
mirror.

The following can be referred to as Polycentral Kaleidoscopes.

Three mirrors at 90⇤ and a black fourth side. This creates an infinite pattern of
equilateral triangles.

Three mirrors at 90⇤, 45⇤, and 45⇤. This creates an asymmetric pattern.

Three mirrors at 90⇤, 60⇤, and 30⇤. The pattern viewed consists of 31 reflected
images of the aperture of the kaleidoscope.

Four mirrors. This generates a pattern with symmetry based on squares and rect-
angles.

A regular dodecahedron. This is a Platonic solid, a polyhedron, with 12 regular
pentagons as faces. The mirrors must be trimmed at each corner, and are glued or taped
together. The trimming creates small triangular holes around the entire kaleidoscope,
through which the user can peep and also shine light. The patterns viewed by the user
are created by the light coming through the holes and are three-dimensional and very
complex.

In a similar way, three-dimensional kaleidoscopes can be made from the other Pla-
tonic solids, but I haven’t discovered any.

Figure 3.14 illustrates typical examples of kaleidoscopic images with their reflection
axes. They also have rotation symmetries which are easy to located.

A home made kaleidoscope can be based on real mirrors, cut to size by a professional,
on sheets of aluminum foil, parts of old CDs or DVDs, or even silver-coated wrapping
paper.

Because of the use of mirrors, kaleidoscopic patterns are rich in reflections, which
is why patterns whose symmetries are dominated by reflections are called kaleidoscopic,
and why points of intersection of reflections lines are referred to as kaleidoscopic points.
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3 reflection axes

4 reflection axes

12 reflection axes

Figure 3.14: Kaleidoscopic Images and Reflection Axes.

3.3 Orbifold Notation

Once we grasp the concept of a mathematical group, we naturally want to “visualize”
the group, i.e., to see a diagram, a table, or an expression that summarizes or enumerates
the essence of the group or that lists all its elements (if it is not too big). Several such
methods have been proposed over the years and are in use (see Appendix A of reference
[Conway 08]). Important notations are the Coxeter, Schoenflies, Hermann-Mauguin,
and IUC (International Union of Crystallography). This section describes the basics of
the orbifold notation, often referred to as the orbifold signature. This notation consists
of a compact string of digits and a few symbols that summarize the symmetry features
of an object. General references for this section are [Conway 08], [du Sautoy 09], and
[Conway et al. 91].

The orbifold notation was developed by William Thurston and promoted by John
Conway. It is used for representing types of symmetry groups of two- and three-
dimensional objects. The term “orbifold” is an abbreviation of “orbit-manifold,” It
has to do with folding symmetric patterns, and can best be visualized by watching the
videos in references such as [Gould 20] and [GregSmith 15].
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This terminology should not be blamed on me. It was obtained by a democratic pro-
cess in my course of 1976–77. An orbifold is something with many folds; unfortunately,
the word “manifold” already has a di⌃erent definition. I tried “foldamani,” which was
quickly displaced by the suggestion of “manifolded.” After two months of patiently
saying “no, not a manifold, a manifoldead,” we held a vote, and “orbifold” won.

—Thurston explaining the origin of “orbifold.” Section 13.2 of [Thurston 80].

The principle of any notation of symmetry groups is to define various types of
symmetries (rotation, reflection, and so on), to assign symbols to those types, and to
end up with a compact “signature” for any pattern with symmetries, such that patterns
with the same signatures would have the same symmetries even though they may look
very di⌃erent when viewed. Conversely, patterns that look similar may have di⌃erent
symmetries and di⌃erent signatures.

In order for such a notation to be perfect, it must restrict itself to a class of patterns,
such as wallpaper patterns, frieze patterns, or three-dimensional patterns, and has to
identify all the symmetry types of the patterns in the class. As an example, if we ignore
rotation and translation symmetries and identify only reflection (mirror) symmetries,
we will have signatures of two types, type X may be patterns with mirror symmetries
and type Y may be patterns without mirror symmetries; an imperfect classification that
ignores important types of symmetry.

Those parts of the orbifold notation that are described here are limited to wallpa-
per patterns, but the orbifold notation includes symbols for other classes of patterns,
especially frieze- and three-dimensional patterns. A wallpaper pattern is an infinite,
two-dimensional abstract mathematical object that covers the plane by repeating a mo-
tif indefinitely, while keeping certain isometries unchanged. A frieze pattern is similar,
but repeats in one direction only. Frieze patterns are common in architecture and dec-
orative art. They have been classified into seven types according to their symmetries,
but will not be discussed here.

The orbifold notation can be used for symmetry groups of patterns that include one
or more of the following symmetries:

Reflection through a line (in 2D) or a plane (in 3D). The order of a reflection is the
number of di⌃erent reflection lines or planes.

Translation by a vector.

Gyration of finite order about a point. The order n of a gyration of � radians is
defined as n = 2�/�. Gyration symmetries (Page 151) are denoted by blue digits in the
examples that follow.

Infinite rotation around a line in 3-space.

Glide-reflection, i.e. reflection followed by a translation.
An orbifold signature may include some or all of the following symbols:

An asterisk “*” indicates an object with reflection symmetries. The selection axes
are denoted by red digits as illustrated by the examples below.

A red point (•) indicates that all the symmetries of a pattern fix a single point.
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The ⇥ symbol, which is called a miracle (short for “mirrorless crossing”). It indi-
cates a part or parts of the pattern that feature a glide reflection symmetry that doesn’t
cross any reflection axes.

Many wallpaper patterns feature translation in addition to other types of symme-
tries. If translation is the only kind of symmetry in a pattern, its orbifold signature is
O, a symbol derived from the term “wonderful wandering,” or “wonder-ring.”

We are now ready for the details of the orbifold notation, presenting it with exam-
ples. First, reflections, which are referred to as kaleidoscopes. The previous discussion of
kaleidoscopic points explains the connection between reflections (mirror symmetry) and
kaleidoscopic symmetry, and shows why the latter term is more general. Figure 3.15a
shows a heart, a simple plane object with a single reflection line (in red). Its orbifold
signature is a single star, denoted by ⇤ or ⇤1.

(In general, orbifold signatures can be written in black, but it is convenient to
specify kaleidoscopes and miracles in red and gyrations and wonders in blue. Blue is
used for symmetries that preserve the true orientation of a fundamental region of the
pattern being examined. Red is used for kaleidoscopes and miracles, since these reflect.)

The star denotes kaleidoscopic symmetry, and in our example of Figure 3.15a, where
there are no other symmetries, the ⇤ (or the equivalent ⇤1) is the entire signature.

∗ (or ∗1) (a) (b)∗2•

Figure 3.15: Orbifold signatures ⇤ (or ⇤1) and ⇤2•.

Part (b) of Figure 3.15 has signature ⇤2•, pronounced “star two point symmetry.”
The star indicates kaleidoscopic symmetry and the 2 is the period of this symmetry,
indicating two reflection axes (mirror lines). The point (•) indicates that all the reflection
axes pass through a point (otherwise, they must be parallel). In general, a point at the
end of a signature indicates that all the symmetries, not just reflections, fix a point in
the pattern/object.

⌅ Exercise 3.12: What letter-string of the Roman alphabet has a ⇤2• signature?

Images with more reflection axes can similarly have signatures ⇤3•, ⇤4•, and so on,
as shown in Figure 3.16. It is obvious that these objects also have rotation symmetries,
but these are not included in the signature, because every intersection of reflection
lines determines a rotation point. This little-known fact is discussed on Page 182 and
is illustrated by Figure 3.46. Any rotation points located on reflection lines are not
considered independent symmetry features and are not included in orbifold signatures.
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∗3•

∗4•
∗5• ∗6•

Figure 3.16: Several Di�erent Reflection Axes.

For rotation symmetries, the signatures include only gyration points, which are rotation
points not located on any reflection lines. Figure 3.13 is an example of such a point.

A similar, but slightly di⌃erent, symmetry is illustrated in Figure 3.17. The patterns
have reflection symmetries about two lines/axes (green and red) that are parallel, but
also di⌃erent (placed at di⌃erent points in the symmetry), which is why the signatures
of these patterns are ⇤⇤ (star star and no point). Also, since ⇤ is the same as ⇤1,
signature ⇤⇤ is the same as ⇤1⇤1. It is understood that our symmetric patterns are
infinite and feature infinite reflection axes, but the green and red axes are positioned at
di⌃erent places in the symmetry, which is why they are considered di⌃erent. (Rule: if
two features are located at points that are symmetrically identical, only one is counted.)

**

Signature

Figure 3.17: Patterns with Signatures **.

Figure 3.18 is an example of slightly more complex symmetry. There are two sets
of two reflection axes each, and the axes of each set intersect at a point. Each of those
points is also the center of rotation, but these rotations are not included in the signature
as explained earlier. On the other hand, there is a gyration point (of order 2), marked
in blue, which should be included. All this implies the signature 2⇤22. Also notice that
we can choose either the two intersection points marked 1 or the two marked 2. The
two sets of reflection axes may be the red-green and the blue-cyan, but they may also
be the red-blue and green-cyan.

A more complex kaleidoscopic symmetry is illustrated in Figure 3.19. At first, the
figure seems simple, consisting of hexagons only, but careful examination reveals three
centers of reflection, with orders 6, 3, and 2, respectively. The signature is therefore ⇤632,
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1

12

2

2∗22

Figure 3.18: A Pattern with Signature 2⇤22.

which can also be written as cyclic permutations of 632 and of its reverse 236. Having
just hexagons, it is no wonder that this pattern also exhibits rich rotational symmetry,
but its rotation centers coincide with the kaleidoscopic points, and are therefore not
gyrations.

6

3

2
∗632

Figure 3.19: A Pattern with Signature ⇤632.

⌅ Exercise 3.13: Find patterns with signatures ⇤442 and ⇤333. Discuss any gyration and
rotation symmetries that they may have.

Fundamental regions. In a pattern, find a region surrounded by mirror lines
that doesn’t itself contain any mirror lines. Such a fundamental region acts like a
stamp whose repeated applications generate the entire pattern. The pattern can also
be generated by placing mirrors at all the mirror lines of the fundamental region, much
as is demonstrated in reference [Gould 20] or in a kaleidoscope, which is why the term
“kaleidoscopic” is more general than “reflection.” However, physical kaleidoscopes are
limited to rectangles, equilateral triangles, and 90⇤, 60⇤, 30⇤, and 90⇤, 45⇤, 45⇤ triangles,
while our fundamental regions may have any polygonal shapes. Several of the figures in
this section also include a fundamental region.

Gyration symmetries are indicated in the orbifold notation with a (blue) number
to the left of the star (if any), indicating the order (2�/�) of the rotation. The star is
included only if there are also reflection symmetries. The objects of Figure 3.20 do not
feature any reflection symmetries, so their signatures don’t have a star. They are simply
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3, 4, and 5. In contrast, the patterns of Figure 3.16 have rotation, but not gyration,
symmetries in addition to the reflections, which is why their signatures do not specify
any rotational symmetries, and are all red.

3 4 5

Figure 3.20: Patterns with Gyration Symmetries.

More gyration symmetry is illustrated in Figure 3.21. In the pattern on the left,
the centers of rotation, all at 180⇤ (order 2) are at the middles of the large, middle, and
small diamond shapes. There being no reflection symmetries, the signature is simply
2222. In the pattern on the right (compare with Figure 3.18), there is one gyration
point, marked in blue, and two sets of reflection axes, for a signature 2⇤22.

2222

2∗22

Figure 3.21: Patterns with Signatures 2222 and 2⇤22.

⌅ Exercise 3.14: Try to guess a pattern with a 3⇤3 signature.

The next important feature of symmetrical patterns is dubbed a “miracle,” a term
which stands for “mirrorless crossing.” In the pattern, a miracle is denoted by two red
dots and a dotted curve connecting them, while in the signature, a miracle is denoted by
an ⇥. A miracle occurs when a fundamental region of the pattern “covers” other regions
of the pattern perfectly by shifting and reflecting it, but without crossing reflection
axes. In other words, it is a glide reflection that doesn’t cross any reflection axes. A
miracle can therefore be viewed as a symmetry feature that may convert image features
(motifs) between left-handedness and right-handedness (something that can be done by
a reflection but not by a rotation) and can do so locally, i.e., without the “help” of the
pattern’s “main” reflection axes.



3.3 Orbifold Notation 159

£

∗ ∗

££

Figure 3.22: Patterns with Signatures ⇤⇥ and ⇥⇥.

Figure 3.22 shows examples of ⇥ and ⇥⇥ (miracle and double miracle) signatures.
Notice that the latter pattern has no reflection symmetries at all, which is why it is
possible to find regions in this pattern that do not cross any reflection axes.

⌅ Exercise 3.15: Find a pattern with a double miracle ⇥⇥ signature.

Translations (O notation). In any symmetry transformation that involves rotation
and/or reflection, there must be in the (infinite) pattern at least one point that does not
change location during the transformation. Such a point can be considered the center of
mass of the pattern. Translation is di⌃erent from rotation and reflection in this sense,
being a transformation where all the points of a pattern move in unison. The entire
pattern moves rigidly in a certain direction, without rotations or reflections. A test for
the presence of translation symmetry in a pattern is to identify the fundamental region
of the pattern and check if it can be repeated to generate the entire image without
having to reflect or rotate copies of the region. A miracle is similar, except that the
fundamental region must be rotated or reflected to fit parts of the pattern.

The patterns shown here so far are commonly referred to as wallpaper patterns;
they are not the only possible patterns and they are distinguished from other patterns
by the following features:

Wallpaper patterns have translation symmetry. Such a pattern can be shifted in at
least two directions. In any direction, there is always a smallest unit of translation.

Wallpaper patterns may also feature reflection, rotation, and glide reflection sym-
metries.

Given patterns such as those in Figure 3.23, with translations, but with no rotations,
reflections, or glide reflections, their signatures are a single O, a symbol that comes from
the term “wonderful wandering,” or “wonder-ring.”

Figure 3.23: Patterns with Signature O.
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Summary

Given a wallpaper pattern (i.e., repeating and two-dimensional), the following steps
can be used as guidelines for determining its orbifold signature:

Locate any mirror (reflection) lines and count how many are at each reflection point
in the pattern.

Locate any gyration points and figure out the order of rotation at each.

If there are no gyrations, search carefully for any glide reflections and note the ones
that do not cross any reflection lines.

Finally, if there are translation symmetries (which are common in a repeating pat-
tern) but no other symmetries (no reflections, gyrations, or glide reflections), the pattern
must have exactly one wonder-ring, indicated by the signature O.

3.4 The Magic Theorem

The many wallpaper figures in the previous section illustrate various types of sym-
metry. To a mathematician, they raise the questions of whether there can be other
wallpaper symmetries and how many such two-dimensional symmetries are possible.
Figure Ans.11 shows patterns with ⇤442 and ⇤333 symmetries, but can there be wallpa-
per, two-dimensional patterns with orbifold signatures of ⇤452 and ⇤345? Is the number
of possible plane symmetries finite, and if so what is it? All theses questions are neatly
and systematically answered by the so-called magic theorem of Conway, an elegant
mathematical argument which is explained here and is proved in Chapter 6 of reference
[Conway 08].

The theorem starts by assigning weights (generally referred to as costs and ex-
pressed either in arbitrary units or in Dollars) to the various symbols used in the orb-
ifold signatures. It then claims that the only possible wallpaper symmetries are the 17
combinations of costs that add up to the magic number 2. This puts the limit 17 on the
number of plane (two-dimensional) wallpaper symmetry groups and helps determine the
orbifold signature of any given pattern. The costs are listed in Table 3.24 and it is easy
to verify that all the orbifold signatures illustrated in the previous section have costs of
exactly 2 units.

Symbol Cost Symbol Cost
O 2 ⇤ or⇥ 1
2 1/2 2 1/4
3 2/3 3 1/3
4 3/4 4 3/8
5 4/5 5 2/5
6 5/6 6 5/12
...

...
...

...
N N�1

N N N�1
2N

Table 3.24: Costs of Orbifold Symbols.
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Here are some examples: The total cost of ⇤632 is 1 + 5/6 + 2/3 + 1/2 = (6 + 5 +
2+1)/6 = 2. The cost of 2⇤22 is 1/2+1+1/4+1/4 = 2, and the cost of ⇤⇤ is 1+1 = 2.
In addition to limiting the costs to 2 and the number of wallpaper symmetries to 17,
the magic theorem has another practical application, it helps in identifying, verifying,
and sometimes also completing the orbifold signature of a given pattern. A pattern
may look rich in symmetries and may trick us to believe we have discovered all kinds of
kaleidoscopic lines and gyrations, only to realize later that they do not exist.

Once we have examined a given pattern and decided on its signature, we should
verify (1) that the signature’s cost is 2, and (2) that it appears in Table 3.24. If the
answer to any of these points is negative, we should go back and reexamine the pattern.
A typical example is the brick pattern of Figure 3.21. It is easy to locate its reflection
axes and start a ⇤22 signature, but its low cost (1+1/4+1/4) indicates that a symmetry
of cost 1/2 is still missing, thereby providing a hint to look for an order-2 gyration.

We are now ready to explain the unexpected result of 17. This number is simply
the number of ways to add entries of Table 3.24 and end up with a total cost of 2. A
manual, slightly tedious search of the table produces the following 17 results: We start
with just blue entries. No blue entry has a cost of 2. No two entries add up to 2. The
only sets of three blue entries with a sum of 2 are 632, 442, and 333. Similarly, the only
candidate set of four entries is 2222. Finally, there is the blue wonder-ring O.

We next notice that the red numeric entries of the table have half the costs of the
corresponding blue entries, and that the star’s cost is 1. This implies that the all-red
combination of costs are similar to the all-blue, i.e., ⇤632, ⇤442, ⇤333, and ⇤2222. Further
search adds signature ⇤⇤ to this set. Finally, there are the hybrid red-blue entries and
those that include a ⇥. They are also identified by a simple search and they turn out
to be 3⇤3, 4⇤2, 2⇤22, 22⇥, 22⇤, ⇤⇤, ⇥⇥, and ⇤⇥.

These 17 wallpaper symmetry types, sometimes also called the 17 plane crystallo-
graphic groups, are summarized in Table 3.25.

3.5 Orbifold Examples

Figures 3.26 through 3.42 illustrate color examples of the 17 plane symmetry groups.
They were generated on the iPad with the beautiful iOrnament and iOrnament Crafter
apps, reference [iOrnament 24], both by Jürgen Richter-Gebert. In addition to the
symmetry examples, the figures include variations such as wrapping symmetry patterns
around spheres and eggs, and distorting them in limit circles, à la Escher.
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Signature Descritpion

O just translation
⇤⇤ parallel mirrors
⇥⇥ parallel glidelines
⇤⇥ parallel mirror and miracles alternating

2222 none
⇤2222 mutually perpendicular mirrors
2⇤22 alternating mutual perpendicular mirrors and glidelines
22⇤ mirrors perpendicular to glidelines
22⇥ mutually perpendicular glidelines
333 none
⇤333 all rotation centers located on mirror lines
3⇤3 an order-3 gyration bounded by three mirrors
442 none
⇤442 all rotation centers located on mirror lines
4⇤2 order-4 gyration bounded by a rectangle of mirror lines
632 none
⇤632 reflection lines form a triangle

Table 3.25: The 17 Wallpaper Groups.

3.6 Two-Dimensional Transformations

The vast field of computer graphics deals with computer-generated objects. Such objects
are made of synthetic surfaces, they are manipulated in the computer and eventually
rendered to look real. An important part of manipulating objects is to transform them.
The obvious example is rotation. In real life, we see objects in three dimensions, because
we see them with both our eyes. In the computer, we see the same three-dimensional
objects on a flat screen or on paper, where they look flat and two-dimensional. What we
see is a two-dimensional projection of a three-dimensional object, and such a projection
often obscures important object details. Thus, in order to see a three-dimensional object
in its entirety on a flat output device, it has to be rotated and viewed from di⌃erent
directions.

Rotation is one of the important geometric transformations, a set which also in-
cludes translation, reflection, and shearing (Figure 3.43). There are also less important
transformations, such as glide reflection, but this discussion concentrates on the sym-
metry aspects of the transformations, and especially on the relations between rotations
and reflections. We start with a look at the linear mathematics underlying the two-
dimensional transformations.

We use the notation P = (x, y) for a point and P
⇥ = (x⇥, y⇥) for the transformed

point. We are looking for a simple, fast transformation rule, so it is natural to try a linear
transformation, i.e., a mathematical rule that functions of x, but not x2 or anything
more complex. The simplest linear transformation is x⇥ = ax + cy and y⇥ = bx + dy,
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Translation only

Figure 3.26: Symmetry Group P1, Orbifold O.
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Four reflection centers

Figure 3.27: Symmetry Group P2, Orbifold 2222.
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Vertical and horizontal reflections

Figure 3.28: Symmetry Group Pm, Orbifold **.
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Glide reflection (red)

Figure 3.29: Symmetry Group Pg, Orbifold xx.
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Glide reflection (red)

Reflection (black)

Glide reflection (red)
Reflection (black)

Figure 3.30: Symmetry Group Cm, Orbifold *x.
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Dodecahedron. Symmetry Group Pmm, Orbifold *2222.

Figure 3.31: Symmetry Group Cmm, Orbifold 2*22.
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Figure 3.32: Symmetry Group Pmm, Orbifold *2222.
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Figure 3.33: Symmetry Group Pgg, Orbifold 22*.
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Figure 3.34: Symmetry Group Pgg, Orbifold 22x.
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Figure 3.35: Symmetry Group P4, Orbifold 442.
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Symmetry Group P4m, Orbifold *442.

Figure 3.36: Symmetry Group P4g, Orbifold 4*2.
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Figure 3.37: Symmetry Group P4g, Orbifold 4*2.
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Figure 3.38: Symmetry Group P3, Orbifold 333.
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Figure 3.39: Symmetry Group P3m1, Orbifold *333p.
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Figure 3.40: Symmetry Group P31m, Orbifold 3*3.
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Figure 3.41: Symmetry Group P6, Orbifold 632.
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Figure 3.42: Symmetry Group P6m, Orbifold *632.
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Original Y scaledShearedY reflected Rotated

Figure 3.43: Two-Dimensional Transformations.

in which each of the new coordinates is a linear combination of the two old ones. This
transformation can be written P

⇥ = PT, where T is the 2⇥2 matrix
�a b
c d

⇥
.

To understand the functions of the four matrix elements, we start by setting b =
c = 0. The transformation becomes x⇥ = ax, y⇥ = dy. Such a transformation is called
scaling. If applied to all the points of an object, all the x dimensions are scaled by a
factor of a and all the y dimensions are scaled by a factor of d. Note that a and d
can also be less than 1, causing shrinking of the object. If any of a and d equal �1,
the transformation is a reflection. Any other negative values cause both scaling and
reflection.

Note that scaling an object by factors of a and d changes its area by a factor of
a⇥d, and that this factor is also the value of the determinant of the scaling matrix

�a 0
0 d

⇥
.

Here are examples of scaling and reflection. In A, the y coordinates are scaled by
a factor of 2. In B, the x coordinates are reflected. In C, the x dimensions are shrunk
to 0.001 their original values. In D, the figure is shrunk to a vertical line.

A =
⌦

1 0
0 2

↵
; B =

⌦
�1 0
0 1

↵
; C =

⌦
0.001 0

0 1

↵
; D =

⌦
0 0
0 1

↵
.

⌅ Exercise 3.16: What scaling transformation changes a circle to an ellipse?

The next step is to set a = 1 and d = 1 (no scaling or reflection) and explore the
e⌃ect of b and c. The transformation becomes x⇥ = x + cy, y⇥ = bx + y. We first
try the matrix

�1 1
0 1

⇥
and transform the four points at (1, 0), (3, 0), (1, 1), and (3, 1).

They are transformed to (1, 1), (3, 3), (1, 2), and (3, 4). When we plot the original and
the transformed points (Figure 3.44a) it becomes obvious that the original rectangle
has been sheared vertically and was transformed into a parallelogram. A similar e⌃ect
occurs when we try the matrix

�1 0
1 1

⇥
. The quantities b and c are therefore responsible

for shearing. Figure 3.44b shows the connection between shearing and the operation of
scissors. This is the reason for the name shearing.

⌅ Exercise 3.17: Apply the shearing transformation
�1�1

0 1

⇥
to the four points (1, 0), (3, 0),

(1, 1) and (3, 1). What are the transformed points? What geometric figure do they
represent?

The next important transformation is rotation. In Euclidean geometry, a rotation
is an example of an isometry, a transformation that moves points without changing
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Figure 3.44: Scissors and Shearing.

the distances between them. Rotations are distinguished from other isometries by two
additional properties: they leave (at least) one point fixed, and they leave ”handedness”
unchanged. In contrast, a translation moves every point, a reflection exchanges left- and
right-handed ordering, a glide reflection does both, and an improper rotation combines
a change in handedness with a normal rotation.

Figure 3.45 shows a point P rotated clockwise about the origin through an angle �
to become P

⇥. Simple trigonometry gives x = R cos� and y = R sin�. From this, we
get the expressions for x⇥ and y⇥

x⇥ = R cos(�� �) = R cos� cos � + R sin� sin � = x cos � + y sin �,

y⇥ = R sin(�� �) = �R cos� sin � + R sin� cos � = �x sin � + y cos �.

Hence, the clockwise rotation matrix in two dimensions is

⌦
cos � � sin �
sin � cos �

↵
,

which also
equals
the product

⌦
cos � 0

0 cos �

↵⌦
1 � tan �

tan � 1

↵
. (3.2)

This shows that any rotation in two dimensions is a combination of scaling (and, perhaps,
reflection) and shearing; a neat result that’s true for all angles satisfying tan � ⇡=⌫.

x x*

µ

P

P*

φα

Figure 3.45: Clockwise Rotation.
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⌅ Exercise 3.18: Show how a 45⇤ rotation can be achieved by scaling followed by shear-
ing.

⌅ Exercise 3.19: Derive the rotation matrix in two dimensions by using the polar coor-
dinates (r, �) of points instead of the Cartesian coordinates (x, y).

Matrix T1 below rotates counterclockwise. Matrix T2 reflects about the line y = x,
and matrix T3 reflects about the line y = �x. Note the determinants of these matrices.
In general, a determinant of +1 indicates pure rotation, whereas a determinant of �1
indicates pure reflection.

T1 =
⌦

cos � sin �
� sin � cos �

↵
; T2 =

⌦
0 1
1 0

↵
; T3 =

⌦
0 �1
�1 0

↵
. (3.3)

⌅ Exercise 3.20: Show that a y reflection (i.e., reflection about the x axis) followed by
a reflection through the line y = �x produces pure rotation.

⌅ Exercise 3.21: Show that the transformation matrix



 
1� t2

1 + t2
2t

1 + t2

�2t
1 + t2

1� t2

1 + t2

�

!

produces pure rotation.

⌅ Exercise 3.22: For what values of A does the following matrix represent pure rotation
and for what values does it represent pure reflection?

⌦
a/A b/A
�b/A a/A

↵
.

We conclude with several surprising results showing unexpected connections be-
tween linear transformations.

Two consecutive reflections about axes that intersect are the same as a rotation
about the point of intersection. A rotation leaves one point unchanged, while a reflection
is fully determined by a line of reflection. Two reflections are therefore determined by
two lines, and two lines generally intersect at a point. This point is the center of the
rotation that is equivalent to the reflections. The object of Figure 3.46 is first reflected
about the red line and then about the green line, ending up at point 3. Rotating it from
point 1 about the intersection point (in black) of the two lines, would also have landed
it at the same point.
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Figure 3.46: Two Reflections and a Rotation.

⌅ Exercise 3.23: Discuss the cases where the two reflection lines are either parallel or
identical.

A rotation followed by a translation is always equivalent to another rotation. Fig-
ure 3.46b illustrates an example. Object 1 is reflected through the green line to 2, then
reflected again about the red line to 3. These two transformations amount to a rotation,
and then the object is translated to an arbitrary location 4. This combination of a rota-
tion followed by a translation is then negated by computing a new center of rotation (the
red dot) and rotating the object about this center from 4 back to its original location 1.

Here is how to compute the new center of rotation. The mathematics of two-
dimensional rotations is simple. Given a two-dimensional point x = (x, y) and a rotation
angle �, the new location (x⌥, y⌥) of the point after a rotation by � about the origin is
given by the matrix product

⌦
x⌥

y⌥

↵
=
⌦

cos � � sin �
sin � cos �

↵⌦
x
y

↵
= Rx,

Where R is the rotation matrix for angle � and the notation x in boldface implies a
point or a vector. The mathematics of two-dimensional translations is even simpler.
Translating a point x by a vector b is denoted by the operator T (x) = x + b.

A rotation followed by a translation is the product T · R, and in order for this
to be a rotation, there must be a unique point p in space that is left fixed after this
combination of operators. Thus, (T · R)(p) = p or Rp + b = p. The solution is
(I � R)p def= Ap = b (where I is the identity matrix) or p = A�1

b. Such a solution
exists because the determinant of A is nonzero. Thus, if x and � are known, matrix A
can be computed and inverted to obtain p. Figure 3.47 lists Mathematica code for this
computation.
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⌅ Exercise 3.24: Show why the determinant of A is nonzero.

t = 45.; v = {5, 9};(*choose rotation angle and point*)
R = {{Cos[t Degree], -Sin[t Degree]}, {Sin[t Degree], Cos[t Degree]}};
A = IdentityMatrix[2] - R;
Det[A]; (*verify nonzero*)
b = {2, 3}; (*choose translation vector*)
p = LinearSolve[A, b] (*p = new center of rotation*)

Figure 3.47: Mathematica Code for Computing Point p.

Rotation and reflection matrices are close relatives. The proof of this unexpected
result depends on the fact that our 2⇥ 2 transformation matrices are orthogonal, so we
start with a short discussion of this concept.

An orthogonal matrix is a square matrix whose rows are orthogonal and of length 1,
and similarly for its columns. Because of the length 1 requirement, such a matrix is also
referred to as orthonormal. Examples are:

1"
2

⌦
1 1
1 �1

↵
1
3



 
2 �2 1
1 2 2
2 1 �2

�

! .

It’s easy to see that, e.g., the length of row (1/3)(2,�2, 1) is
0

22 + (�2)2 + 12/3 = 1,
and that the dot product (1, 2, 2) · (2, 1,�2) = 2 + 2� 4 is zero. The high-level Wolfram
Language o⌃ers the command OrthogonalMatrixQ[m] to test a matrix for orthogonality.

Given the 2 ⇥ 2 orthogonal matrix
�a b
c d

⇥
, the orthogonality definition implies the

three constraints a2 + b2 = 1, c2 + d2 = 1, and ac + db = 0. These in turn mean that
the four matrix elements must be numbers in the interval [�1, 1], and can therefore be
considered the sines or cosines of certain angles. The constraints above imply that if
a = cos(�) and b = sin(�) for some angle �, then either c = �b and d = a, or c = b and
d = �a, which is why the above matrix has one of the forms

⌦
cos � � sin �
sin � cos �

↵
or
⌦

cos � sin �
sin � � cos �

↵
.

The first of these describes a rotation by � about the origin, and the second is a reflection
about the line y = (�/2)x.

We can therefore conclude that all 2⇥2 orthogonal matrices are rotation or reflection
matrices; a nonintuitive result that yields the following identities:

Rot(�)Rot(⌘) = Rot(� + ⌘),
Ref(�)Ref(⌘) = Rot(2� � 2⌘),

Rot(�)Ref(⌘) = Ref(⌘ +
1
2
�),

Ref(⌘)Rot(�) = Ref(⌘� 1
2
�).
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The set of all reflections in lines through the origin and rotations about the origin,
together with the operation of composition of reflections and rotations, forms a group.
The group has an identity: Rot(0). Every rotation Rot(r) has an inverse Rot(-r). Every
reflection Ref(f) is its own inverse. Composition has closure and is associative, since
matrix multiplication is associative.

Perpendicular, Normal, and Orthogonal

The terms above are commonly used in mathematical texts. They all have to do
with straight angles, but their use in practice is somewhat di⌃erent.

The term perpendicular is used for two linear objects. Two straight lines at 90⇤ are
perpendicular, as are also a line and a flat plane and two planes, if their intersections
form right angles. Perpendicularity is a special case of orthogonality.

Normal is the term used when a line is at right angle to a point on a curve or
on a surface. More accurately, the normal to a curve at a point P is the direction
perpendicular to the tangent of the curve at P. Similarly, if a surface is smooth at a
point, it has a tangent plane at the point, and the direction perpendicular to this plane
is the normal of the surface at the point.

Orthogonal is a more general term, and is used in science, engineering, art, and com-
puters in addition to mathematics. In mathematics, orthogonality is the generalization
of the term perpendicularity. It is defined for vectors, functions, and polynomials.

Two vectors are orthogonal if their inner product (or dot or scalar product, Page 367)
is zero. Thus, (a, 0) • (0, b) is a simple example of orthogonal vectors.

An orthogonal matrix is a square matrix whose rows are orthogonal, and similarly
for its columns.

A family of functions is orthogonal over an interval [a, b] if for any pair of di⌃erent
functions in the family, the definite integral

( b

a
f̄(x)g(x) dx

is zero.
A family of polynomials is similarly orthogonal over an interval [a, b] if for any pair

of di⌃erent polynomials in the family, the definite integral

( b

a
p̄(x)q(x) dx

is zero.
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3.7 Symmetry in Tiling

A tessellation or tiling of the plane is the covering of the plane with geometric shapes,
referred to as tiles, with no overlaps and no gaps. In mathematics, tessellation can be
generalized to higher dimensions.

The mathematical concept of tiling is geometric. In two dimensions, tiling is a
partition of the infinite plane into closed sets which are referred to as tiles, without
gaps or overlaps. In practice, most floor and wall tiles are periodic. An infinite tiled
plane is periodic if it can be translated onto itself in two perpendicular directions. Pe-
riodic tiling consists of primitive cells that repeat in two independent directions (Fig-
ure reffg:primitv.cell). Each set may be composed of any number of smaller tiles. Non-
periodic tilings exist and can have artistic and practical properties. A nonperiodic tiling
is one that cannot be constructed from a single primitive cell.

Figure 3.48: A Primitive Cell of Tiles.

Aperiodic tiling is a special case of nonperiodic tiling where small regions may be
periodic, but it is always possible to find large regions or patches that are not periodic.
Such tiling does not contain arbitrarily large periodic regions.

A huge variety of tiles is available, both for floors and walls. Our interest in tiles
is in their application to symmetry. Certain types of tiles, especially ceramic, are made
in di⌃erent shapes and can be laid in configurations that feature various symmetries.
Other tiles, such as vinyl, feature patterns and ornaments on their surface, and can also
be arranged in symmetric configurations.

We start with short definitions. A polygon is a two-dimensional enclosed figure made
by joining three or more straight segments at points that are referred to as vertices. A
regular polygon is one whose sides and interior angles are equal. Figure 3.49a illustrates
a few such polygons and interior and exterior angles. In an n-sided polygon, the sum of
the n interior angles is (n� 2) · 180⇤, and the sum of the n exterior angles (blue in the
figure) is 360⇤.

The simplest way to tile a plane is regular tiling, where congruent regular polygons
(i.e., having the same shape and size or being mirror images) are laid edge to edge.
There are only three possible regular tilings (Figure 3.49b), namely triangles (where six
equilateral triangles meet at a vertex), squares (where four squares meet at a vertex),
and regular hexagons (where three meet at each vertex).

When we relax the condition of congruent regular polygons and allow tiling of
di⌃erent polygons laid edge to edge, the result is eight di⌃erent types of semiregular
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(a)

(b)

Figure 3.49: Regular Polygons and Angles.

Figure 3.50: Semiregular Tiling of the Plane.

tilings, also known as Archimedean or uniform tiling (Figure 3.50.
If we relax the requirements that vertices meet at a point and adjacent edges have

the same length, we unleash a vast number of ways to tile the plane, some more pleasing
to the eye than others (Figure 3.51).

Figure 3.51: Other Ornamental Tilings.

Aperiodic tilings are complex, mathematically interesting, but are considered much
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less beautiful and pleasing to the eye than the various periodic tiling schemes. Currently
(in late 2023), the most important aperiodic tilings are Penrose tiling and Einstein tiling.
Penrose tiling, discovered by Roger Penrose in the 1970’s, have both reflection symmetry
and fivefold rotational symmetry, but not translational symmetry. It is possible to find
regions, even large ones, that can perfectly be translated to other regions, but the entire
plane cannot be copied to itself by translating it in any direction.

Figure 3.52 illustrates the two sets of Penrose tiles, the two rhombi and the kite and
dart. The aperiodic behavior results from the special ways in which they are laid, which
include matching rules, substitution tiling or finite subdivision rules, cut and project
schemes, and coverings. When arranged in any of these configurations, the tiles produce
infinitely many di⌃erent aperiodic tilings.

72ο

72ο

72ο

72ο 72ο

108ο

108ο

144ο

36ο 36ο

36ο

216ο

144οKite
Dart

Rhombi

Figure 3.52: Penrose Tilings.

A rigorous proof or this claim is outside the scope of this book, but here is a simple,
“hand waiving” explanation that shows how the aperiodicity is due to the use of an
irrational number, ⌘ in this case, but could be any irrational. It starts with a pentagrid,
Figure 3.54a, which is constructed as follows:

1. Start with a group of horizontal parallel straight lines, separated by one unit.
2. Create two copies of the group and place them on top of the group after rotating

them by 39⇤ and �39⇤.
3. Create two more copies of the group and place them as before, after rotating

them by 72⇤ and �72⇤.
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Figure 3.53: Penrose Tilings on Street.
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Figure 3.54: Pentagrid and Penrose Tilings.

4. The pentagrid, consisting of five sets of parallel lines, is ready. The figure shows
that as we slide along a horizontal line, we cross a ±72⇤-line (blue) every 1/ sin 72⇤ �
1.05146 and a ±36⇤-line (red) every 1/ sin 36⇤ � 1.7013.
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5. Figure 3.54b shows part of an isolated horizontal line with some red and blue
lines crossing it. We copy the two Penrose rhombi tiles of Figure 3.52 and place them
at the intersections; a thin rhombus at a red line intersection and a wide rhombus at a
blue line intersection. The rhombi are placed perpendicular to the horizontal line. The
figure illustrates several of those tiles.

6. Finally, Figure 3.54c shows a ribbon of tiles, created by shifting the tiles of Step 4
such that they butt (or juxtapose) one another. A complete Penrose tiling of the plane
can be created by performing Steps 4–6 for every horizontal line. Alternatively, parallel
ribbons of tiles can be built by placing the first set of lines in an arbitrary direction
instead of horizontal.

It is now easy to see why such a finite ribbon, even a very long one, will never match
another ribbon anywhere to its left or right. Let’s rephrase Step 4 above. As we slide
along a a horizontal line, we meet a thin tile every 1/ sin 72⇤ = 1/t length units, and we
meet a wide tile every 1/ sin 36⇤ = 1/w length units. Thus, the densities of the thin and
wide tiles in a ribbon are t and w, respectively, and their ratio in the ribbon is t/w or
sin 72⇤/ sin 36⇤. It is easy to see that this ratio equals

sin 72⇤

sin 36⇤
=

1
5
8 +

�
5

81
5
8 �

�
5

8

=

3
3 +

"
5

2
= ⌘,

which is the irrational golden ratio. In order for a ribbon to have a match (for its pattern
to repeat), the ratio of thin to wide tiles in the ribbon must be a rational number, of
the form m/n, with m thin tiles and n wide tiles. Since the ratio is irrational, a copy of
a ribbon, even a very long one, will feature slightly di⌃erent ratios of the two types of
tiles and would therefore be di⌃erent.

This explanation, based on reference [minutephysics 22], is not a proof, but may
provide an intuitive understanding of the term aperiodic pattern. Naturally, any irra-
tional number may similarly correspond to the set of aperiodic tiles; there is nothing
special about ⌘ in this context. Reference [aatishb 23] is a similar explanation, and
[spacegoo] is a Penrose tile visualizer. Roger Penrose has patented the tiles in 1975
(U.S. patent 4133152).

The Einstein Tile

Once Penrose published his discovery of the pair of aperiodic tiles, mathematicians
started looking for the obvious next step, a set of a single aperiodic tile, a prototile or
monotile. The German phrase “ein stein” means one stone, which is why this quest
became known as the Einstein problem, even though it has nothing to do with the
famous Albert. The breakthrough came unexpectedly in November 2022, and was finally
published in March 2023 [Einstein tile 23]. The developers of this tile named it a hat,
and have later shown that it can be generalized to an infinite family of tiles with the
same aperiodic property. Reference [Smith 23] has many pictures.

Figure 3.55 Illustrates the simple construction of the hat tile. Start with a regular
hexagon and break it into six kite-like pieces. Those are then arranged in an eight-kite
configuration to form the hat.

The Wang Aperiodic Tiles
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Hat monotile

Wang tiles

Figure 3.55: The Hat and Some Wang Monotiles.

Wang tiles (also known as Wang dominoes) were proposed by Hao Wang in 1961.
The first set of Wang tiles was discovered by Robert Berger in 1964. It consisted of
20,426 distinct tile shapes, a large number that has prompted several researchers to look
for smaller sets of Wang aperiodic tiles. The smallest set known today was discovered
by Emmanuel Jeandel and Michael Rao in 2015. It consists of 11 tiles and four colors.
Figure 3.55 shows the set and a sample of 6 ⇥ 8 tiling. The tiles are laid by matching
the colors of adjacent sides; no rotations or reflections allowed. Laying the tiles is not
as easy as it seems, because at each step, the choice of the next tile is very limited. The
discoverers have also proved that this set is the smallest possible.

3.8 Tessellations

A tessellation, or tiling, is the process of covering a surface with geometric shapes, called
tiles, such that there are no overlaps or gaps between the tiles; they are tightly inter-
locked. The surface is often two-dimensional (a plane), but can be of higher dimensions.
In the simplest case, the tiles all have the same shape, but they can have di⌃erent shapes.
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Tessellation is the same as tiling, the subject of Section 3.7, but here we take a practical
approach, showing how to create simple tessellations, consisting of repetitions of only
one shape of tile.

The first step toward constructing tessellations, either with paper and scissors or
with drawing software, is to find out what common geometric shapes tessellate without
any modifications. Figure 3.56 shows some obvious choices, followed by less familiar
ones. The pattern labeled 6 consists of irregular hexagons and the patterns labeled 5
are irregular pentagons. Notice that circles, as well as polygons with more than six sides,
do not tessellate.

6

5 5 5

Figure 3.56: Geometric Shapes That Tessellate.

For artistic tessellations, it is common to use either a square, a hexagon, or an
equilateral triangle, as illustrated by Figure 3.57. The figure shows four basic techniques
to convert one of those shapes to a nontrivial tessellation. The results shown in the figure
are not beautiful or interesting, but hard work, persistence, and especially artistic talent,
can produce striking e⌃ects.

Part 1 of the figure illustrates how easy it is to produce a tessellation by simply
translating parts of the original shape. Two curves are drawn along two sides of the
hexagon. They are then cut and each is translated to protrude from the opposite side.
The resulting shape, which may look very di⌃erent from the original hexagon, tessellates.
With more experience, three adjacent sides of the hexagon can be cut and translated to
the opposite side in order to create more complex and interesting shapes.

In part 2 of the figure, circular arcs are drawn inside each face of an equilateral
triangle and are then cut, rotated 180⇤ about the red dots, and pasted outside the same
sides. This produces a symmetric shape that looks roughly like a ship’s propeller and
also tessellates.

Both translation and reflection are applied in part 3 of the figure, which starts with
a square. Curves are drawn inside two adjacent sides. Each of the resulting pieces is
cut, translated to the opposite edge, reflected, and pasted outside the square. When
done accurately, the resulting shape tessellates perfectly, but the individual copies have
to be reflected in order to fit together.

The technique of part-trap is demonstrated in part 4. Two curves are drawn in a
square. Each runs from the middle of an edge to the middle of the opposite edge. The
curves should meet at exactly one point, which partitions the square into four parts
labeled P, A, R, and T. The parts are cut and are rearranged in the order TRAP as shown,
to end up with a shape that tessellates.
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Figure 3.57: Techniques for Artistic Tessellations.

Any shape obtained by these techniques should be carefully examined by rotating
and reflecting it, looking at it from di⌃erent directions, and trying to recognize a familiar
pattern. If it starts looking familiar, the user can go back, redraw the original curves
and go through the steps to recreate a better version. Once satisfied, the result can be
further improved by adding texture and colors.

Serious works of art, in the style of Escher or even better, require several steps of
cutting pieces and transforming them to other parts of the starting pattern by transla-
tion, rotation, and reflection. Figure 3.58 illustrates five steps in the preparation of the
famous Escher lizard, and it is obvious that talent is needed, in addition to patience and
willingness to experiment.

⌅ Exercise 3.25: Search the Internet for a nontrivial tessellation and summarize its in-
dividual steps graphically, similar to Figure 3.58.
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Figure 3.58: Steps in Constructing the Lizard From a Hexagon.

3.9 Circle Inversions

The circle inversion discussed here is a two-dimensional nonlinear transformation. The
idea is to start with a reference circle in the plane, and invert the entire infinite plane
with respect to that circle. Every point P in the circle would map to a point P ⌥ outside
it, and vice versa. It is easy to decide on the direction of the transformed point P ⌥. The
simplest idea is to locate it outside the circle, on the line connecting the center O to P ,
but what about its distance from O?

Figure 3.59a shows a simple geometric construction where it is clear that trian-
gles OTP and OTP ⌥ Are similar, which implies OT/OP = OP ⌥/OT or OP ⇥ OP ⌥ =
(OT )2 = r2. Thus, the distance of the transformed point P ⌥ from the circle center
O is proportional to the inverse of the distance of P from O, and the proportionality
constant depends on the radius of the reference circle. Points closer to the center are
transformed to points outside the circle and far from it. The center itself is assumed to
be transformed to the point at infinity.

Figure 3.59b illustrates an alternative way to compute the transformed point, and
part (c) of the figure shows how to compute the transformed point from the original
point regardless of whether either is inside or outside the circle. Here are the steps for
this simple process:

Select a point P in or out of the circle. Denote the intersection point of ray OP
with the circle by C. Connect C with an arbitrary point A, di⌃erent from C, on the
circle. Draw segment AC. Draw ray AP and rotate it such that the two angles (in blue)
are equal. This ray now intersects OP at the transformed point P ⌥.

Figure 3.60 illustrates the main properties that make circle inversion useful in prac-
tice. The reference circle in the figure is in red.
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Figure 3.59: Circle Inversion and Similar Triangles.

In part (a) of the figure, the blue circle passes through the center of the reference
circle, which is why its inverse is a straight line (and vice versa).

The blue circle in part (b) of the figure is not going through the center of inversion,
so its image is the cyan circle and vice versa.

Part (c) of the figure illustrates that if the image of circle A is tangent to circle B,
then the image of B (the dashed blue line) is tangent to A.

(a) (b)
(c)A

A

(a)

B

B

Figure 3.60: Properties of Circle Inversion.

Figure 3.61 illustrates several examples of circle inversion. The reference circle is in
red. Notice the three semicircles 1, 5, and 6, whose centers are on the same line. Such
a configuration was named an arbelos (Greek for a shoemaker’s knife) by Archimedes,
who discovered the radius of the unique circle touching all three semicircles.

Of what use is symmetry?
—Mao Tse-Tung (Zedong).
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Figure 3.61: Examples of Circle Inversion.

3.10 Symmetry in text, speech, and ...

We start with letters. Many letters in the Roman alphabet have mirror symmetries that,
being so familiar with the letters, we rarely notice. The letters WAVYTUM|MUTYVAW
have left-right symmetries, the letters BDECK have up/down symmetries, and the letters
OXIH have both types of symmetry. The letters NSZ have both rotational and left-right
symmetries; they are transformed to themselves after a 180⇤ rotation. However, the
precise degree of symmetry depends on the font of type.

Symmetric words: The words CHOICE and SWIMS love to be turned both left-right
and upside-down, which makes them some of the most symmetrical words in English.
The word dollop is similar, but slightly less symmetric. MAXIMUM is identical to its
mirror image. pod features a 180⇤ rotational symmetry.

Figure 10.5 illustrates how certain digits feature up-down symmetries (but this
depends heavily on the font used to print them).

Every letter in the sentence “HI TIMOTHY, YOU MAY WAX IT NOW” has vertical sym-
metry. The same is true for the phrase “MAMA MIA” and “YAMAMOTO.”

Is it odd how asymmetrical
Is “symmetry”?
“Symmetry” is asymmetrical.
How odd it is.

This lovely poem is symmetrical with respect to backward reading.

A palindrome is a sequence of symbols—such as a word, a number, a phrase, a
sound, or a musical piece—that reads or sounds the same backwards as forwards. The
term was introduced to English in 1638 by Henry Peacham, who derived it from the
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Greek ��́↵ � (again) and ⌅✏óµo� (way or direction). The basic concept of a palindrome
can be traced back to the 3rd-century b.c. We Start with English text examples.

Words: civic, radar, level, rotor, kayak, madam, refer, rotator, deified, racecar, and
reviver. The 12-letter onomatopoeia tattarrattat, coined by James Joyce in Ulysses,
is the longest palindrome in English. According to the 2016 Guinness World Records, the
Finnish 19-letter word saippuakivikauppias (a soapstone vendor), is the world’s longest
palindromic word in everyday use.

Names: Hannah, Ava, Aviva, Anna, Eve, Bob, and Otto.
Phrases: Dennis and Edna sinned. Lewd did I live, evil I did dwel. No one made

killer apparel like Dame Noon. Too bad I hid a boot. Was it a car or a cat I saw? Mr.
Owl ate my metal worm. Do geese see God? A man, a plan, a canal, Panama.

A joke. The string ()() is not a palindrome, but ())( is.
Ambigrams: An ambigram is a set of glyphs (letters, numbers, symbols or other

shapes) that reads di⌃erently when it is inverted, rotated, reflected, or seen from dif-
ferent directions. Most ambigrams are the result of clever artistic calligraphy and are
copyrighted. Reference [ambigram 23] has many examples.

Dates: Only the digits of a date are considered in this determination; all other
separators (hyphens, slashes, and dots) are ignored. Short digits may be used as in
11/11/11 11:11 or long digits as in 2 February 2020.

A notable palindrome day is 2 February 2020, which is a palindrome in any date
convention (yyyy-mm-dd, dd-mm-yyyy, or mm-dd-yyyy) and can be written as either
2020-02-02 or 02-02-2020. This is why this date has been informally declared a “Universal
Palindrome Day,” a title that also includes 11/11/1111, 12/12/2121, and 03/03/3030.

Speech palindromes. When pronounced in English, the following phrases are palin-
dromic, except perhaps in certain regional accents: “funny enough,” “let Bob tell,” “new
moon,” “selfless,” “sorry, Ross,” “talk, Scott,” and “to boot.”

⌅ Exercise 3.26: In your language, find words that rhyme with symmetry.

Palindromes are also found in music, as in the table canon and crab canon. The
former is a retrograde and inverse canon meant to be placed on a table in between two
musicians, who both read the same line of music in opposite directions. The latter is an
arrangement of two musical lines that are complementary and backward.

Numbers: A palindromic number is an integer whose digits remain the same when
reversed. It features reflectional symmetry across a vertical axis. Sequence A002113 in
the OEIS, reference [Sloane 08], lists some of these numbers.

⌅ Exercise 3.27: Show that there are infinitely many palindromic numbers in any number
base, not just decimal.

⌅ Exercise 3.28: Show that a palindromic number with an even number of digits is
divisible by 11.

Zero is a palindrome by definition.
The first nine terms of the sequence 1, 11, 111, 1111 are palindromes, as also are

their squares. Those squares are referred to as palindromic squares, and there are also
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palindromic cubes (0, 1, and 8 = 2⇥ 2⇥ 2 are examples), and palindromic 4th powers.
Higher power palindromic numbers are so far unknown.

The 196 Palindrome Quest. Consider the following numeric process. (1) Pick a
number, (2) reverse its digits, and (3) add this value to the original number. If the sum
is not a palindrome, go back to (2) and repeat. This is known as a delayed palindrome.

Most integers become palindromised by this process in just a few steps, but it is
unknown whether this is true for all numbers. The integer 196 is the smallest integer
that so far has resisted any attempts to palindromise it, hence the name of this quest.

Antipalindromic numbers. Start with the decimal integer 3802. Convert it to the
palindrome 3802083 and subtract each of the added digits 083 from 9 to obtain 3802916,
an antipalindromic number. In general, given a palindrome in base b, it is converted to
the corresponding antipalindromic number by subtracting each digit of its second half
from b � 1. This is true for any base. A number can be both a palindrome and an
antipalindrome if its base b is odd and each of its digits equals (b � 1)/2. The base 5
number 2222225 is such a number, because (5� 1)� 2 = 2.

Reference [Bergerson 73] brings together over 1,100 di⌃erent anagrams and nearly
as many palindromes, plus a host of related phenomena—charades, circular reversals,
vocabulary called poetry, etc.

Continued fractions have been mentioned elsewhere in this book. See, for exam-
ple, Equation (2.2). It has been proved that if n is any non-square positive integer,
the regular continued fraction expansion of

"
n contains a repeating palindromic block

of numbers. The Mathematica command ContinuedFraction[Sqrt[1205], 37], for
example, produces the output
{34,1,2,2,16,1,12,1,16,2,2,1,68,1,2,2,16,1,12,1,16,2,2,1,68
,1,2,2,16,1,12,1,16,2,2,1,68}
where a palindromic string of length 11 appears several times.

Palindromic number may also occur in mathematical functions and other expres-
sions. A simple example is a polynomial such as ax6 + bx5 + cx4 + dx3 + cx2 + bx + a,
where the coe⌥cients (a, b, c, d, c, b, a) form a palindrome.

Symmetry in graphics. Figure 3.62 illustrates several steps in constructing the well-
known space-filling Hilbert curve. There are several ways to explain and construct this
curve, and here it is shown as a combination of scaling and rotation. The three-sided
cap of the first step is copied, shrunk to half its size, duplicated four times, moved as
shown in the figure, and the two bottom copies rotated 90⇤ as shown. The four copies
are then connected as illustrated in the figure, and the process can be repeated. The last
three steps in the Figure were done with the Mathematica command HilbertCurve[n].

For those unfamiliar with these curves, a space filling curve (several designs are
known), is a bijection (a one-to-one mapping) of the real interval [0, 1] to the unit
square. Being a bijection, every real number in the interval is mapped by it to some
point in the square and every point in the square is the unique map of some point on the
line. We intuitively feel that a square has more points than a curve, but the existence
of these curves shows that intuition in mathematics, while often being useful, has to be
applied carefully.

Symmetry in poems. A quatrain is a rhymed poem of four lines or a rhymed stanza
of four lines in a longer poem. Many long ballads are written in quatrains, and quatrains
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Figure 3.62: Steps in Constructing the Hilbert Curve.

also appear in Shakespearean sonnets. Figure 3.63 lists examples of symmetry groupings
in quatrains.

I give thee, good fellow, a twelvemonth or twain,
To reach Europe through, from Byzantium to Spain;
But ne’er shall you find, should you search till you tire,
So happy a man as the Barefooted Friar.

Sir Walter Scott, Ivanhoe
The curfew tolls the knell of parting day,
The lowing herd wind slowly o’er the lea,
The plowman homeward plods his weary way,
And leaves the world to darkness and to me.

Thomas Grey
Forgive these wild and wandering cries,
Confusions of a wasted youth;
Forgive them where they fail in truth,
And in thy wisdom make me wise.

Alfred, Lord Tennyson
Row row row your boat,
Gently down the stream;
Merrily merrily merrily merrily,
Life is but a dream.

Figure 3.63: Symmetry in Rhymes.
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Symmetry: A Poem by chatGPT 4o, May 2024.

In nature’s art and crafted forms,
Symmetry appears, and beauty swarms,
A balance struck in line and arc,
In every snowflake, tree, and park.

Reflections in a mirrored lake,
A perfect stillness they create,
In butterfly wings, a balanced sight,
Symmetry, a pure delight.

In crystals’ lattice, tight and neat,
Symmetry repeats, so sweet,
Each angle, edge, and face aligned,
A dance of atoms, finely timed.

In algebra, a concept blooms,
Symmetry groups in ordered rooms,
With operations, clear and bright,
They map out shapes in purest light.

From cyclic twists to dihedral turns,
In every structure, order yearns,
A square rotates, reflections blend,
Symmetry groups, rules transcend.

The group of Klein, a fourfold grace,
With flips and spins in mirrored space,
Each element, a transformation,
A testament to calculation.

In higher realms where spaces bend,
Symmetry’s rules still extend,
In n-dimensions, forms evolve,
With symmetry, problems resolve.

The universe, in grand display,
Shows symmetry in vast array,
From galaxy spirals, vast and wide,
To particle spins, in quantum tide.

Noether’s theorem, deep and grand,
In physics, takes a bold stand,
Each symmetry, a conserved law,
In nature’s code, a flawless draw.

In art, in music, patterns found,
Symmetry’s echoes all around,
From Da Vinci’s lines to Bach’s sweet tunes,
Symmetry sings in varied runes.

In Escher’s worlds, where fish take flight,
Symmetry twists in paradox sight,
With tessellations, infinite,
A play of form, exquisite, bright.

In every face, a trace we see,
Of symmetry’s soft decree,
From human forms to shells at sea,
A universal harmony.

So let us marvel at this theme,
In symmetry, a dreamer’s dream,
For in its balance, we discern,
A deeper truth at every turn.

Symmetry groups, with elegance,
Show math’s purest resonance,
A language of the universe,
In every line, its verses terse.

In fractals’ endless self-embrace,
Symmetry finds another place,
Recursive, infinite, it stands,
A testament to nature’s plans.

Thus in the world, both near and far,
Symmetry shines, a guiding star,
A principle, both grand and small,
The hidden code, the essence of all.

Symmetry looks good to us; we want more of it.

—Susan Messing.



4
Infinity

Frequently we encounter or come across statements like the following: “after spending
hours walking through the seemingly endless hallways of the (Louvre, Pentagon, Paris
sewer system), we eventually reached our destination with sore feet.” In our daily lives,
we are aware that those hallways, no matter their location, were not endless, but rather
extremely lengthy, with “infinite” being an exaggerated term for emphasis on their great
length.

The concept of infinity, whether it exists or not, its significance, and the conse-
quences it brings, has been a subject of wonder, contemplation, and dialogue for cen-
turies. When early humans started observing their surroundings and pondering how
things functioned, they began exploring the concepts of infinity in terms of both time
and space. Has the world existed forever? Will it continue to exist indefinitely? Does
it have unlimited size? Imagine if we continued in a straight line. Is it possible to ever
reach the end of the universe, or is the journey to get there never-ending? What if we
begin with an object, divide it in half, then divide one of those halves in half again and
continue this pattern? Can this process theoretically be continued indefinitely? There-
fore, infinity pertains to both space and time, as well as to both the extremely large and
the extremely small. Is it possible for a particle of matter to be infinitesimally tiny? Is
it possible for there to be infinitesimally smaller units of time?

Aristotle came up with an interesting way to approach infinity. He argued that
humans will never be able to grasp infinity as a concept or as an object and can only
hope to approach it in steps. Thus, we cannot conceive of the complete, infinite set of
integers, but we can approach this set by realizing that given any finite set of integers we
can easily extend it to a larger, finite set. (This argument makes sense when we realize
that during the whole of human history, in all the calculations ever made, only a finite
number of integers have ever been generated and examined. Even in the future, with
the help of ever faster computers, only a finite set of integers will ever be generated.)
Thus, infinity is only potential. When dealing with an infinite set, wherever we are in
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the set, we can always go further. We will never reach the end. Infinity is not a quantity
that can be completed.

Nothing that we can see, measure, or perceive in the universe around us is infinite.
Even the farthest galaxies are a finite (albeit very large) distance from us. Thus, it
seems that the only infinite quantities we deal with are philosophical and mathematical
concepts and objects, and perhaps also the universe itself. It is not currently known
whether the universe is infinite, which is why any experiences we have with infinity come
from mathematics and from thought experiments. Many mathematical sets, quantities,
and objects are infinite. There are infinitely many integers, infinitely many odd integers,
many infinite sequences of numbers (in fact, infinitely many infinite sequences), many
infinite series that converge to finite values, and many expressions, functions, and sets
that generate infinite patterns.

Two things are infinite, as far as we know, the universe and human stupidity.
—Attributed to Albert Einstein by Frederick S. Perls.

4.1 A Short History of Infinity

Perhaps the earliest writings about infinity came down to us from the ancient Greek
philosophers, chief among them are:

Anaximander, who claimed that infinity is the founding principle of reality. From
it are created an infinite number of worlds that fill the entire universe.

Heraclitus, in contrast, believed that time is infinite and it is through its infinity
that we perceive our own existence.

Zeno of Elea came up with several famous arguments demonstrating the paradox-
ical nature of the infinite by closely examining and analyzing everyday actions such as
running or shooting an arrow.

But it was Georg Cantor, in late 19th century, who applied modern mathematical
methods and techniques of proofs to the study of infinite sets, and came up with the
revolutionary notion of di⌃erent infinities. His creation, beginning in 1874, of set theory,
has since been an endless source of debate, arguments, and research.

Finally, another approach to infinity, that of recursive mathematical processes that
can also be demonstrated graphically, has been advanced and promoted by Benoit Man-
delbrot, who coined the term fractal (Section 8.1) and has brought to the attention of
the mathematical world the names of pioneers in this field, names such as Sierpinski
(carpet and gasket fractals), Peano (space-filling curve), Menger (sponge), Julia (set),
and Harter and Heighway (dragon curve).

The infinite we shall do right away. The finite may take a little longer.
—Stanislaw Ulam.
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4.2 Mathematical Infinity

Even though we cannot grasp infinity, it is often easy to deal with it in mathematics.
First, we present simple arguments to convince the reader that infinity is not a number.
Given any number a, we can always add 1 to it, ending up with a number b = a + 1
that is greater than a. Now imagine adding 1 to infinity. The quantity (⌫+ 1) cannot
be less than infinity. It can only be greater than or equal to infinity. If we assume that
(⌫+1) is greater than infinity, then we have a new, greater infinity, to which another 1
can be added, to form an even greater infinity, and so on. This contradicts the concept
of infinity which is “beyond anything.” We therefore have to accept that (⌫+1) equals
infinity, which implies that infinity is not a number. Similarly, if infinity were an integer,
then it must be odd or even. If infinity is odd, then 2⇥⌫ would have to be even, but
we cannot accept that 2 ⇥ ⌫ is another infinity, greater than the “original” infinity.
Therefore, 2⇥⌫ must equal infinity and so must be odd, a contradiction.

Thus, infinity is not a number, not even a very large number. It is not simply a
little bigger than any number we can think of. It is a di⌃erent concept and should be
considered di⌃erently and treated di⌃erently from numbers.

We follow with several examples that illustrate the usefulness of infinity in mathe-
matics.

Example: The concept of a limit is central to calculus. The limit of the function
f(x) = 2x when x approaches infinity is infinite. This is denoted by limx⇧� 2x = ⌫.
Similarly, limx⇧�(x + 1) is infinite, but the limit of the ratio 2x/(x + 1) is the finite
value 2.

Example: The set P of all positive integers is infinite, and so is the set E of all the
positive even integers. It is intuitively clear that E cannot be greater than P , because
E is a subset of P . Thus, E can only be smaller than or equal to P , and the surprising
fact is that we can show that these two infinite sets are equivalent in the sense that their
elements can be matched. An element p of P is a positive integer and is matched with
2p, which is even and therefore an element of E. Conversely, an element e of E is an
even positive integer, so e/2 is a positive integer and therefore an element of P .

Set theory, the creation of Georg Cantor in the 1870s, shows that the set of the
rational numbers is equivalent to the set of all the integers. This is surprising because
there are so many “more” rational numbers than integers. This result shows that in
principle, an integer tag (or subscript or index) can be assigned to every rational. How-
ever, set theory also shows that the set of all real numbers is infinitely greater than
the set of integers, even though both are infinite. Thus, there is no way to assign an
integer subscript to every real number, even though there are infinitely many integers.
An unintuitive result.

Example: Computing the value of the infinite continued fraction

1 +
1

1 + 1
1+ 1

1+ 1

...

seems hopeless, but turns out to be simple. We denote this sum by ⌘ and examine
the expression 1 + 1/�. A little thinking should convince the reader that this sum is
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identical to the original � because this continued fraction is infinite. Thus, we end up
with the unusual quadratic equation 1 + 1/� = � whose solutions are (1 ±

"
5)/2 �

(�0.61803398875, 1.61803398875). Equation (2.3) and Subsection 2.9.4 make it clear
that this � is the golden ratio.

This quadratic equation is unusual because it can be written in the forms 1/� = ��1
and �+1 = �2. The former form implies that inverting the unknown number � produces
the same result as subtracting 1 from it. The latter form tells us that adding 1 to �
yields �2.

Example: The integers are discrete. Each integer has a successor and a predeces-
sor, but the real numbers are dense everywhere. There are infinitely many real numbers.
There are also infinitely many real numbers in the short interval [0, 1]. In fact, there are
infinitely many real numbers in any interval, even the shortest one that we can imagine.
Thus, even though there are infinitely many integers and infinitely many real numbers,
we may not find it so di⌥cult to accept that the reals constitute a di⌃erent magnitude of
infinity and that there even are many di⌃erent infinities (perhaps even infinitely many).

Example: Consider the limit of the infinite sequence of nested square roots

lim
x⇧0+

2

x +
1

x +
"

x + · · ·. (4.1)

We show why this limit equals 1. As x shrinks and approaches zero, this expression
becomes the limit of square roots of zeros. As long as we consider only a finite number
of nested square roots, its limit in x indeed converges to zero. To make this clearer, we
can write Equation (4.1) in the form

f(x, n) =

2

x +
1

x +
"

x + · · ·
6 54 7

n

. (4.2)

For any finite value of n, the limit of Equation (4.2) is a limit of zeros, so it is also zero.
However, when we extend the limit of n to infinity, Equation (4.1) becomes a double

limit whose inner limit (of x approaching zero), is surrounded by an outer limit of infinite
n square roots. Thus,

lim
n⇧�

lim
x⇧0+

2

x +
1

x +
"

x + · · ·. (4.3)

When we now reverse the order of limits of Equation (4.3), its sum changes. The
new double limit

P = lim
x⇧0+

lim
n⇧�

2

x +
1

x +
"

x + · · ·, (4.4)

has an inner part that consists of an infinite number of square roots, so in order to
compute the outer limit (on x), we label the sum of expression (4.4) by P , and use our
previous technique to write P =

"
x + P , which yields the quadratic equation

P =
1 ±

"
1 + 4x
2

.
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Since x goes down to zero, it must be positive, implying that P must also be positive,
so we pick the positive solution of the quadratic equation, which is P = 1.

Most human beings have an almost infinite capacity for taking things for granted.
—Aldous Huxley.

4.3 Potential and Completed Infinities

When dealing with, or thinking of, infinity, we normally treat it as a potential quantity.
Treating infinity as a completed quantity leads to paradoxes, so we avoid it in all cases
except in set theory, where a completed infinity produces new, unexpected, and unusual
results that many find beautiful and deep. The following examples show what paradoxes
may arise when we assume (often implicitly) that infinity can be completed.

Example: Given two numbers a and b, their average is (a + b)/2. Imagine an
infinitely long, vertical line on which the positive integers are written, starting with 1
at the bottom and going all the way to infinity at the top of this line. What would
be a typical average positive integer? This is like asking what number appears in the
middle of this line. The answer is that there is no such number. As we climb this infinite
vertical line, we always remain at the same distance from the top, because the top does
not exist; the line has no end. No integer is a typical average between zero and infinity.
To see why this is true, pick the largest integer you can think of and denote it by a.
This number is not an average integer because the distance between it and the bottom
of the line is the large but finite quantity a, while the distance between it and the top
of the line is infinite.

This inability to specify an average integer is not a result of our ignorance or lack
of scientific ability. An average integer cannot be found because such an integer simply
does not exist. This sounds like a paradox, because there are so many integers, but
the paradox is resolved when we realize that the words “going all the way to infinity at
the top of this line” imply that there is a top. In stating this example, we implicitly
assumed that it is possible to reach the end of an infinite line. We assumed that infinity
is a completed quantity.

Example: This is referred to as Albert of Saxony’s paradox. In many places around
the world, the construction of a house starts with a frame consisting of wooden beams;
lumber. Builders often use phrases such as “a 2 ⇥ 4” or “a long 4 ⇥ 4.” Now imagine
a long 1 ⇥ 1 beam. It is 1 inch high and 1 inch wide and as a thought experiment we
extend it to infinite length. The beam starts at our feet and continues until it disappears
from sight. With a powerful telescope we can see it until it disappears beyond the orbit
of the moon. Even though this beam is infinitely long, it does not occupy an infinite
amount of space. It is quite small and narrow, we can step over it, move it, and cut it.

Now imagine this beam cut into infinitely many small cubes, with dimensions of
1 ⇥ 1 ⇥ 1 each. We pick the first cube and arrange the next 26 cubes around it to
form a larger, 3 ⇥ 3 ⇥ 3 cube consisting of 33 = 27 small cubes. Next, we pick the
next 53 � 33 = 625 � 27 = 98 small cubes and arrange them around the large cube to
increase its dimensions to 7 ⇥ 7 ⇥ 7. There is an infinite supply of small cubes, so this
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process increases the large cube more and more without limit. The original thin, long,
and unobtrusive beam can in this way supply building material for a cube that fills up
the entire universe (or at least the observable universe). This is again a paradox, arising
from our implicit assumption that the entire infinitely-long beam can be cut into small
cubes.

Example: The infinite grand hotel (this entertaining concept seems to have orig-
inated with the eminent mathematician David Hilbert, see [Grand-Hotel 11], but was
popularized by [Gamow 61], pp. 17–18.). At the time of writing (late 2011), the largest
hotel in the world (by number of units) is the Izmailovo hotel complex, located in the
Izmaylovo District of Moscow. (It was built for the participants and visitors of the 1980
Moscow Olympics.) It features four buildings with a total of 7500 rooms. A guest ar-
riving at this hotel without a reservation, even at the height of season, is unlikely to be
turned away, but in principle, even this hotel may be full, in which case, the next guest
will have to find a room elsewhere. The second largest hotel in the world is currently
the Venetian and The Palazzo complex in Las Vegas, Nevada, boasting 7,117 rooms.

Vast as they are, these hotels are dwarfed by the grand hotel envisioned by Hilbert,
because this hotel is infinite. It contains a countable infinity of rooms (the term countable
implies that the rooms can be numbered, each has an integer number). It is easy to
show that this hotel has a number of surprising, counterintuitive properties that make
it especially attractive. The most important such properties are listed here:

Imagine the case where the infinity grand hotel is full; every room is occupied
(contrary to what you might think, this is common). A new guest (without a reservation)
arrives late at night and is asking for a room. What is the manager to do? In any other
hotel, the guest would simply be turned away and sent to another big hotel (Izmailovo?),
but in the infinity hotel one more guest can always be accommodated. All that the
manager has to do is move the current occupant of room 1 to room 2, the occupant of
room 2 to room 3, and so on. Once this is done, room 1 is empty, and can be prepared
for the new guest. Easy! This encouraging result is equivalent to saying that⌫+1 =⌫.

It is really late. The tired manager prepares to go to sleep when all of s sudden a bus
arrives with an infinite number of guests. Clearly, no other hotel can accommodate so
many guests, especially when it is already full, but our infinity grand hotel is di⌃erent.
The manager can find rooms for any number of new guests, even an infinite number
(as long as it is countable). Here is how: Simply move the occupant of room 1 to
room 2, that of room 2 to room 4, and in general, from room n to room 2n. All the
rooms with numbers of the form 2n (even) will now be occupied and all the rooms with
numbers 2n + 1 (odd) will be empty. All the (infinitely many) new guests can now be
accommodated.

In the morning, the tired manager is woken up by irate guests. “As if it is not
enough that I was moved once because of the unexpected new guest, I was moved again
(and to an even-numbered room) when this huge bus arrived. This is unacceptable; I
quit. Tonight I will try the Izmailovo hotel. They will surely will let me spend a quiet
night.” The result is that half the guests, those in the even-numbered rooms, check out,
leaving the hotel with only 50% occupancy. The poor manager is worried about his job,
but then an angel appears, in the form of his little girl (I always said she was an angel).
“Don’t worry papa, we still have an infinite number of guests in the odd-numbered
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rooms. Let’s compact them and we’ll go back to 100% occupancy.” She also explains
how to do this compaction. Move the occupant of room 3 to room 2, the occupant of
room 5 to room 3, room 7 to room 4, and in general, room 2n + 1 to room (n + 1). The
result is a full hotel and a manager who keeps his job. As an added bonus, the occupant
of room 1 does not have to be disturbed.

The ultimate in performance occurs one day, when infinitely many tourist buses
arrive, each with infinitely many weary travelers. They all want rooms even though the
hotel is, as you guessed, full. The first part of the solution is to move current occupants,
as before, so as to have all the odd-numbered rooms vacant. The second part is to
assign each new arrival a (positive integer) number. We cannot simply number the
occupants of bus 1, followed by those of bus 2, and so on, because each bus has infinitely
many passengers. Perhaps the simplest method is the infinite square, originally used
by Cantor to prove the countability of the rationals. (1) Assign each new arrival a
pair of numbers (bus number,passenger number). (2) Arrange the pairs in an infinite
square matrix where each row corresponds to a bus and each column corresponds to a
passenger. (3) Scan the matrix in zigzag as illustrated in Figure 4.1. This assigns a
unique number (positive integer) to each passenger, and now passenger n can check in
and is accommodated in the odd-numbered room 2n + 1.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Passenger

B
u
s

Figure 4.1: Scanning in ZigZag.

In addition to accommodating any number of guests, the grand infinity hotel has
many other advantages (and features paradoxes), not found in conventional, finite hotels.
Here is one example. A big sign in the lobby says No Smoking. Even more, no cigars may
be brought into the hotel. Clever guests can circumvent this rule and smoke even though
none has to bring cigars. The (infinite) smoking process starts when the occupant of
room 1 goes to room 2 to borrow a cigar. The occupant of room 2 goes to room 3 and
borrows TWO cigars. He smokes one and gives the other one to the guest in room 1.
In general, the person in room n borrows n cigars from room (n + 1), smoke one cigar,
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and give the remaining ones to the occupant of room (n� 1). Thus, all the guests break
the no smoking rule, even though none has brought any cigars into the hotel. Where
did the cigars come from? This is a paradox similar to the ones discussed earlier.

Many find this type of hotel very entertaining, and reference [Grand-Hotel 11] lists
several works of fiction where it appears.

We cannot speak of infinite quantities as being the one greater or less than or equal
to another.

—Galileo.

Infinite series and sequences are discussed elsewhere, but here we look at one ba�ing
infinite series, known as Grandi’s series, that is divergent. It has no well-defined sum,
although its partial sums do not increase without a limit. It is defined as the infinite
sum

S =
�&

n=0

(�1)n = 1� 1 + 1� 1 + 1� 1 + 1� 1 + 1 · · · .

In contrast with many other infinite series, our S is easy to evaluate, but it is also easy
to show that it can have any value whatsoever. First, we show that it equals 0, simply
by placing parentheses in a special way

S = (1� 1) + (1� 1) + (1� 1) + (1� 1) + · · · = 0.

Changing the positions of the parentheses indicates that S = 1

S = 1 + (�1 + 1) + (�1 + 1) + (�1 + 1) + (�1 + 1) · · · = 1.

Another change produces the unexpected sum S = 1/2

S = 1� (1� 1 + 1� 1 + 1� 1 + 1 · · ·) = 1� S ⇣ S = 1/2,

(see also note on Page 5.) This strange behavior is another result of treating infinity as
completed.

I am so in favor of the actual infinite that instead of admitting that Nature abhors it,
as is commonly said, I hold that Nature makes frequent use of it everywhere, in order
to show more e⌃ectively the perfections of its Author.

—Gottfried Wilhelm Leibniz in a letter to Simon Foucher, 1692.
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4.4 Unexpected Results of Infinity

Ant on a flexible string

This example of a beautiful, unintuitive result that relies on the harmonic series is
described here is following the video at [yt.ant.string 23]

Imagine a string of length L with infinite stretchability. It can be stretched without
limit and without breaking. We place an ant at a point l on the string. The ant moves
forward continuously at a low speed of, say, 1 cm/hr, while the string is stretched at a
much higher speed, say, 1 km/hr. Intuitively, it feels as if the ant is going to get behind
more and more all the time, but it is easy to show that the ant would actually move
forward, albeit slowly, and will eventually reach the end of the string no matter the ratio
between its speed and the stretching speed.

To see why this is so, we should think of the problem in terms of the distance
remaining for the ant to cover. Consider the simple case where the ant starts at the
middle of the string (Figure 4.2), and is initially at rest. When the string is stretched, it
is stretched equal amounts in front of the ant and behind it, so even if the ant is at rest,
it moves with the middle of the string. It now seems possible that if it is also moving by
itself, at any speed, it would continuously gain distance and may eventually reach the
end of the string, however long it takes.

Figure 4.2: Ant on a Stretched String.

This still has to be proved rigorously, but the analysis is simple. Let’s run the
process second by second and assume that the ant starts at the beginning of the string.
We denote the initial length of the string, the distance it is stretched each second, and
the distance the ant moves each second by L, D, and d, respectively. After the first
second, the ant has covered distance d, and the string is L + D units long.

During the kth second, the ant covers d units of the string whose length (at the
end of the second) is L + kD. Thus, the part of the string covered by the ant in the kth
second is the ratio d/(L + kD) and the sum of the parts the ant covers in the first n
seconds is

n&

k=1

d

L + kD
. (4.5)

However, it is easy to see the following relations

d

L + kD
↵ d

kL + kD
=

d

L + D

⌦
1
k

↵
,

which is why
n&

k=1

d

L + kD
↵

n&

k=1

d

L + D

⌦
1
k

↵
=

d

L + D

n&

k=1

⌦
1
k

↵
.
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However, the latter sum of 1/k is the well-known harmonic series, which has long been
proved to diverge, which proves that the sum of Equation (4.5) also diverges, so in the
limit, where n approaches infinity, the ant has covered all the parts of the stretched
string and has reached its end, no matter how long it is.

Algebraic? transcendental?

The well-known Euler constant can be represented by the infinite sum

e =
�&

k=0

1
k!

,

(See also Page 95) all of whose terms are algebraic, but because of the mysterious,
unpredictable nature of the infinite, it was possible for Charles Hermite to prove, in
1873, that no algebraic equation yields e as a solution. It is transcendental even though
each of its components is algebraic.

It’s easy to find more examples, as the following illustrates.
The following two-player game is a representative of an entire class of thought

processes that illustrate the subtle nature of the infinite. The game is played in steps
where in each step, each of the two players, A and B, receives the next two integers,
appends them to his collection, and deletes one number from that collection. Player
A deletes the smallest number he has, and player B deletes the largest number in his
collection.

In step 1, each player receives the integers 1 and 2. Player A deletes 2, while B
deletes 1. In step 2, each receives 3 and 4. Player A now has 1, 3, and 4, so he deletes
the 4, while player B, who has 2, 3, and 4, deletes the 2. In step 3, each receives 5 and
6. Player A deletes the 6, retaining 1, 3, and 5, while B deletes the 3, keeping 4, 5, and
6. The table lists the first three steps.

A: 1 2\ 3 4\ 5 6\ . . .
B: 1\ 2\ 3\ 4 5 6 . . .

As the game progresses, A retains more and more odd positive integers (n such
integers after step n), while B keeps longer and longer sequences of the form (4, 5, 6),
(5, 6, 7, 8), (6, 7, 8, 9), and so on (also n integers after step n).

The question is, what will the two players have at the end of this game? The case
of player A seems straight. He will simply have all the positive odd integers. The case
of B, however, is not that clear. On one hand, B has n integers after step n, so at the
end he will simply have infinitely many integers. On the other hand, player B deletes
the integer 1 in step 1, the integer 2 in step 2, and so on, so at the end of this game
he will have deleted all the positive integers that he received and should be left with
nothing! Again a paradox, and again it is resolved when we realize that the words “at
the end of this game” at the beginning of this paragraph are meaningless. This game is
infinite, so it will not have an end.

In a variant of this game, each player is given all the positive integers when the
game starts. Player A deletes all the even integers and is left with the odd ones. This
is a case where infinitely many integers input and infinitely many integers output leaves
us with infinitely many integers. Player B, on the other hand, deletes the integer n in



4.4 Unexpected Results of Infinity 211

step n, so is eventually left with nothing. In this case, infinitely many integers input
and infinitely many integers output leaves the player with nothing (no integers).

This is a paradox, and by now it should be obvious that the resolution is Beware of
the infinite. The game would never end, which is why it is meaningless to consider its
end result.

Here is a variation known as the Ross-Littlewood paradox. A jar contains a (count-
able) infinity of balls. In each step we remove 10 balls and put back one of them. After
n steps, a total of 9n balls would have been removed, but what would be left after in-
finitely many steps? On one hand, the jar should be empty, because removing 10�1 = 9
balls at a step would remove nine infinities of balls after infinitely many steps. On the
other hand, we put back one ball in the jar at each step, so after infinitely many steps
it should have infinitely many balls; the same number as at the start.

To make this process more dramatic, we can speed up the time. Assume that we
remove the first 10 balls at 11 pm, the next 10 balls 30 minutes later. The next batch
after another 15 minutes, and so on, continuing faster and faster until midnight. (This
implies infinitely many steps, without having to mention the word infinity.) We then go
to bed and wait until morning to take a peek at the jar. Surprise!

Another variation is the Thomson’s lamp, an old paradox/puzzle related to Grandi’s
series of Page 208. Given a lamp that is controlled by a flip switch, start turning it on
and o⌃ faster and faster. The question is what would its state be after an infinite number
of switches? The resolution of this paradox is the same as for its predecessors, namely
there will not be an end. The state of the lamp is well defined after any finite number
of switches, but not after an infinite number, even if this infinite process accelerates and
takes only a finite period of time.

It is also possible to explain this paradox in two other ways. (1) Current physical
theory cannot describe timescales shorter than the Planck time (approximately 5.39 ⇥
10�44 sec.) Thus, physics makes it impossible to perform the experiment and it suggests
that its final outcome is nonexistent because of the way our world is constructed. (2)
Mathematics claims that the last step does not exist since the sequence of steps is infinite.

A variation of this paradox states that the Thomson switching process starts a
minute before midnight and lasts for one minute. The witching occur at 11:59, 11:59:30,
11:59:45, and so on. What is the state of the lamp at midnight? Here we claim that
every step in the process takes place before midnight, so there is no step at precisely
midnight. See also the racecourse paradox on Page 268 and Achilles and the fly paradox
on Page 274.

⌅ Exercise 4.1: Figure 4.3a shows a circle of diameter 1 surrounded by a square of side 1.
The circumference of the circle is � and the circumference of the square is 4. Parts (b)
and (c) of the figure illustrate how the circumference of the square can be fragmented
in steps while maintaining its total length. As long as the square is fragmented a finite
number of times, it circumference stays the same 4, but in the limit, it becomes identical
to the circle, so it must be �. What is the explanation?
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(a) (b) (c)

Figure 4.3: A Circle and a Square.

4.5 Set Theory

The examples above illustrate the kind of paradoxes that result when infinity is con-
sidered a completed quantity. The conclusion is obvious. We have to be careful when
considering processes or situations that involve the infinite. An important example is
the unusual equation on Page 98, which involves infinite tetration (repeated exponen-
tiation). Infinity should be considered a potential, a limit, something that cannot be
achieved. Yes, there is one area where infinity is considered complete and the resulting
paradox is considered acceptable. This area is set theory, an integral part of current
mathematics. When first developed and published, in the 1870’s and 1880’s, by Georg
Cantor, some mathematicians, foremost among them Leopold Kronecker, objected to it
on the grounds that it (implicitly) assumes that infinite sets can be fully constructed and
operated on. Other mathematicians, most notably Hilbert, immediately embraced set
theory and it is easy to see why. Set theory is easy to understand with only a minimal
mathematical background. It gives the user the satisfaction of being able to generate
and manipulate many di⌃erent infinite quantities. It is simple and elegant and provides
a sense of power.

Because of the popularity of set theory, its story and its history have been told in
many books, articles, and websites. This section concentrates on the most important
techniques and results of this elegant area of mathematics.

Cantor’s great achievement was to tackle to infinite, to take on the infinite in a way
that nobody ever had.

—William Dunham.
Set theory is based on two assumptions. The first assumption is stated explicitly

and says that sets can be compared by comparing pairs of elements, one from each set.
Imagine two farmers who each own cows. They want to know who owns more cows.
They can simply count the number of cows in each set, but what if the farmers cannot
count? They can still compare their sets of cows by comparing pairs of cows. Farmer A
brings one cow and farmer B brings one of his own cows. Farmer A brings another cow
and farmer B does the same. The farmer who runs our of cows first has the fewer cows.

Counting the number of elements of each set is easier and faster, but is possible
only if the sets are finite. When dealing with infinite sets, we have to find a rule that
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will match pairs of elements of the sets. If a rule is found that matches every element of
set A with an element of B, such that every element of B is eventually matched, then it
is reasonable to claim that the two sets have the same infinite size (the term cardinality
is used instead of size). If we can prove that such a rule does not exist, then the two
sets, even though both are infinite, can be declared to have di⌃erent cardinalities.

The second assumption underlying set theory is implicit. It says that we can actually
construct complete infinite sets and compare all their elements. This is equivalent to
talking about infinity as a completed quantity. The following thought experiment may
illustrate the di⌃erence between potential infinity and completed infinity. Suppose we
have balls numbered with the positive integers and we place them one by one into a box.
At any point, there will be more balls available to place in the box, infinity hasn’t been
reached because it is only a potential. On the other hand, if we imagine a box with all
the numbered balls already in it, we imagine completed infinity.

Perhaps the simplest example of applying the two assumptions above to actual
infinite sets is to compare the set N of positive integers to the set E of positive even
integers. Each set is infinite but N includes E, so in a certain sense N is greater that E.
However, the simple rule n⇣ 2n matches each integer n in N with the even integer 2n
in E. Every integer n is matched by this rule with an even number 2n (its double) and
every even integer e is matched with an integer e/2. If we accept the two assumptions
above, then we cannot avoid the conclusion that sets N and E have the same cardinality.
They are infinite, but their infinite sizes (cardinalities) are the same.

A similar example compares the set N of positive integers to the set Z of all the
integers. Clearly, Z includes N , but it is easy to find a rule that matches every element
n of N with an element of Z

n⇣ 1 + (�1)n(2n� 1)
4

.

The first few matches are 1 ⇣ 0, 2 ⇣ 1, 3 ⇣ �1, 4 ⇣ 2, and 5 ⇣ �2, and our rule
(again assuming the validity of the assumptions above) proves that Z and N have the
same cardinality.

Cantor used the term countable (or denumerable), to denote the cardinality of N
and of any set that can be matched with N . He also used the symbol �0 (pronounced
aleph-naught or aleph-sub-zero) to indicate this cardinality. Even more, Cantor consid-
ered �0 a new type of number, a type that he termed transfinite.

The next two steps of set theory are really surprising. The first step shows that the
set of the rational numbers Q is countable (its cardinality is �0) and the second step
shows that the set of real numbers is not countable, its cardinality is greater than �0

and was termed �1 by Cantor.
A rational number has the form a/b, where a and b are integers and b is nonzero. A

rational of the form a/1 is an integer, so it is intuitively clear that there are many more
rationals than integers. Nevertheless, Cantor found a simple rule to match rationals
and integers. We can think of this rule as assigning an integer subscript or tag to each
rational number. The rule is illustrated in Figure 4.4 (compare with Figure 4.1). The
infinite matrix contains all the rational numbers (many appearing several times), and
each is assigned an integer tag by scanning the matrix in a zigzag pattern, as shown in
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1/1 1/2 1/3 1/4 1/5 1/6 1/7

2/1 2/2 2/3 2/4 2/5 2/6 2/7

3/1 3/2 3/3 3/4 3/5 3/6 3/7

4/1 4/2 4/3 4/4 4/5 4/6 4/7

5/1 5/2 5/3 5/4 5/5 5/6 5/7

6/1 6/2 6/3 6/4 6/5 6/6 6/7

7/1 7/2 7/3 7/4 7/5 7/6 7/7

Figure 4.4: Scanning the Rationals in ZigZag.

the figure. The result is the infinite sequence 1/1, 2/1, 1/2, 1/3, 2/2, 3/1, 4/1, 3/2, 2/3,
1/4,. . . .

Cantor’s proof is not the only one possible. The rationals can be arranged in
other ways and matched with the natural numbers. The following table is an example.
More and more rationals are included in each group and are arranged such that the
sum of the numerator and denominator of the elements of a group is constant. From
the way the groups are constructed it is clear that every rational in included in some
group. The integer n, for example, first appears as a numerator in group n + 1 with the
denominator 1. All the rationals of the form n/m appear in subsequent groups.

0
1 , 1

1 , 1
2

2
1 , 1

3
2
2

3
1 , 1

4
2
3

3
2

4
1 , 1

5
2
4

3
3

4
2

5
1 .

Now eliminate all the duplicates

0
1 , 1

1 , 1
2

2
1 , 1

3
3
1 , 1

4
2
3

3
2

4
1 , 1

5
5
1 ,

close the gaps
0
1

1
1

1
2

2
1

1
3

3
1

1
4

2
3

3
2

4
1

1
5

5
1 ,

and match the natural numbers with the remaining rationals

0 1 2 3 4 5 6 7 8 9 · · ·
0
1

1
1

1
2

2
1

1
3

3
1

1
4

2
3

3
2

4
1

1
5

5
1 .

Each integer has a match, and each rational is matched to a di⌃erent integer. The match
is a bijection (a one-to-one mapping).

Here is an even more elegant method, the Stern-Brocot sequence, to generate a
complete sequence of the rationals. Start with the recurrence relation: f(0) = 1. For n ↵
1, f(2n+1) = f(n) and f(2n) = f(n)+f(n�1). This weird relation generates f(0) = 1.
f(1) = f(0) = 1, f(2) = f(0) + f(1) = 2, f(3) = f(1) = 1, f(4) = f(1) + f(2) = 3,
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f(5) = f(2) = 2, f(6) = f(2)+f(3) = 3, f(7) = f(3) = 1, f(8) = f(3)+f(4) = 4, and so
on. We end up with the integer sequence 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, . . ..

Now convert this sequence to a sequence of rational numbers by (1) start with 1/1,
(2) the denominator of each fraction becomes the numerator of the next one, and (3)
the numerator of each fraction becomes the next element of the integer sequence above.
The result is the interesting Stern-Brocot sequence

1
1
,

1
2
,

2
1
,

1
3
,

3
2
,

2
3
,

3
1
,

1
4
,

4
3
,

3
5
,

5
2
,

2
5
,

5
3
,

3
4
,

4
1
,

1
5
,

5
4
,

4
7
,

7
3
,

3
8
,

8
5
,

5
7
,

7
2
,

2
7
,

7
5
, · · · .

This sequence is significant, because reference [Calkin 00] proves that (1) it contains
all the rationals, (2) they appear in reduced form, and (3) each appears exactly once.

The surprising conclusion is that even though there seems to be many more rationals
than integers, the cardinality of the set of rationals is �0, the same as that of the set N
of integers. It is as if including the rationals in N has made no dent in the infinity of N ,
even though the rationals are dense (see Page 71) and the integers are discrete. This is
another peculiar, bizarre, and unexpected feature of the infinite.

It was when Cantor considered the set R of real numbers, that he received an even
bigger surprise. He found it easy to prove that the infinity of R is, in some precise sense,
greater than the infinity of N . In other words, there is no way to match an integer
to every real number. Even though there are infinitely many integers, there are “not
enough” of them to tag every real number.

The set of real numbers R consists of the rationals (integers and ratios of integers)
and irrationals (numbers such as

"
2, �, and e, that cannot be represented in the form

a/b). The proof that there are not enough integers to tag every real number relies on a
contradiction and proceeds as follows: Let’s restrict ourselves to the short interval (0, 1).
Each real number in this interval has the form 0.abcd . . .. Let’s assume that there is a
rule that matches an integer to each real number in this interval. The result of this
matching is an infinite list, similar to that of Table 4.5, where each of the real numbers
Ri is tagged by (or matched to) an integer i.

1⇣R1 = 0.3572690 . . . = 0.010011101011 . . .
2⇣R2 = 0.7096418 . . . = 0.111010010100 . . .
3⇣R3 = 0.5381905 . . . = 0.001101001010 . . .
4⇣R4 = 0.1033687 . . . = 0.101011001010 . . .
5⇣R5 = 0.0036731 . . . = 0.001011010001 . . .
6⇣R6 = 0.1958208 . . . = 0.001100001010 . . .

Table 4.5: Mapping Real Numbers.

It is now easy to construct a real number S that is not in this list (this will be the
contradiction). We simply select the first digit (3) of R1, the second digit (0) of R2,
and so on, and then modify each digit by, for example, adding 1 to it. The result of
this diagonalization process is the real number S = 0.419481 . . .. This number is not in
Table 4.5 because it di⌃ers from any of the real numbers Ri in the table. It di⌃ers from
R1 in the first digit following the decimal point. It di⌃ers from R2 in the second digit,
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and so on. It is easy to construct infinitely many numbers such as S—for example, by
selecting the second digit of R1, the third digit of R2, etc.—but even showing that one
real number is missing from the table is enough to prove that the set of real numbers is
uncountable, it represents a higher infinity (i.e., has a larger cardinality) than �0.

⌅ Exercise 4.2: Come up with a list of real numbers where the diagonalization process
does not work and results in a number that is already included in the list.

We now turn to the binary numbers in Table 4.5 in an attempt to (1) understand
more about the nature of transfinite numbers, and (2) discover the cardinality of the
irrationals I. We assume that the real numbers in the open interval (0, 1) are countable
and have binary values as listed in the table. Each binary value consists of �0 bits, so
there can be up to 2⌦0 such values. Thus, there are 2⌦0 real numbers in the interval
(0, 1).

⌅ Exercise 4.3: Prove that this argument applies not just to the interval (0, 1) but to
the entire set R the real numbers, which shows that their cardinality is 2⌦0 .

Thus, the cardinality of both the reals R and the irrationals I is 2⌦0 . However,
applying the same argument to the decimal numbers of Table 4.5 suggests that the
cardinality of both the reals and the irrationals is also 10⌦0 , which forces us to conclude
that 2⌦0 and 10⌦0 are the same cardinalities, and that the transfinite numbers are
di⌃erent from the real numbers. They obey di⌃erent rules and should perhaps be called
transfinites instead of transfinite numbers.

Cantor denoted the cardinality of the reals by �1. After years of searching, he was
unable to find a set whose cardinality is between �0 and �1, but was also unable to prove
that such sets do not exist. The question of whether such sets exist became known as
the continuum hypothesis, and was not settled until the 1960s.

The quantities �0 and �1 became known as transfinite numbers or transfinites, and
it is easy to construct infinitely many of them. The infinity of the set of transfinites is
itself countable, since each transfinite number is tagged by an integer.

The results so easily achieved by set theory are surprising, unintuitive, and impres-
sive, but they always raise the question of what is all this good for? One surprising result
is the �1 cardinality of the irrationals. After all, very few irrational numbers are known,
while we feel that we “know” all the rationals. Another surprise was Cantor discovery
that the cardinality of the transcendental numbers is �1, while the cardinality of the
algebraic numbers (which include both rationals and irrationals) is only �0. Any real
number is either algebraic or transcendental. A number is algebraic if it is the solution
to a polynomial equation with integer coe⌥cients. Any real number that is not such a
solution is termed transcendental because it transcends algebra. Very few transcenden-
tal numbers are known (among them are e and �), so mathematicians tended to assume
that they are rare, but Cantor found a rule that matched an integer to each algebraic
number, thereby showing that the cardinality of the algebraic numbers is only �0 and
implying that the cardinality of the transcendentals is �1. This existence proof (Cantor
did not discover any transcendentals, he only proved that they exist) is a surprising
result that is equivalent to the following. If you select a real number at random among
all the real numbers, it will be transcendental with probability 1!
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The algebraic numbers are spotted over the plane like the stars against a black sky;
the dense blackness is the firmament of the transcendentals.

—E. T. Bell.

⌅ Exercise 4.4: Try to prove that the set of algebraic numbers is countable (i.e., has
cardinality �0). As a last resort, locate such a proof and try to understand it.

Once we accept the existence of the transfinite numbers �0 and �1, a natural ques-
tion is whether larger transfinite numbers exist. The elegant and surprising answer of
set theory is yes. There is a (countable) infinite sequence of transfinite numbers �i, for
i = 0, 1, 2, . . ., and in principle it is easy to construct a set whose cardinality is �i for any
given i. Like many ideas and concepts in set theory, the process of constructing bigger
and bigger infinite sets is conceptually simple. Given a set of cardinality �i�1, the set
of all its subsets (termed the power set of S) has cardinality �i.

This construction is easy to illustrate with finite sets. Given the set S = {A,B,C},
the set of all the subsets of S is {{⇢}, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, S} (notice
that the empty set ⇢ and S itself are considered subsets of S). If the original S has n
elements, then the set of all its subsets has 2n elements.

Given that the set R of real numbers has cardinality �1, its power set T = P [R]
will have cardinality �2. T is simply the set of all subsets of real numbers. Similarly, set
U = P [T ] (the set of all subsets of elements of T ) will have cardinality �3, and so on.

Set theory is based on the two assumptions above and its main conclusions are (1)
there are infinitely many infinities and (2) there is no largest infinity. Deep, unexpected
results whose validity depends on the truth of the two basic assumptions.

The discussion here is limited to the most important results of set theory. Cantor
went beyond these results and proved more interesting theorems about infinite sets, es-
pecially those whose elements can be ordered. In his lifetime there was strong opposition
to his work from important mathematicians such as Kronecker and Gauss, but today
set theory is regarded as a bona fide part of mathematics and transfinite numbers are
considered almost as ordinary as the integers.

Some of you may have met mathematicians and wondered how they got that way.
—Tom Lehrer.

4.5.1 The Cardinality of Power Sets

It is easy to compare the sizes of finite sets, and it is similarly easy to see that a finite
set is always smaller than its power set. When it comes to the cardinality of infinite
sets, however, things are not so simple and size relations have to be proved rigorously.
Already Cantor himself proved that the cardinality of a power set is always greater than
that of its parent set, and this subsection presents a simple proof of this fact, a poof
that leads to a paradox.

Imagine a set S that may be finite, infinite, countable or uncountable. We denote
its power set by P . Each object s of S belongs to many subsets that are elements of P .
The proof proceeds in two Steps.

Step 1. We construct a map from each element s of S to a distinct element p of
P . This will prove that the cardinality of S is less than or equal the cardinality of P .
Some of the elements of P are single-element subsets of S. Each of those unit sets or
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singletons consists of just one element of S, and we map that element to this unit set.
This one-to-one mapping of S to part of P shows that the cardinality of S is at least
less than the cardinality of P (but it may conceivably be equal to it)

Step 2. We show that S and P have di⌃erent cardinalities. This will imply that
the cardinality of S must be less than the cardinality of P . The cardinalities would
be the same only if there is a one-to-one mapping of S to P , so our task is to show
that there can be no such mapping. We assume that there is one, and then end with a
contradiction.

We examine the elements of P . Each is a subset of S and each will now be assigned
a representative (or rep for short) that is an element of S. Also, each s in S will become
a rep of one distinct p of P . If the rep of some p is also an element of p (recall that each
p is a subset of S), then it is referred to as an internal rep. Otherwise, it is an external
rep. For example, the empty set ⇢ is an element of P , but since it is empty, its rep would
have to be external. This example also shows that there must be at least one external
rep. As another example, consider that S, being its own subset, must be an element of
P , so its rep must be internal, thereby proving that there must always be at least one
internal rep.

Once this is grasped, it should be clear that the set X of all external reps, being a
subset of S, is itself an element of P , and therefore must have its own rep x. Is x ⇠ X?
Clearly, x cannot be a member of X, because only external reps are members of X. But
since x is not a member of X, it is an external rep and therefore must belong to X.
We have arrived at a contradiction, and must agree that x simply cannot exist. On the
other hand, x must exist if there is a one-to-one mapping of S to P , which proves that
there is no such mapping, and the cardinality of P is strictly greater than the cardinality
of S.

We are now ready for the Cantor paradox. This paradox involves a real monster,
the set L of all sets. Imagine such a set! its elements are sets, and they constitute all
the sets there are. L is the biggest set of all the sets whose elements are sets; a true
leviathan. However, its power set is also a set of sets and its cardinality must be strictly
greater than the cardinality of L. Thus, L is both the biggest and not the biggest of all
the sets whose elements are sets; a paradox.

Attempts to resolve the Cantor paradox try to refer to L as an illegitimate set,
a pathological set, or even as a proof that set theory is entirely wrong and should be
ignored.

Paradox of Omniscience. Some people believe that God knows everything, but this
belief opens the way to a paradox, one that is based on Cantor’s paradox. In order to
focus the problem, we suppose that there is a deity that knows, not everything, but
only all truths. There must therefore be a set T (finite or infinite) that contains all the
possible truths. According to Cantor, the power set P of T must be larger than T , and
we use this fact to prove that T cannot contain all truths.

Suppose that a is one of the truths in T . It would therefore belong to some of the
subsets p that are elements of P , such as (a, b, c) or (a, g, y), but not to other subsets,
such as ⇢ or (c, d, e). This implies that for each element p of P , one of the following
statements “a is in p” or “a is not in p,” is true. We refer to these statements as truths
of type X. There is a truth of type X for each element p, but there are more elements
p in P than elements t in T , which shows that T cannot be a set of all truths.
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If everybody contemplates the infinite instead of fixing the drains, many of us will die
of cholera.

—John Rich.

4.6 Physical Infinity

Consider the following experiment. Two parallel mirrors are separated by a certain
distance. A beam of light is sent to one mirror and is reflected to the other mirror.
If the beam is exactly perpendicular to the mirrors, it should bounce back and forth
between them an infinite number of times. However, the physical world is constructed
such that this does not happen. A real mirror does not reflect 100% of the light, and
some light is absorbed by the air between the mirrors. Thus, after many reflections,
only one photon of light will remain and it will eventually be absorbed, ending this
process. In addition, the speed of light is finite, which prevents it from traveling an
infinite distance even under otherwise ideal conditions.

In general, our world is quantized. Matter consists of atoms and elementary par-
ticles, while electromagnetic radiation consists of photons. It is impossible to break a
piece of matter up into smaller and smaller components forever, because an elementary
part is eventually reached. Similarly, it is impossible to isolate smaller and smaller units
of energy, because an indivisible photon is eventually reached.

The Heisenberg uncertainty principle also limits what can exist. Current science
acknowledges the Planck scale, a measure that consists of the Planck energy/mass
(2.2⇥ 10�8 Kg), Planck length (1.6⇥ 10�35 m), and Planck time (5.4⇥ 10�44 s). The
Planck length is related to Planck energy/mass by the uncertainty principle. At this
minute scale, our intuitive concepts of time and distance break down and quantum in-
determinacy dominates. The Planck time is the time light takes to travel, in a vacuum,
a distance of one Planck length. According to current physical theory, the Planck time
is the smallest time measurement that can in principle be possible.

Thus, it seems that the only thing in the physical world that may turn out to
be infinite is the universe itself. It may be infinite in size and may exist forever, but
currently it is impossible to verify or disprove any of this. It may also exist forever, but
even this is currently unknown. The old steady-state theory assumed that the universe
is infinitely large, has always existed and will always exist. The galaxies move away
from each other, but new atoms are created out of nothing in the space between galaxies
and slowly coalesce to form new galaxies. This was an elegant theory that gracefully
embraced the infinite both in space and time, but in the 1960s it was discredited in favor
of the big-bang theory.

A more practical question is whether there may be infinite quantities, such as infinite
density, speed, or temperature somewhere in the universe, currently or in the finite
future. The big bang theory (a current cosmological favorite) assumes that the universe
started with an explosion, but current physics is unable to probe the details of this
explosion at its very beginning (within the Planck time of the beginning).

Black holes are very much in fashion nowadays, and they may be the only candidate
for physical infinity. A black hole starts as a star that is at least three times more
massive than our sun. When its nuclear fuel runs out, such a star starts collapsing on
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itself. Because of its large mass, the gravity it generates is so strong that it collapses
the star to a mathematical, dimensionless point (a singularity) of infinite density. The
gravity of a black hole is so strong, that anything (particles or photons) passing closer
to it than a certain distance (its event horizon) is attracted to it, cannot escape, and
must fall into the singularity. As a result, it is impossible to see inside the event horizon
and actually observe the singularity, which is the reason for the name black hole.

Because of this feature of black holes, Roger Penrose has suggested that there
may be a science principle or a law of nature that may be termed cosmic censorship,
and that makes it impossible to observe any physical singularity. If this is true, then
any singularity will be hidden by some event surface (no naked singularities), but it
is currently not known whether nature obeys such a principle. In the past natural
philosophers claimed that nature abhors vacuum. Today, we may claim that nature
hides all naked singularities.

Can there be infinite temperature? There are two reasons to believe that this is
impossible: (1) In order to heat something to a high temperature, a heat source of a
higher temperature is needed. (2) Heat is a form of energy. It is the kinetic energy
(energy of motion) of atoms and molecules. Thus, temperature is an indication of the
speed of these particles, and infinite temperature requires infinite speed, which is not
allowed by special relativity. A particle moving at the speed of light has infinite energy
and thus corresponds to infinite temperature, but there may not be an infinite amount
of energy in the entire universe.

Another limit to how hot it can get is the relation between temperature and emitted
radiation. Car owners know from experience how hot a car can get on a sunny day.
However, a car, like any other object, does not get hotter without a limit, because as
its temperature increases, it also emits more radiation, in the form of infrared photons.
In fact, any object at a temperature higher than absolute zero emits electromagnetic
radiation whose wavelength gets shorter (and its frequency longer) as the temperature
climbs.

At the Planck temperature, 1.41 ⇥ 1032 Kelvin, the wavelength of the emitted
radiation gets down to approximately 2⇥10�35 meter. This is very close to the notorious
Planck length, the shortest possible distance in our physical universe according to the
current quantum mechanics. Thus, the Planck temperature is the current accepted limit
of high temperatures.

Infinite speed is forbidden by special relativity, but this applies only to material
objects or to entities that carry information. So what can move at infinite speed? Here
are two examples:

Example: Given a pair of scissors we fully open them, and then close them in
one second. When the two scissor blades are being closed, the point between them
moves toward the tips of the blades. We also know from experience that this point
accelerates as it moves. Now imagine a thought experiment involving a pair of scissors
with extremely long blades, perhaps hundreds of kilometers long. We open them and
close them in one second. The point between the blades now has to move the entire
length of the blades in one second. If the blades are long enough, the speed of the point
at the end of its travel may be infinite.

Example: Cut a branch o⌃ a tree and stick it in the ground, so it stands vertically.
As the sun moves overhead, the branch casts a shadow. In late afternoon, the shadow
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lengthens. In the last second before the sun sets below the horizon, the shadow has
to move an infinite distance, so in principle, its speed goes all the way to infinity. In
practice, the shadow gets so weak that we completely lose it.

Until 1915, space was considered static; an unchanging stage on which actions take
place. The publication of general relativity in 1915 changed this point of view. Space is
now seen as flexible fabric whose shape depends on the masses within it. A large mass
bends space in a way that we cannot visualize but can compute.

The discovery of the expansion of the universe, in the 1920s, did much to extend
our understanding of the universe. Current cosmology says that the expansion of the
universe may have three results: (1) The expansion may stop and turn into a contraction.
(2) It may go on forever and separate the galaxies more and more. (3) It may continue
forever, but slow down gradually, never actually coming to a stop.

No continuous thing is divisible into things without parts.
—Aristotle.

4.7 Infinitesimals and the Calculus

An infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real
number is. The word infinitesimal comes from a 17th-century Modern Latin coinage
infinitesimus, which originally referred to the “infinity-eth” item in a sequence. (From
Wikipedia.)

Infinitesimals play an important role in the di⌃erential calculus, which makes them
part of mathematics. In some sense, an infinitesimal is the opposite of infinity, which is
why this section is included in the chapter on the infinite.

The ancients were already interested in infinity. This is obvious from Zeno’s para-
doxes and from the writings of Democritus about the possible atomic nature of objects.

As far as we know, the modern interest and serious mathematical research in in-
finitely small quantities started in the 1600’s by the Italian monk and mathematician
Bonaventura Cavalieri. Among his many letters to many correspondents, one stands in
particular. A 1621 letter to Galileo that shows how Cavalieri introduced infinity into
geometry by thinking about the area of a geometric objects as an infinite collection of in-
finitely thin lines. Similarly, he considered the volume of geometric objects as an infinite
collection of infinitely two-dimensional thin slices. Reference [Alexander 14] has brought
Cavalieri and his methods to my attention, and the following paragraph summarizes this
historic letter.

Given a two-dimensional plane figure, we start by drawing a straight line inside it,
and then draw “all” the possible lines that are parallel to this first line and are inside
the figure. Is it permissible to equate the plane figure with this set of “all” the lines?
Similarly, given a three-dimensional solid, start by drawing a thin plane contained inside
the object, and then draw all the possible planes that are parallel to the first plane and
are inside the object. Is it permissible to equate the object itself with the set of “all”
those planes? In general, does it make sense to compare “all” the lines of two figures?
This kind of operation implies comparing one infinity with another, an operation that
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mathematicians have traditionally avoided, since it can easily lead to contradictions and
non-sensical results.

Galileo’s answer would be of interest to us, but unfortunately was not preserved and
remains unknown. However, the answer, and perhaps subsequent answers by Galileo,
must have been encouraging, because Cavalieri continued to pursue those ideas and
started referring to his thin lines and slices as indivisibles. He also published several
proofs of geometry based on them. A typical such proof shows that two plane figure
have the same area because they “consist” of the same number of identical indivisible
lines placed side by side.

While correct, his proofs are intuitive and not rigorous. Also, such proofs are easier
to establish using the classical methods of Euclid, but Cavalieri wanted to show that
there is something in his ideas of the indivisibles. It is obvious to us, as doubtless it was
obvious to him, that there is a problem with indivisibles, because there must be infinitely
many of them. If each line or plane is infinitely thin, then the sum of their widths must
be zero, and if their widths are nonzero, then their total sum must be infinite.

Today, Cavalieri’s ideas are known as Cavalieri’s principle, a proposition which has
two parts as follows:

The two-dimensional case: Suppose that two regions in a plane are included between
two parallel lines in that plane. If every line parallel to these two lines intersects both
regions in line segments of equal length, then the two regions have equal areas.

The three-dimensional case: If, in two solids of equal altitude, the sections made by
planes parallel to and at the same distance from their respective bases are always equal,
then the volumes of the two solids are equal.

Even though his writing was dense and opaque, Cavalieri’s ideas spread through
Europe, because he wrote widely and often and he corresponded with other mathemati-
cians such as Marin Mersenne, Vincenzo Viviani, and Evangelista Torricelli. The latter
especially is responsible for furthering and promoting Cavalieri’s ideas.

Few, if any, since Archimedes, have delved as far and as deep into the science of
geometry.

—Galileo in a letter to Cesare Marsili, March 10, 1629, about Cavalieri.

The next step in our understanding of infinitesimals and infinity was made by Evan-
gelista Torricelli, a contemporary of Cavalieri’s. Today, Torricelli is mostly known as the
inventor, in 1643, of the barometer, but in his lifetime he was known for several impor-
tant works both in mathematics and in physics. The following paradox, Figure 4.6(a),
illustrates his approach to Cavalieri’s indivisibles

Given the rectangle (which can also be a parallelogram) ABCD, draw a diagonal
DB which partitions it into two equal triangles. Draw a horizontal segment FE at an
arbitrary height, and the vertical segment that connects point E to the bottom face at a
point G. Notice that EF is longer than EG, which implies that all the horizontal lines
parallel to EF in the upper triangle are longer than their corresponding vertical lines
in the lower triangle. If we assume that the set of ALL the lines in a triangle determine
its area, we must conclude that the upper triangle is greater than the lower triangle; a
paradox.

When early mathematicians, among then ancient Greek geometers, were faced with
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Figure 4.6: Torricelli’s Paradox.

such contradictions, they either ignored them or banned them. When Cavalieri met
with similar contradictions caused by his method of drawing infinitely many parallel
indivisibles, he tried to introduce artificial rules to eliminate or suppress his di⌥culties.
Torricelli, on the other hand, tried to get to the bottom of those paradoxes, and the way
he resolved this paradox is original and important because it (1) introduced the concept
of a slope, and (2) opened the way for future mathematicians to extend his ideas and
come up with the modern concept of a limit.

Torricelli started by saying “let’s forget for a moment about infinitely thin lines,
and assume the our horizontal and vertical lines have finite widths.” The consequence of
this assumption is obvious and immediate, and is illustrated in Figure 4.6(b). Because
ABCD is a rectangle, sides AB and BC have di⌃erent lengths, which causes the diagonal
DB to have a slope of less than 45⇤. This implies that the vertical lines are now thicker
than the horizontal lines, which compensates for the smaller number of these lines and
resolves the paradox.

Ingenious, but what happens when we now gradually shrink the widths of the line
segments back to become indivisibles? At the “last moment,” when the number of lines
becomes infinite, the paradox pops up again. This indicates that there is a fundamental
di⌃erence between the finite and the infinite. When dealing with indivisibles, we must
assign them di⌃erent “widths” even though they are supposed to be infinitely thin.
Geometrically, all four sides ABCD of the rectangle have the same width, but when we
deal with them as indivisibles, even the sides themselves, such as AB and BC must be
thought of as having di⌃erent widths. Also, the ratio of their widths (which is the slope)
is the inverse of the ratio of their lengths.

We cannot simply draw conclusions by extending concepts and results from the
realm of the finite to that of the infinite. Perhaps the best way to deal with infinities is
to start with the finite and approach the infinite gradually. This realization is what led
later mathematicians to the important concept of the limit.

The concept of a slope, illustrated in this paradox, is simple and the slope in this
example is constant, because the diagonal is straight. Once mathematicians realized the
important of the slope in dealing with indivisibles, they extended it to curves, where the
slope is variable. Today, we are familiar with the calculus and the concepts of variable
slope and rate of change, but it was the work of these early Italian mathematicians that
opened the way for Newton, Leibniz, and others to introduce and develop the calculus.

Lacking scientific journals, 15th century mathematicians communicated by letters,
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naturally in Latin, as well as by writing textbooks. Cavalieri corresponded with French
and Italians mathematicians, and Torricelli, similarly, corresponded with Gilles Personne
de Roberval, Pierre de Fermat, and Marin Mersenne. The latter corresponded with,
among others, John Wallis and Isaac Barrow.

Such communications proved crucial for the dissemination of new ideas, because, as
the next few paragraphs explain, Cavalieri, Torricelli, Galileo, and others in Italy were
silenced by the Catholic Church and had to stop writing, communicating, and teaching
their ideas about indivisibles and other topics. Fortunately, the political and religious
climate in central and Northern Europe was more tolerant and conducive to scientific
ideas, which permitted progress and allowed Newton and Leibniz to develop the calculus
in the 1660’s.

Pope Julius II died in 1513 and Giovanni de Medici became his successor as pope
Leo X. Even though clever and extremely educated, Leo proved more interested in having
a good time than in administering the Church. He borrowed and spent money without
circumspection, partying and supporting the arts, and he extended the practice of selling
indulgences in order to balance the Church’s budget.

In 1510, the lowly priest Martin Luther was sent to Rome together with one of
his Augustinian brothers, and what he saw there appalled, disillusioned, and confused
him. He realized that the Pope, his Cardinals, and the entire Vatican hierarchy were
corrupt. He later wrote “if there is Hell, then Rome is built over it.” Back in Wittenberg,
he collected his grievances against the Church and wrote his historically important 95
theses, published in 1517. This started the reformation which succeeded within a few
dozen years to considerably reduce the power and influence of the Catholic Church. The
story of the reformation is, of course, well known and widely documented, but the part
that is relevant to our story of the indivisibles and the treatment of infinities is less
known.

There is one rule which I would recommend to your attention in preference to all
others. Rise early in the morning. This will not only contribute to your health, but
will enable you to arrange and expedite the business of the day; and as there are
various duties incident to.

—Lorenzo de’ Medici to his son Giovanni.

God has given us the papacy, let us enjoy it
—Leo X to his brother, Giuliano.

This part started inconspicuously on September 27, 1540, when Pope Paul III ap-
proved a petition from a group of 10 priests to form a religious order dedicated to serving
the Pope and the Church. Once approved, its 10 founders named the new order the So-
ciety of Jesus, and became known as Jesuits. The new order was mainly the brainchild
of Ignatius of Loyola, an unknown Spanish priest. The story of the Jesuits is also well
known and well documented. Su⌥ce it to say that this order, which grew quickly, saved
the Catholic Church and stemmed the growth of the protestant revolution.

A unity among many cannot be maintained without order, nor order without the due
bond of obedience between inferiors and superiors.

—Ignatius of Loyola.
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Unfortunately for the development of science and mathematics, this success of the
Jesuits also slowed down progress for several centuries, as the Jesuits quickly formed
the censorship department known as the Revisors General, which had the authority to
approve or condemn ideas and works in all areas. On August 10, 1632, the revisors had
issued their decision on the study of indivisibles as follows “We consider this proposition
to be not only repugnant to the common doctrine of Aristotle, but that it is by itself
improbable, and . . . is disapproved and forbidden in our Society.”

Hence, the next chapter in the story of the indivisibles starts in England, far from
Italy and the Church, and the next character in this story is John Wallis—a clergyman,
a contemporary of Newton, and a well-known mathematician and cryptographer—on
whom history confers partial credit for the development of the infinitesimal calculus (no
longer indivisibles).

Mon ami, a clue of two feet long is every bit as valuable as one measuring two mil-
limeters! But it is the romantic idea that all important clues must be infinitesimal.

—Agatha Christie, Murder on the Links, 1923.

In his early career, Wallis made a name for himself as both a clergyman and a
clever cryptanalyst, not as a mathematician, which is why he, as well as his friends and
acquaintances, were surprised when in 1649 he was suddenly appointed Savilian Professor
of Geometry in Oxford. The 1640’s were a turbulent time in British history, with the
civil war and the overthrow of the monarchy, which suggests that his appointment was
based largely on political grounds. Nonetheless, Wallis more than justified his new job
by the work he did through the 54 years he held it.

Specifically, Wallis made significant contributions to trigonometry, calculus, geom-
etry, and infinite series. He also coined the term “continued fraction” and is considered
the originator of the important concept of the number line. On the other hand, his
approach to mathematics was not along the lines of the Greek tradition of exact proofs
and absolute results. He preferred to proceed through trial and error, obtaining results
that were extremely probable but not irrefutably certain; results that would be validated
not through logic and pure reason, but by consensus. In this way, he became known as
a prolific worker who came up with many new and e⌃ective results that were not always
perfect.

His approach to the indivisible was also practical rather than abstract. He knew
about the work of Cavalieri and his Italian successors, but Wallis replaced Cavalieri’s
infinitely thin lines with parallelograms of finite width, a width that he denoted by
1/⌫. He shrugged o⌃ any objections and criticism from contemporaries such as Thomas
Hobbes and Pierre Fermat, ignored the contradiction of his infinitely many parallelo-
grams adding to an infinite width, and felt that mathematical rigor and complex, precise
proofs were superfluous. A typical example of his style is demonstrated in an early work
where he computed the area of a triangle. This work contains the weird expression
1
�A ⇥ �

2 B = 1
2AB, where he has the cheek to mix up real numbers with transfinites,

as well as the impertinence to reduce the term �
� to 1, an unforgivable sin in current

mathematics.
The next step in the history of the infinitesimal was taken independently by Newton

and Leibniz. The former developed this field, which he referred to as fluxions, in order
to put his laws of motion and universal gravitation on a firm mathematical basis. The
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latter spent much e⌃ort developing better notation and was also the first to state and
list the rules of calculus.

However, after these giants did their work and laid out the foundations of calculus,
much room was left for extensions, improvements, and for building a rigorous mathe-
matical basis for the concepts of function, limit, and rate of change. The important
concept of limit was especially treated and defined by Bernard Bolzano, Augustin-Louis
Cauchy, and Karl Weierstrass. The latter also introduced the notation lim and limx⇧0.

As a result of their e⌃orts we have the modern definition of a limit. The statement:
A function f(x) has a limit L when x approaches p, means that for every real number
⇧ > 0, there exists a real ⌅ > 0 such that 0 < |x� p| < ⌅ implies that |f(x)� L| < ⇧.

Finally, a word about the calculus of variations. This practical part of the di⌃er-
ential calculus uses variations, small changes in functions, to find maxima and minima
of functions. An interesting example is the well-known problem of the lifeguard and
drowning person, which is illustrated in Figure 4.7. The lifeguard tries to reach the
drowning person as fast as possible, and three possible routes are indicated in the figure.
Route 1 minimizes the distance the lifeguard has to run on land, while route 3 minimizes
the swimming distance. Since swimming is slower than running, the latter route makes
more sense, but may not be the best one. Route 3 may be better, but the solution must
determine the exact point x where the lifeguard should enter the water.

Drowning
person

Land

Water

Unknown

Lifeguard

1

23

x

Figure 4.7: Lifeguard and “Customer.”

In order to solve the problem, the distances (in green) must be known as well as the
speeds of the lifeguard in water and on land. A simple analysis produces the total time
as a function of these quantities and of the unknown distance x. The function is then
di⌃erentiated with respect to x, and the derivative is equated to zero, which provides
an equation for the unknown x. This process, the culmination of hundreds of years of
research, is currently taught in high schools.

“This is incredible,” I said, unable to locate the words to express my awe. It was
indeed beyond incredible—an ine⌃able glimpse of the infinite.

—Kane X. Faucher, The Infinite Library.
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Infinity: A Poem

Infinity, a boundless sea,
A concept vast, eternally,
It stretches far beyond our sight,
A paradox both day and night.

In Zeno’s race, Achilles chases,
The tortoise slow, yet space he paces,
For every step, a step remains,
In endless loops, Achilles strains.

A journey split in halves again,
Each smaller step, a quest in vain,
Infinity within a mile,
A paradox that makes us smile.

Cantor’s sets, so large, profound,
In nested forms, infinity’s found,
A countable infinity,
Yet larger still, uncountably.

In Hilbert’s hotel, rooms galore,
Infinity opens up more doors,
With every guest that checks right in,
A paradox begins to spin.

The finite mind can’t quite contain,
The endless stretch, the infinite chain,
Yet math and thought, they dare to stride,
In infinite realms, where truths reside.

The universe, its vast expanse,
In starlit skies, infinity’s dance,
From galaxies to grains of sand,
Infinity holds all in hand.

In Mandelbrot’s fractal lands,
Each pattern, endless, complex stands,
A simple rule, a boundless view,
Infinity in form anew.

Black holes with singularity,
Where time and space cease clarity,
An infinite dense point they say,
Where known laws bend and melt away.

Yet in our hearts and in our minds,
Infinity in dreams we find,
A symbol of the vast unknown,
A concept we may never own.

But still we strive to understand,
This endless stretch, this boundless land,
In paradoxes, truths are spun,
Infinity, the never done.

So ponder well this endless theme,
In finite thoughts, an infinite dream,
For in this quest, we touch the stars,
Infinity forever ours.

By chatGPT 4o, May 2024.

To see a world in a grain of sand
and a heaven in a wild flower,

hold infinity in the palm of your hand
and eternity in an hour.

—William Blake, Auguries of Innocence, 1810.
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Perhaps the first “equation” that we encounter, in arithmetic class in elementary school,
is actually an identity

1 + 1 = 2.

This equation is taught in order to illustrate the symbols for plus, equal, and 2. It
is, however, important because it also embodies the very essence of an equation and
illustrates the format of equations. An equation has two parts, left and right, separated
by the all-important equal sign. It tells us that when we compute the values of the
expressions on both sides of this sign we will find that they are identical (or, if any
quantities are unknown, we can assume that the two sides are equal). Once the child
understands this simple equation, he is capable of understanding other, more complex,
equations, not only purely mathematical equations, but equations from other fields of
science and technology.

It seems that equations arise naturally when one tries to make sense of the many
events, phenomena, and occurrences in the world around us. A case in point is Newton’s
all-important second law of motion F = ma. It appears as an equation as soon as we
realize the relation between mass, acceleration, and force, and it practically begs to be
written succinctly as a mathematical equation.

The English word “equation” is derived from the Latin aequare, meaning to make
even or to level. Words such as equilibrium, adequate, egalitarian, equator, and equiva-
lence are also derived from the same source.

The importance of equations in mathematics becomes clear when they incorporate
unknown quantities. Even the most mathematically non-savvy person may sometimes
ask himself, My chicken lays an egg a day. How many eggs a day would I have if I had
five chickens?
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⌅ Exercise 5.1: (Funny.) If a chicken and a half lays an egg and a half in a day and a
half, how many eggs does one chicken lay in one day?

5.1 Equations

A mathematical equation is an expression that contains—in addition to constants, vari-
ables, and operations—an equal sign and one or more unknowns. Not every equation is
meaningful, and many equations seem to have no solutions. Given a set of equations,
some may contradict others. Here are some examples.

The equation x = x + 1 is meaningless and has no solutions. If we subtract x from
each side, we end up with 0 = 1, a contradiction. The simple equation x2 = �1 seems to
have no solutions. No number that we know will satisfy it. Still, such equations occur
often in mathematics and in science, which is why mathematicians decided to extend
the concept of numbers and introduce the so-called complex numbers. The system of
two equations in two unknowns x = y + 1 and x = y � 1 is contradictory. When we
substitute the first in the second, the result is y+1 = y�1 or +1 = �1, a contradiction.
The system of equations x = y + 1 and 2x = 2y + 2 cannot be solved uniquely, because
the two equations are equivalent; they say the same thing. Such a system has infinitely
many solutions, because every value of x has a value of y that satisfies the equation.

A first-degree (linear) equation has the form ax + b = 0, where a and b are known
numbers; they are the coe⌥cients of the equation and x is the unknown. The solution
of such an equation is trivial x = �b/a, which also implies that a must be nonzero.

A degree-2 (quadratic) equation has the form ax2 + bx + c = 0. This type is also
easy to solve and the solution x = �b±

�
b2�4ac
2a , has been known for centuries. Because

of the ±, such an equation has two solutions, but they may be identical (and may
also be complex). Other ways to solve quadratic equations are described in references
[WikiQuadr 24] and [YoutubePeyam 20].

A degree-3 (cubic) equation has the form ax3+bx2+cx+d = 0. It took many years of
e⌃ort by several mathematicians to come up with the solution to these equations. Today,
their fascinating e⌃orts are the topic of several books and articles such as [Guilbeau 30]
and chapter 6, pp. 133–154 of [Dunham 90].

⌅ Exercise 5.2: The terms quadratic and cubic refer to a square and a cube, respectively.
Why are these terms used to describe degree-2 and degree-3 equations?

A degree-4 (quartic, sometimes also called biquadratic) equation has ax4 as its
dominant term. In special cases where certain terms are missing, this equation can be
solved by reducing it to a lower-degree equation. In the general case, a solution can be
obtained by means of complex formulas that have been developed in the 1500s.

The problem starts when we reach degree 5 (quintic) equations. For several cen-
turies mathematicians had looked in vain for a solution. Special cases of the quintic
can be solved algebraically by applying a finite number of additions, subtractions, mul-
tiplications, divisions, and root extractions, the so-called radicals (from the name of the
square root symbol

"
). However, no one was able to develop a similar solution for

the general quintic equation. In the 19th century, Henrik Abel proved rigorously that
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equations of degree-5 and higher cannot be solved by means of radicals. Today, such
equation can be solved numerically with the use of special functions that are infinite
sums.

The celestial multiplication table.
A hundred thousand million stars
make one Galaxy;
A hundred thousand million galaxies
make one Universe.

—Arthur Eddington, The Expanding Universe, 1933.

5.2 The Pythagorean Theorem

On the face of it, the Pythagorean theorem states a simple property. Given a right
triangle with sides a and b and a hypothenuse c, this theorem states that the square c2

of the length of the hypothenuse equals the sum a2 + b2 of the square lengths of the two
sides. Thus,

c2 = a2 + b2.

Simple, but not trivial. When this theorem is taught to school children, most accept it
without a murmur, but a few become puzzled by the fact that this property is satisfied
by every right triangle. Those same children may also be puzzled by another basic fact,
the relation C = 2�R between the radius R of a circle and its circumference C. Why is
it that every circle satisfies this relation, how can we be so sure about it, and why the
number �? What is so special about this number?

The Pythagorean theorem is named after Pythagoras, because tradition has it that
he was the first to prove it. Today it seems certain that this simple relation was known
to the ancients long before Pythagoras’s time. Ancient farmers, carpenters, and other
professionals knew that a triangle with sides 3, 4, and 5 units creates a very precise
right triangle. In modern times, the Pythagorean theorem found many applications in
construction, manufacturing, and surveying.

The sum of the square roots of any two sides of an isosceles triangle is equal to the
square root of the remaining side. Oh joy, rapture! I’ve got a brain!.

—Scarecrow in The Wizard of Oz, by Frank Baum.

Hundreds of proofs of the Pythagorean theorem have been developed, Over the
centuries. Most are based on algebraic and geometric approaches, but some employ
techniques from vector analysis, and even physics concepts such as mass and momentum.
Elisha Loomis started collecting such proofs in early 20th century and ended up with
370 of them, all fully described in [Loomis 68].

In addition to its many proofs, this celebrated theorem has been extended from
right triangles to arbitrary triangles, where it is termed the law of cosines and its form
is

c2 = a2 + b + 2� 2ab cos �,

where � is the angle between sides a and b.
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The chief question of interest to us is why is this particular theorem so popular and
well known? It seems that the answer has several parts (1) it is one of the first theorems
taught at school with a proof, (2) it has so many applications that we keep hearing of
it all the time, and (3) it is easy to prove in many ways, based on di⌃erent approaches.

Finally, a few proofs are listed, for the benefit of those who have the patience to
follow them.

1. (Algebraic proof 65 from Loomis, page 65.) Given the right AHB triangle of
Figure 5.1a, we copy it to form the rectangle AHBD. We drop a perpendicular from
point H to locate a new point C. The two right triangles HDA and HBC are similar, so
we conclude that HD/HB = AD/CB and HD ⇥ CB = HB ⇥ AD. Similarly, triangles
DHB and AHC are similar, which leads to HD ⇥ AC = AH ⇥ DB. Adding yields
HD ⇥AB = HB ⇥AD + AH ⇥DB.

(a)

1 1

1

1
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1
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1
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(b)

(c)

H

CA

D
B

B
C

A

L

G K

N

M

Figure 5.1: Proofs of the Pythagorean Theorem.

2. (Algebraic proof 69 from Loomis, page 67.) Figure 5.1a also implies that AB⇥
BH = AH⇥DB + AD⇥ BH or AB2 = HA2 + HB2.

3. (Geometric proof 220 from Loomis, page 224.) Figure 5.1b shows a geometric
construction based on the right triangle ABC. The hypothenuse AB is squared to de-
termine points G and K. A line parallel to CB is drawn through G and another line,
parallel to AC, is drawn through point K. These segments meet at the new point M.
We now extend AC to meet segment MG at point L and extend segment CB to meet
line MK at N. This process forms the large square CLMN. It is now easy to see that the
area of this square satisfies

CLMN = 4 · 1
2
· CB · CA = (CB + CA)2 � 2 · CB · CA

= CB2 + 2 · CB · CA + CA2 � 2 · CB · CA = AB2.

Therefore AB2 = BC2 + CA2; easy!
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4. This is a visual proof, already known to the ancient Chinese, to which some
might object because it may not be rigorous. Figure 5.1c shows two identical large
squares. The square on the left is partitioned into four identical right triangles labeled
1. This leaves the two squares labeled 3 and 4 on the sides of those triangles. The large
square on the right is dissected into the same four right triangles (also labeled 1) and
a smaller square, labeled 2, of the hypothenuses of these triangles. We now remove the
eight triangles from the two large squares, which leaves the smaller squares 3 and 4 on
the left and square 2 on the right, thereby showing that the combined areas of 3 and 4
equals the area of square 2.

Reference [Maor 07] is an extensive discussion of the Pythagorean theorem, its
history, importance, and applications.

5.3 A Di�erent Dirac Equation

Paul Dirac was an eminent theoretical physicist whose chief, but by no means only,
claim to fame is the relativistic equation of the electron. The Dirac equation described
here is di⌃erent. It is much simpler, easy to understand, but is no less ingenious and
unintuitive.

Around 1929, the following game was popular at Götingen University. Express any
integer n using only basic arithmetic operators and exactly four occurrences of the digit
2. The first few integers are easy

1 =
2 + 2
2 + 2

, 2 =
2
2

+
2
2
, 3 = 2⇥ 2� 2

2
, 4 = 2 + 2 + 2� 2,

5 = 2 + 2 +
2
2
, 6 = 2⇥ 2⇥ 2� 2,

but the next integer 7 = (2 ⇥ 2)!! � 2/2, requires the double factorial operator !! that
is defined by n!! = n(n � 2)(n � 4) . . .. Obviously, one may claim that !! is not a basic
operation, which is why even this (supposedly rigorous) mathematical game may su⌃er
from arguments, disagreements, and misunderstandings.

When Dirac was introduced to this game, he thought about it intensely for a while,
and then came up with the following general equation for any integer n

n = � log2 log2

�21
. . .
"

2
6 54 7

n

�

.

Again, one could claim that this expression (the right-hand side of the equation above)
employs only three 2’s and an n, and that logarithms and/or square roots are not
basic arithmetic operations, but the equation is nevertheless interesting and ingenious.
(Another 2 can be included by writing 2

"
2.) Because of human nature, this equation

killed the game (see page 75 of [Casimir 83]). Here we will explain how it works.
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The operation
"

2 can also be written 21/2, which is why
0"

2 equals 2 1
2 ·

1
2 or 2( 1

2 )2

and 21
. . .
"

2
6 54 7

n

= 2( 1
2 )n

.

In general, computing a logarithm requires many calculations, but the logarithm of an
expression of the form 2b is easy to figure out. One way to define logarithms is as follows.
The logarithm of the number a is the number b that satisfies 10b = a. Similarly, the
base-2 logarithm of a satisfies 2b = a. Therefore, the base-2 logarithm of 2( 1

2 )n
is (1

2 )n

or 2�n, and the Dirac equation becomes

� log2 log2

�21
. . .
"

2
6 54 7

n

�

= � log2(2
�n) = n

It is impossible to be a mathematician without being a poet in soul.
—Sofia Kovalevskaya.

5.4 Sequences

A mathematical sequence is an ordered (finite or infinite) set of elements a1, a2, . . . ,
together with a rule that determines the next element. The rule for the current element
may be explicit (for example, ai = i2), it may depend on previous elements of the
sequence (such as ai = ai�1 + ai�2), or may be anything else, even nonmathematical.
Thus, 1, 4, 9, 16,. . . is the sequence of squared integers, and 1, 1, 2, 3, 5, 8, 13, . . . is the
well-known Fibonacci sequence. A series is the sum of the elements of a sequence. We
start with two examples that illustrate the endless variety of these mathematical objects
and the ingenuity of mathematicians working with sequences and series.

The infinite sequence 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29,. . . is
an example of what mathematicians tend to consider beautiful. To find out the rule of
this sequence, notice that its elements are separated by either 1 or 2, as the following
figure shows

1 3 4 6 8 9 11 12 14 16
2 1 2 2 1 2 1 2 2.

Notice that the 2s on the bottom row of the figure are located in positions 1, 3, 4, 6, 8,
9,. . . of the row, but these positions are also the elements of our sequence. This simple
observation provides the key to this sequence. The next element ai+1 equals ai +2 if i is
an element of the sequence; otherwise ai+1 = ai +1. This neat sequence is the brainchild
of Daniel Mathews [Mathellaneous 08].
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Given the infinite sequence 1/2, 2/4, 3/8, 4/16, 5/32, 6/64, 7/128, . . .find its sum.
This seemingly complex task becomes trivial when we write the sum in the special way
shown here

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + · · ·
1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + · · ·

1/8 + 1/16 + 1/32 + 1/64 + 1/128 + · · ·
1/16 + 1/32 + 1/64 + 1/128 + · · ·

1/32 + 1/64 + 1/128 + · · ·
1/64 + 1/128 + · · ·

1/128 + · · ·

The elements of the top row add up to 1. The next row is identical except that it
is missing the term 1/2, so its sum is 1/2. The next row is missing 1/4, so its sum is
1/4, and so on. Thus, the sum of the original infinite sequence is 1 + 1/2 + 1/4 + 1/8 +
1/16 + 1/32 + 1/64 + 1/128 + · · · = 2.

Note. It is easy and elegant to show why the infinite sum 1/2 + 1/4 + 1/8 +
1/16 + 1/32 + 1/64 + 1/128 + · · · equals 1. We denote this sum by s and denote a =
1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + · · ·. It is now clear that s� a = 1/2, and also
that s = 2a. These two equations are easily solved to yield s = 1.

A juggler sequence is an integer sequence that starts with a positive integer a0 and
computes the next term by the recurrence relation

ak+1 =

✓
�a1/2

k �, if ak is even,
�a3/2

k �, if ak is odd.

The name of this sequence reflects its behavior, which tends to go up and down as we
move along the terms. Thus, if a0 = 3, the first few terms are 5, 11, 36, 6, 2, and 1.
Notice that 1 terminates a juggler sequence because ak = 1 implies that ak+1 is also 1.

See [juggler 09] for more information.

5.5 Numerical Sequences

A mathematical sequence is an ordered set of mathematical objects. If the set is finite,
its elements may simply be stated. More interesting are infinite sequences, where the
members of the sequence must be defined by an expression. Sequences, especially of
integers, have been discovered, researched, and analyzed for a long time. In 1964,
Neil Sloane started collecting such sequences and compiling the Encyclopedia of Integer
Sequences [Sloane 08], which is currently located at eois.org and is searchable. This
section describes a number of interesting and well-known sequences.

When faced with the first few elements of a sequence, the first questions that come
to mind is What is the next element? What is the rule of the sequence? It is my belief
that mathematics, which is logical and consistent, also o⌃ers many pitfalls, so my first
advice to anyone interested in integer sequences is, beware! Be careful. Don’t make
quick assumptions, and stay away from traps. The following quotes, from Richard Guy,
should always be kept in mind “Superficial similarities spawn spurious statements,”
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“Early exceptions eclipse eventual essentials,” and “Capricious coincidences cause care-
less conjectures.”

The Moser’s circle problem and sequence, named after Leo Moser, is an example of
such a trap. The following sequence should look familiar 1, 2, 4, 8, 16, . . . . Its elements
are consecutive powers of 2, and it seems reasonable to guess that its next element is
32. However, there is another, similar but substantially di⌃erent, sequence that starts in
the same way, but continues with 31, 57, 99, 163, 256, 386,. . . (OEIS sequence A000127,
reference [Sloane 08]). This is the little-known Moser’s sequence, which results from
dissecting the circle into regions by drawing chords. Figure 5.2 illustrates six examples.
The original circle consists of a single region. Two distinct points are selected on the
circle and a chord drawn between them which partitions the circle into two regions.
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Figure 5.2: Circles and Rings.

When a third, distinct point is chosen and is connected to the other two by chords,
the number of regions grows to four. The fourth point, with the help of more chords,
results in eight regions. This grows to 16 regions when a fifth point is chosen, but
point 6 increases the number of regions to 31 instead of the expected 32; a surprise!
This surprise is an example of the strong law of small numbers, which is mentioned in
the answer to Exercise 7.1.

Sometimes, when three chords happen to intersect at a point, the (normally small)
triangular region that would have been defined by their intersections consists of only
the single point of intersection and cannot be counted as a region. We therefore assume
that the points are selected in such a way that no three chords intersect at a point.
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Reference [youtube 23] analyzes the Moser circle sequence in detail, and uses the
Pascal triangle to show that its elements are given by the simple relation

Fn = 1 +
�n

2

 
+
�n

4

 
.

The Golomb sequence. This clever sequence starts with 1, 2, 2, 3, 3, 4, 4, 4,
5, 5, 5, . . . . Its general term an is the number of times n appears in the sequence.
Thus, a1 = 1 implies that 1 appears in the sequence once, while a2 = 2 means that
the integer 2 appears twice. Also a3 = 2 tells us that 3 also appears twice. It is as if
this sequence knows about itself. A little thinking shows that bigger integers appear
more and more times in this sequence, and it has been shown that its general term an

approaches ⌘2�⌅n⌅�1 as n grows without limit.
The aliquot sequence. This is an intriguing sequence which can start with any

positive integer. The successor of x in this sequence is the aliquot sum of x, the sum of
its proper divisors (its divisors except the number itself). Thus, for example, the divisors
of 24 are 1, 2, 3, 4, 6, 8, and 12, which is why their sum 36 is the aliquot successor of 24.
Similarly, the successor of 36 is the sum of its divisors 1+2+3+4+6+9+12+18 = 55,
whose divisors are 1, 5, and 11. Thus, their sum 17, is the next term in the aliquot
sequence 24, 36, 55, and 17, and is followed by 1, which terminates this sequence,
because 17 is prime, its only divisor is 1, and the aliquot successor of 1 is zero. The
main reference is either the wikipedia article on aliquot sequence or [aliquot 24].

We say that 24 is an abundant number because it is followed by a bigger number,
while 55 is a deficient number because its aliquot successor is smaller. In general, the
aliquot sequence of a number can end at 1, or in a loop. The latter case happens when the
sequence reaches a perfect number or an amicable number. It may also happen that the
sequence would never end, but such cases are currently unknown, because a long aliquot
sequence tends to reach extremely large numbers from time to time, and computing the
divisors of such numbers is time consuming and requires specialized software.

(Amicable numbers are two di⌃erent natural numbers related in that the sum of
the proper divisors of each equals the other. Examples are 220 and 284.)

The aliquot successor of a perfect number, such as 6, 28, or 496, is the number itself.
The aliquot sequence of an amicable number A leads to its partner and from there back
to A. There is also the case of sociable numbers. This is an aliquot sequence that forms
a loop, such as 12496, 14288, 15472, 14536, and 14264. Some mathematicians propose
the title “aspiring number” to an integer (such as 95) whose aliquot sequence terminates
at a perfect number.

The Catalan-Dixon conjecture suggests that no aliquot sequence is infinite. Such a
sequence either drops all the way to 1 or ends with a loop.

The aliquot sequence of 138 oscillates many times before it reaches a maximum of
approximately 1.79⇥ 1011 and then drops down to terminate after almost 180 steps.

Currently, in 2024, the integer 276 is the first whose aliquot sequence reaches num-
bers so large that it is impractical to continue and compute their entire sequence. Recall
that the sequence depends on factoring integers, and there currently isn’t a fast algo-
rithm to do that. As a result, 276 is currently the first Lehmer number. Other Lehmer
numbers, named after Derrick H. Lehmer, are 552, 564, 660, and 966. .
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⌅ Exercise 5.3: Why research and explore sequences like this, which seem to have no
use, no purpose, no reason, and no end?

5.6 The Fibonacci Sequence

The Fibonacci sequence of integers Fn is based on the following simple recursive relation
which is also general and is used by other sequences of numbers

Gn = Gn�1 + Gn�2 (5.1).

Technically, this is a rule of linear recurrence with constant coe⌥cients. Since each
term of the sequence depends on the two preceding terms, the first two terms of any
sequence based on Equation (5.1) must be given explicitly. For the Fibonacci Sequence,
these terms are either 0, 1 or 1, 1. Either choice generates the same sequence and the
di⌃erence between them is the indexing of the terms. It is common to denote the first
two items by F0 = 0 and F1 = 1. The sequence then becomes

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

Elements of this sequence that are also primes are referred to as Fibonacci primes. It
is not known whether there are infinitely many Fibonacci primes, and this situation is
common in number theory, where simple problems whose solutions have eluded even the
greatest mathematicians are common.

A detailed mathematical reference is [WikiFibon 23], but there are many books and
videos on this sequence and its relation to the golden ratio ⌘.

The Fibonacci Sequence was already known to Indian mathematicians around the
third century b.c. It first appeared in Europe in the 1202 book Liber Abaci by Leonardo
Fibonacci, who used it to describe the rapid growth of rabbit population. To a modern
mathematician, the importance of this sequence is in its relation to the golden ratio ⌘
(also denoted by �).

It can be shown (see, e.g., reference [WikiFibon 23]) that the Fibonacci numbers
can be represented explicitly by the expression

Fn =
1"
5

⇣
1 +

"
5

2

⌘n

� 1"
5

⇣
1�

"
5

2

⌘
,

and this expression can be used to prove certain properties of the Fibonacci sequence,
such as the following. The sum of the squares of the first k Fibonacci numbers equals
the product Fk · Fk+1, as is demonstrated by the Mathematica code:

k=8;
fn[n_]:=(((1.+Sqrt[5])/2)^n)/Sqrt[5] - (((1-Sqrt[5])/2)^n)/Sqrt[5];
Sum[fn[i]^2,{i,k}]
fn[k]fn[k+1]
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The relation between � and the Fibonacci numbers is easy to verify. One way to
start exploring this relation is Binet formula, which provides the closed-form expression

Fn =
(1 +

"
4)n � (1�

"
5)n

2n
"

5
=

⌘n � ✓n

⌘� ✓
=

⌘n � ✓n

"
5

=
⌘n � (�⌘)�n

"
5

=
⌘n � (�⌘)�n

2⌘� 1
,

where ⌘ and ✓ are the golden ratio (1 +
"

5)/2 � 1.61803 . . . and its conjugate (1 �"
5)/2 = 1� ⌘ = �1/⌘ � �0.61803 . . ., respectively.

Another way to illustrate this relation is to check, with the use of mathematical
software, that the ratio Fn+1/Fn converges to ⌘ as n approaches infinity. This has
already been observed by Johannes Kepler. While not a formal proof, such a check is
very convincing. The following is simple Mathematica code.

f1 = 1.; f2 = 2.;

Do[{Print[f2/f1], f = f1, f1 = f2, f2 = f2 + f}, {i, 15}]

⌅ Exercise 5.4: Applicants to the math program at Hale university must first pass an
Entrance Exam. When Prof. Tenib was asked to contribute a question to this exam, he
recalled the term (1�

"
5)n from the famous formula of his cousin Binet, and he came

up with the following unusual question: Simplify the value of (1�
"

5)8 as far as possible
without a calculator. As a potential future applicant to the same university, try your
hand at this problem.

The original Fibonacci sequence starts with either 0, 1 or 1, 1, but it may come
as a surprise to realize that the precise first two elements do not matter. Any two
integers may serve as the first two elements of a Fibonacci-type sequence, satisfying
Equation (5.1), provided that both are not zero.

Even more, given any sequence defined by the recursive relation xn = xn�1 +xn�2,
if its elements satisfy xn

xn�1
= xn�1

xn�2
= C, then the constant ratio C is always �. The

proof is simple

x
def=

xn

xn�1
=

xn�1

xn�2
 xn�1 + xn�2

xn�1
=

xn�1

xn�2

 1 +
xn�2

xn�1
=

xn�1

xn�2
 1 +

1
x

= x x2 � x� 1 = 0,

which is the familiar equation whose solution is �, a constant. This shows that the
original Fibonacci sequence isn’t special. What is special is the recursive rule on which
it is based.

There are also M-Fibonacci (Mbonacci) sequences which are defined by the similar
recursive relation Fn = M · Fn�1 + Fn�2.

The anti-Fibonacci numbers are defined recursively as f(1) = 1, f(2) = 0, and
f(k + 2) = f(k) � f(k + 1). The sequence starts with 1, 0, 1, �1, 2, �3, 5, �8, . . . .
This sequence is also obtained when the Fibonacci sequence is extended backward from
0. Thus,

. . .� 8, 5,�3, 2,�1, 1, 0, 1, 1, 2, 3, 5, 8, . . . .
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In much the same way that the ratios of successive Fibonacci numbers converge to ⌘,
the ratios of successive anti-Fibonacci numbers converge to 1/⌘.

Reference [youtube.gen.fibo 24] discusses many ways of generalizing this important
sequence, some of which are listed below.

Fibonacci integer sequences. These are all the integer sequences that have the form
g(n + 2) = g(n) + g(n + 1) for any integers g(0) and g(1) that are not both zero. Such a
sequence can be expressed in terms of its first two elements as g(n) = Fng(1)+Fn�1g(0),
where Fn are the Fibonacci numbers.

The 3-Fibonacci sequence is a(n) = 3a(n � 1) + a(n � 2), with a(0) = 0 and
a(1) = 1. This is sequence A006190 in the OEIS. There are similar 4-, 5-, and 6-
Fibonacci sequences.

The (1,2)-Fibonacci sequence, which also known as the Jacobsthal sequence, is
a(n) = a(n� 1) + 2a(n� 2), with a(0) = 0 and a(1) = 1. This is sequence A001045 in
the OEIS.

The Tribonacci numbers are defined as a(n) = a(n�1)+a(n�2)+a(n�3) for n ↵ 3
with a(0) = a(1) = 0 and a(2) = 1. Mathematicians are meticulous and love to extend
and generalize concepts and terms, which is why there are also tetranacci, pentanacci,
hexanacci, heptanacci, octanacci, and enneanacci numbers (if you can believe that).

The Fibonacci word is the letter-string analog of the Fibonacci numerical sequence.
It is defined by:

Fn =

✓ b n = 0,
a n = 1,
Fn�1Fn�2 n > 1.

Its first few elements are b, a, ab, aba, abaab, abaababa, abaababaabaab,. . . (sequence
A106750 in the OEIS). Notice that the length of each element is the corresponding
Fibonacci number.

Keith number. This intriguing concept was introduced into the mathematical world
by by Mike Keith in 1987. Start with a natural number n with k digits in some number
base. Consider those digits the first k elements of a Fibonacci-like sequence in which
each element is the sum of its k predecessors. If any element of this new sequence equals
n, then n is a Keith number.

Strange, rare, and di⌥cult to find, Keith numbers were named by their “creator”
repfigit numbers (short for repetitive Fibonacci-like digit). Some examples of decimal
Keith numbers are 14, 19, 28, 47, 61, 75, 197, 742, 1104, 1537, 2208, 2580, and 3684.
More are known in other number bases.

The Pisano period

One of the names by which Leonardo Fibonacci is known today is Leonardo Pisano.
The period described here can be found, for example, in reference [youtube.pisano 13],
and it has to do with the Fibonacci numbers. When successive Fibonacci numbers are di-
vided by an integer, the remainders form a periodic sequence. The period depends on the
dividend, and it is referred to as the Pisano period. Thus, the Mathematica statement
Table[Last[QuotientRemainder[Fibonacci[n],7]],{n,1,35}] produces the period-
16 sequence
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{1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,
1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,
1,1,2}

Dividing the same Fibonacci numbers by 5 yields a sequence of remainders with a Pisano
period of 20. The Pisano period is just one of the many curious properties of the
Fibonacci sequence.

Each wife of Fibonacci,
Eating nothing that wasn’t starchy
Weighed as much as the two before her.
His fifth was some signora!
—James A. Lindon, In Martin Gardner, Mathematical Circus, 1979.

Applications of the Fibonacci sequence

Just as the golden ratio has fired the imagination of countless faithful who “see”
in it all kinds of properties and features, so has the Fibonacci sequence. Out of all
the strange beliefs and claims related to this sequence, I would like to mention the
book [Mandalian 24], which claims that the Fibonacci numbers shape the duration of
historical progress.

Out of the myriad of applications of the Fibonacci sequence only three will be
mentioned here (1) converting between miles and kilometers, (2) the variable-length
Fibonacci codes, and (3) the famous spirals found in sunflowers and their relation to the
Fibonacci sequence.

1. Fibonacci Number base. We normally use decimal numbers, but only because
we have 10 fingers. Mathematically mature people know that integers can be represented
in other number bases, and 2, 8, and 16 are number bases commonly used by computer
professionals. However, the base of a numbering system does not have to be an integer
and can even be irrational. Fibonacci aficionados may be happy to know that ⌘ can
serve as the base of a numbering system of a numbering system, and numbers can easily
be converted between this base and any other base. This useful fact is expressed by
Zeckendorf’s theorem which states Every positive integer can be expressed uniquely as
a sum of distinct non-consecutive Fibonacci numbers, using just the two binary digits 0
and 1.

Converting an integer to Fibonacci base is straightforward. We assume that the
Fibonacci sequence starts with F1 = 1, F2 = 2, F3 = 3, F4 = 5, etc. The Fibonacci base
of an integer is a binary string where the weight assigned to each bit from right to left
is the next Fibonacci number instead of the next power of 2. Thus, the Fibonacci code
of 9 = 8 + 1 is 10001, the code of 10 = 8 + 2 is 10010, and that of 20 = 13 + 5 + 2 is
101010. Also, the Fibonacci-base number 1000101 is 21+3+1=25.

An elegant application of Fibonacci-based integers is conversion between miles and
kilometers. This is fortuitous, because one mile equal 1609 meters or 1.609 kilometers, a
number very close to ⌘. Thus, if a number of miles is converted to the Fibonacci based
100101, it can be converted to kilometers simply by shifting it one position to the left
1001010. Naturally, shifting to the right converts in the opposite direction.

⌅ Exercise 5.5: Can any real number serve as the base of a number system?
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⌅ Exercise 5.6: How can 0.666 . . . equal 1?

2. Fibonacci data compression. In our modern world, we depend on our
computers and other digital equipment all of which deal with data, lots and lots of data.
One way to deal with more and more of the data accumulating all the time is to compress
data files that are not in use and keep them outside our computer, in a digital archive,
or in a “cloud.”

Data can be compressed because it is not random and its normal representation
contains redundancies. An example is a text file. In many languages, certain letters
tend to appear more often than others. In technical terms, the letter distribution is
nonuniform. In English, for example, the letter E appears about 10–11% of the time,
followed by A (8.5%), I (7.5%), O (7.1%), T (7%), and so on, down to Z, J, and Q, which
are rare. Thus, a simple approach to text compression is to replace each letter with a
variable-length code and assign short codes to the frequent letters and long codes to the
rare letters.

It is easy to encode text in this way, but the codes must be designed to make them
uniquely decodable. Here is an example. A four-letter alphabet is given, consisting
of A (50%), B (25%), C (15%), and D (10%). After considering their frequencies we
assign them the binary codes 1, 01, 11, and 010, respectively. Given the text ABCD...,
we encode it as the bitstring 1|01|11|010 . . . (without the vertical bars). When this
is decoded, the first two codes are identified uniquely, but the following 11|010 . . . is
ambiguous, because it can also be decoded as 1|1|01|0 . . ..

Many methods and approaches have been developed for designing uniquely decod-
able variable-length codes, and one of them, reference [Fraenkel 96], employs Fibonacci
numbers. A paragraph on Page 241 explains how the Fibonacci sequence can serve as
the base of a numbering system where numbers are represented using just 0 and 1. Such
a system has the following properties (1) the leftmost bit is always 1, and (2) there are
no consecutive 1’s. (The latter is because a code such as 10110 = 8 + 3 + 2 must be
replaced with 11000 = 8 + 5, which is turn must be replaced with 100000 = 13.)

To construct the variable-length Fibonacci code of the positive integer n, the binary
Fibonacci-based representation of n is reversed, and an extra 1 is appended to the right
end. Thus, the variable-length Fibonacci code of 5 becomes 0001|1 and that of 33 is
1010101|1. It is obvious that such a code always ends with a pair 11, and that this is
the only such pair in the codeword, because the Fibonacci representation does not have
adjacent 1’s. This property makes it possible to decode such a code unambiguously, but
also causes these codes to be long, because not having adjacent 1’s limits the number of
possible binary patterns.

Table 5.3 lists the first 12 Fibonacci codes.
To decode such a codeword, skip bits of the code until a pair 11 is reached. Replace

this 11 by 1. Multiply the skipped bits by the values . . . , 13, 8, 5, 3, 2, 1 (the Fibonacci
numbers), and add the products. Obviously, there is no need to actually multiply; simply
use the 1 bits to select the proper Fibonacci numbers and add them .

The Fibonacci codes are long, but have the advantage of being more robust than
most other variable-length codes. A corrupt bit in a Fibonacci code may change a pair
of consecutive bits from 01 or 10 to 11 or from 11 to 10 or 01. In the former case, a code
may be read as two codes, while in the latter case two codes will be decoded as a single
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1 11 7 01011
2 011 8 000011
3 0011 9 100011
4 1011 10 010011
5 00011 11 001011
6 10011 12 101011

Table 5.3: Twelve Fibonacci Codes.

code. In either case, the slippage will be confined to just one or two codewords and will
not propagate further.

The length of the Fibonacci code for n is less than or equal to 1 + �log⌅

"
5n�.

In reference [Fraenkel 96], the authors refer to this code as C1 and o⌃er two varia-
tions named C2 and C3. Code C2 is constructed from C1 as follows:

1. Each codeword in C1 ends with two consecutive 1’s; delete one of them.
2. Delete all the codewords that start with 0.
Thus, the first few C2 codewords, constructed with the help of Table 5.3, are 1,

101, 1001, 10001, 10101, 100001, and 101001. An equivalent procedure to construct this
code is the following:

1. Delete the rightmost 1 of every codeword in C1.
2. Prepend 10 to every codeword.
3. Include 1 as the first codeword.
A simple check verifies the equivalence of the two constructions. Code C2 is not a

straightforward Fibonacci code as is C1, but it can be termed a Fibonacci code, because
the interior bits of each codeword correspond to Fibonacci numbers. The code consists
of one codeword of length 1, no codewords of length 2, and Fr�2 codewords of length r
for any r ↵ 3. Individual C2 codewords are identified by the decoder because each starts
and ends with a 1. Thus, two consecutive 1’s indicate the boundary between codewords.
The first codeword introduces a slight complication, but can be handled by the decoder.
A string of the form . . . 011110 . . . is interpreted by the decoder as . . . 01|1|1|10 . . ., i.e.,
two consecutive occurrences of the codeword 1.

Code C2 is also more robust than C1. A single error cannot propagate far be-
cause the decoder is looking for the pattern 11. The worst case is a string of the form
. . . xyz . . . = . . . 1|10 . . . 01|1|10 . . . 01|1 . . . where the middle 1 gets corrupted to a 0.
This results in . . . 1|10 . . . 01010 . . . 01|1 . . . which is interpreted by the decoder as one
long codeword. The three original codewords xyz are lost, but the error does not prop-
agate any further. Other single errors (corrupted or lost bits) result in the loss of only
two codewords.

Code C3 is constructed from C1 as follows:
1. Delete the rightmost 1 of every codeword of C1.
2. For every r ↵ 1, select the set of C1 codewords of length r, duplicate the set,

and distinguish between the two copies by prepending a 10 to all the codewords in one
copy and a 11 to all the codewords in the other copy.

This results in the codewords 101, 111, 1001, 1101, 10001, 10101, 11001, 11101,
100001, 101001, 100101, 110001, . . . . It is easy to see that every codeword of C3 starts
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with a 1, has at most three consecutive 1’s (and then they appear in the prefix), and
every codeword except the second ends with 01. The reference above proves that for
any r ↵ 3 there are 2Fr�2 codewords.

The decoder first checks for the pattern 111 and interprets it depending on the bit
that follows. If that bit is 0, then this is a codeword that starts with 111; otherwise, this
is the codeword 111 followed by another codeword. If the current pattern is not 111, the
decoder checks for 011. Every codeword except 111 ends with 01, so the pattern 01|1
indicates the end of a codeword and the start of the next one. This pattern does not
appear inside any codeword.

Given an r-bit codeword y1y2 . . . yr (where yr = 1), its index (i.e., the integer whose
codeword it is) is given by

2Fr�1 � 2 + y2Fr�2 +
r&

i=3

yiFi�1 � Fr�1 + 1

=
r+2&

i=3

yiFi�1 + (y2 � 1)Fr�2 � 1,

where yr+1 = 1 is the leftmost bit of the next codeword.
3. Phyllotaxis, spirals, and sunflowers

The golden angle, the close cousin of the golden ratio, is con-

≈137.5o

structed by partitioning a circle into two arcs a and b, such that a > b
and a/b = ⌘. This happens when the angle between the radii defin-
ing the arcs is approximately 137.5⇤, as illustrated in the figure. The
golden angle is often found in plants where it is the angle between
successive leaves. Natural selection favors plants that receive more
sunlight, which is why the arrangement of leaves around a plant is
important. The worse phyllotaxis occurs when leaves grow under or over one another,
thereby blocking the sun.

The value of the golden angle is easy to compute (see Page 59). The circumference
of a circle is always 2� and in our case it is also a + b. The ratio of the arc subtended
by b to the entire circumference is therefore

b

2�
=

b

a + b
=
�
a + b

b

��1

=
�
1 +

b

a

��1

=
1

1 + ⌘
=

1
⌘2

.

Thus, exactly ⌘2 golden angles fit in the 2� circumference of the circle, which results in

Golden angle =
2�
⌘2
� 2.39996 radian, or

360
⌘2

� 137.508⇤.

Phyllotaxis is the study of the arrangement of leaves, petals, seeds, etc., on plants.
It sometimes happens that as a plant grows, new leaves appear along its axes, facing in
di⌃erent directions. When a smooth imaginary curve is drawn, connecting the tips of
successive leaves, the result is a spiral.
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Pick up a pinecone and count the spiral rows of scales. You may find eight spirals
winding up to the left and 13 spirals winding up to the right, or 13 left and 21 right
spirals, or other pairs of numbers. The striking fact is that these pairs of numbers
are adjacent numbers in the famous Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21. . . . Here,
each term is the sum of the previous two terms. The phenomenon is well known and
called phyllotaxis.

—Stuart A. Kau⌃man, At Home in the Universe, 1996.

Why do sunflowers have so many florets and why are the florets arranged in those
beautiful spirals that seem to radiate and curve both clockwise and counterclockwise?
We believe that this is because such packing of the florets gives today’s sunflowers
an advantage that past sunflowers did not have. Out of many species of competing
sunflowers, natural selection, working blindly, has chosen the ones that managed to
pack the most florets and thus to spread the most number of seeds around them.

Figure 5.4: Pinecone Spirals.

Over time, botanists have counted both the number of sunflowers spirals and their
lengths. This is not a simple task, since a sunflower is a living being, not an inanimate
object. It is not perfect and it tends to make mistakes while growing. The botanists
were surprised to discover that both the number of spirals and their lengths tended to
be Fibonacci numbers.

Today, there is a simple mathematical model that explains the presence of Fibonacci
numbers in sunflowers, as well as in other plants such as pinecones, aloe plants, the
flowering of artichoke, and flower petals. The model assumes that as the sunflower
grows and develops, new florets appear at its center and slowly move away radially as
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new florets are created. The model further assumes that each new floret rotates about
its center through a constant angle 2�� before it takes each step on its way toward the
edge of the sunflower. At a certain point, the sunflower reaches its adult size and its
growth stops.

⌅ Exercise 5.7: Search the Internet for examples of Fibonacci numbers in plants.

Slight random perturbations in a floret’s speed and rotation angle �—due perhaps
to variations in temperature, lighting, and moisture—may cause a new floret to move
in a direction or at a speed slightly di⌃erent from what nature intended, and thereby
cause an imperfect final pattern. Even before this model is implemented and tested, it
is easy to imagine that the value of � is critical and even tiny changes in it may result
in substantially di⌃erent paths for the florets and a hugely di⌃erent final pattern at the
end of the growth process.

This simple model is based on the original work described in reference [Vogel 79].
Once we agree on this model, it is natural to explore it by computer simulation, and
vary its parameters (speed and rotation angle) in order to determine the values that
produce floret patterns similar to those observed in nature. Rational values of � result
in a pattern of straight rays radiating from the center, which is not what is actually
observed in real sunflowers. Choosing � = n/m, where n and m are positive integers
with no common factors, produces a pattern of m straight rays, with empty spaces in
between. The dots in Figure 5.5a were generated by � = 22/7, and their serial numbers
indicate how consecutive dots belong to adjacent rays. Dots 1, 7, 14, and 21 make up
one ray while their successors, dots 2, 8, 15, and 22, constitute its neighbor ray. This is
similar to the way the stars move from arm to arm in a spiral galaxy.

The next test should therefore try irrational values of �. Figure 5.5b is the pattern
obtained for � = �. It is surprisingly similar to that of � = 22/7, but here we finally
see spirals instead of straight rays, and this is because � is slightly less than 22/7. To
understand this behavior, examine dot 21 in the straight ray formed by dots 1, 7, 14,
and 21 in Figure 5.5a. Its successor, dot 22, is located on the next straight ray, but if
the rotation angle � of dot 21 were slightly smaller (in particular, � instead of 22/7), it
would cover a shorter distance on its way to the next ray and would cause that ray to
bend. When this argument is applied to all the points, the bending of an arm becomes
a spiral.

This is encouraging, but there still are spaces between adjacent spirals, which are
caused by � being “not very irrational” (or not a “good” irrational). We know that there
are infinitely many rational numbers that get closer and closer to any irrational number,
and yet the discussion on Page 77 shows why the golden ratio � can be considered the
most irrational number.

We continue with the pattern of Figure 5.5c, which is produced by a rotation angle
� = e, the Euler constant. The spirals here are more pronounced, but the important
feature is the extra spiral that suddenly appears between points 21 and 22. The final
dot pattern in this case consists of two interleaved groups of four spirals each. There is
less space between adjacent spirals, and we must conclude that this is because e is more
irrational than �.

⌅ Exercise 5.8: Prove that if the rational c = a/b approximates the irrational
"

x, then
there are infinitely many rationals closer to

"
x than c.
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Figure 5.5: Simulated Sunflower Spiral Patterns.
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Figure 5.6 employs the irrational rotation angle �, and the resulting pattern justifies
the claim that � is the most irrational number. The two versions of the figure feature
identical dot configurations, but the di⌃erent colors make it obvious that the spirals can
be chosen in di⌃erent ways, and their number is always a Fibonacci number.
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Figure 5.6: Simulated Sunflower Spiral Patterns.

This observation supports Vogel’s simple model. When the rotation angle is ⌘, the
number of spirals in the simulation is always a Fibonacci number, because ⌘ is the limit
of the ratio Fn/Fn�1 of Fibonacci numbers. Since ⌘ is irrational, there are infinitely
rational approximations that get closer and closer to ⌘, and any real world simulation
or computation that involves ⌘ must use one of them. Thus, our simulation uses the
rational number Fn/Fn�1 (for some unknown n) instead of the precise value of ⌘. This
produces, as shown five paragraphs earlier, a final pattern with Fn�1 straight rays, with
empty spaces in between.

Figure 5.7 lists the Mathematica Code for Figures 5.5 and 5.6 (see also Figure 1.12).
The rotation angle is computed on line 6, and the reader can experiment with this code
and change (Sqrt[5] + 1)/2 on this line to any other value.

Finally, Figure 5.8 shows spirals with lengths the are Fibonacci numbers.
The Supergolden ratio

The supergolden ratio, denoted by ✓, is defined, similar to the golden ratio, by the
cubic equation x3 = x2 + 1. Its precise value is the real solution of this equation

✓ =
1
3

�

⇠1 +
3

3
29 + 3

"
93

2
+

3

3
29� 3

"
93

2

⌫

⇡ � 1.4655712318767680266567312 . . . .

As with the association of ⌘ with the Fibonacci sequence, ✓ has its own supergolden
sequence, also known as the Narayana’s cows sequence. Its main feature is the ratio
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1 (*Dots forming a sunflower pattern*)
2 (*alpha= 2Pi*(the irrational phi)*)
3 lc = {};
4 clr = {Red, Blue, Green, Gray, Orange, Cyan, Magenta, Purple, Black};
5 Do[r = Sqrt[k];
6 t = 2 Pi k (Sqrt[5] + 1)/2;
7 kk = Mod[k, 8] + 1;
8 AppendTo[
9 lc, {clr[[kk]], Disk[{r Cos[t], -r Sin[t]}, 0.3], White,

10 Text[k, {r Cos[t], -r Sin[t]}]}], {k, 75}]
11 Graphics[{Gray, lc}]

Figure 5.7: Mathematica Code for Figures 5.5 and 5.6.

between consecutive terms, which approaches ✓. The Narayana sequence is defined by
an+1 = an + an�2 with 1’s as its first three elements. The first values are 1, 1, 1, 2, 3,
4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595. . . . There is also a supergolden
rectangle, whose sides have the ratio ✓ : 1.

See also Page 123 for an extended Fibonacci sequence.

5.6.1 The Lucas Sequence

The Lucas sequence Ln, named after François Lucas is defined by the same recursive
rule as Fibonacci, but with the first two elements being 2 and 1. Thus, it starts with 2,
1, 3, 4, 7, 11, 18, 29, 47, . . . . Elements of this sequence that are also primes are referred
to as Lucas primes. For those who would like the full story, the closed formula for these
elements is Ln = �n + (��)�n.

The Lucas sequence is also often referred to as Lucas numbers, because it is easy
to generalize it in many ways and end up with many di⌃erent Lucas sequences.

Digression (a joke). We can imagine how Lucas came to this definition. “Now let’s
see,” he says. “Fibonacci starts with 1, 1, 2, 3, so why not start my new sequence with
1, 2? Oh no, this produces the old Fibonacci. So what now? Obviously, just swap 1
and 2 to 2 and 1. Yes, this is how the new sequence that will make me famous is going
to start. Now, let’s see, how does it continue . . . .” (End of digression.)

Because of the nature of the basic recursion relation, the Lucas sequence is also
associated with a rectangle and spiral, (Figure 5.9) both very similar to those of the
Fibonacci sequence.

At first, it seems that the Lucas sequence is irrelevant and does not contribute to
our understanding of recursive sequences and their relation to �, but it is known that
this sequence is significant and is about as fundamental as the Fibonacci sequence in
the following sense. If we raise � to the nth power and then round the result o⌃ to the
nearest integer, we get Ln, the nth Lucas number. Thus,

Round(�n) = Ln. (5.2)

This should be compared with Equation (2.10), which relates the powers of ⌘ to the
Fibonacci numbers.

A surprise. Equations (2.10) and (5.2) relate the powers of ⌘ to the Fibonacci
numbers and Lucas numbers, respectively. The surprise is that this relation is general
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8 13

21 34

1 par = GoldenRatio;
2 p = Table[{(n/500)Cos[2par Pi n], (n/500)Sin[2par Pi n]}, {n,0,1000}];
3 Graphics[{PointSize[Small], Point[p]}]

Figure 5.8: Four Sunflower Spirals with Fibonacci Lengths.

and exists for any sequence Gn that satisfies the recursive relation Gn = Gn�1 + Gn�2.
Reference [G.root5 18], by Matt Parker, shows that if Gn starts with the integers A and
B (and continues with A + B, A + 2B, 2A + 3B, etc.) then the powers ⌘n relate to its
general term Gn in the form

Gn = Round

⇣
⌘n (3

"
5� 5)A + (5�

"
5)B

10

⌘
. (5.3)

The Lucas sequence is also known as sequence A000032 in [Sloane 08]. It is related



5.6 The Fibonacci Sequence 251

76
47

29
76

11 7
4

Figure 5.9: The Lucas Logarithmic Spiral.

to the Fibonacci by Ln = Fn�1 + Fn+1 and it can be extended to negative indexes by
defining L�n = (�1)nLn, which results in the doubly-infinite sequence

. . . ,�11, 7,�4, 3,�1, 2, 1, 3, 4, 7, 11, . . . .

The Lucas sequence is also found in sunflowers, where it is the second most common
pattern after Fibonacci numbers.

There are also two generalized Lucas sequences, Un(P,Q) and Vn(P,Q), which
depend on two integer parameters P and Q and are defined by

U0(P,Q) = 0, U1(P,Q) = 1, and Un(P,Q) = P ·Un�1(P,Q)�Q·Un�2(P,Q) for n > 1,
V0(P,Q) = 0, V1(P,Q) = 1, and Vn(P,Q) = P · Vn�1(P,Q)�Q · Vn�2(P,Q) for n > 1.

These sequences are polynomials in P and Q, and their first seven elements are
listed in Table 5.10.

n Un(P,Q) Vn(P,Q)

0 0 2
1 1 P
2 P P 2 � 2Q
3 P 2 �Q P 3 � 3PQ
4 P 3 � 2PQ P 4 � 4P 2Q + 2Q2

5 P 4 � 3P 2Q + Q2 P 5 � 5P 3Q + 5PQ2

6 P 5 � 4P 3Q + 3PQ2 P 6 � 6P 4Q + 9P 2Q2 � 2Q3

Table 5.10: Generalized Lucas Sequences.

5.6.2 The Plastic Ratio

The golden ratio ⌘, which is a cousin of the Fibonacci sequence, is a solution to the
quadratic equation x2 = x + 1. Similarly, the plastic ratio (or constant or number),
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✏ � 1.3247 . . . is the real solution of the cubic equation x3 = x + 1 (its other two
solutions are complex). Its exact value is

✏ =
3

3
9 +

"
69

18
+

3

3
9�

"
69

18
� 1.324717957244746025960908854 . . . .

It is also easy to see that ✏ satisfies the nested radical recurrence

✏ =
3

2

1 + 3
1

1 + 3
"

1 + · · · = 3
0

1 + ✏ ✏3 = 1 + ✏.

(Today, we are flooded with plastic materials, but before they were invented, the
term “plastic” meant something flexible or multi-purpose. One of the first to investigate
the properties of this ratio was Hans van der Laan, who in 1928 named it plastic because
he considered it an all-purpose ratio.)

The Padovan sequence (or Cordonnier or Perrin or van der Laan), which is named
after Richard Padovan, is defined by the simple recursive relation xn = xn�2 +xn�3 and
with first three elements of 1, 1, 1. Thus the sequence starts with 1, 1, 1, 2, 2, 3, 4, 5, 7,
9, 12, 16. . . . If we denote the first four elements by 1, x, x2, and x3, then the recursive
relation implies the basic equation x3 = x + 1, from which the rest of the sequence can
be derived.

The plastic rectangle. We denote the plastic ratio by ✏ and start with a rectangle
of dimensions 1 ⇥ ✏. Partition the longer side into a long segment of 1/✏ and a short
segment of ✏� 1/✏. We continue as in Figure 5.11(b) to construct the plastic rectangle
and can then draw the plastic spiral in it. This is compared to the golden equivalents,
shown in part (a) of the figure (compare with Figure 2.26).

½

½-1/½

1-1/½2

½-1/½

1/½

1

1 1/φ

1/φ

1/φ3
1/φ2

(b)(a)

Figure 5.11: Golden and Plastic Rectangles and Spirals.
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5.7 Metallic Ratios

In Section 2.9.4, the golden ratio ⌘ is defined by partitioning a straight segment of length
l into two parts a and b such that a > b, a + b = l, and a/b = (a + b)/a.

l

a b

This simple construction leads to the famous Fibonacci sequence (Section 5.6), as
well as to the golden ratio and all its relatives. However, being mathematicians, we
always try to extend concepts and go beyond what is known, so we try the following.
Instead of partitioning our segment into two parts, we partition it into three parts, two
equal-size large parts a followed by a short part b (i.e., l = 2a + b), adjust the lengths of
the parts such that

a

b
=

2a + b

a
,

and name the resulting ratio the silver ratio.
l

a a b

It is now clear how to extend this process further. The idea is to partition the
original length-l segment into n large parts a, followed by one short part b, which results
in the sequence of metallic ratios

⇣1
def=

a

b
=

a + b

a
= ⌘,

⇣2
def=

a

b
=

2a + b

a
,

⇣3
def=

a

b
=

3a + b

a
,

...

⇣n
def=

a

b
=

na + b

a
.

It turns out that many of the features of ⌘, although perhaps not all, have parallels
in the other metallic ratios. The relation ⌘ = 1/⌘ + 1 or ⇣1 = 1/⇣1 + 1, can be
extended to all the metallic ratios ⇣n = 1/⇣n + 1. Similarly, ⌘2 � ⌘ � 1 = 0 can be
extended to ⇣2

n � n⇣n � 1 = 0. The two solutions ⌘ = (1 ±
"

5)/2 can be extended to
⇣n = (n ±

"
n2 + 4)/2, which produces

n ⇣n 1/⇣n

1 (1 +
"

5)/2 � 1.618033 . . . 0.618033 . . .
2 (2 +

"
8)/2 � 2.414213 . . . 0.414213 . . .

3 (3 +
"

13)/2 � 3.302775 . . . 0.302775 . . .
4 (3 +

"
20)/2 � 4.236067 . . . 0.236067 . . .



254 5. Order: Sequences and Series

The parallel to Equation (2.3) is

x = n +
1

n + 1
n+ 1

n+ 1
n+ 1

...

, (5.4)

From which we deduct that

x = n +
1
x

, or x2 � nx� 1 = 0,

implying that x = ⇣n.
The next similarity between the golden and the general metallic ratios starts with

Equation (2.3). When we truncate this continued fraction at each level and compute
its value, we should not be surprised to discover that they are the famous Fibonacci
numbers. Similarly, when we examine the truncated levels of Equation (5.4), we should
not be surprised to learn that they are the sequence of the less famous Fibonacci-esque
numbers 1, n, n2 + 1, n(n2 + 1) + n, . . . .

5.8 The Comma Sequence

The comma sequence is is based on a complex definition which causes the sequence to be
open to numerous variations and extensions. The sequence is also useless; no possible
practical applications of it seem possible, but this is the nature of mathematics. Its
practitioners come up with all kinds of concepts, results, connections, and relations that
seem worthless, but eventually prove useful and important.

The sequence depends on its first term and on the precise rule of determining
the next term. Choosing 1 as the first term produces 1, 12, 35, 94, 135, 186, 248, . . . .
Choosing 2 produces 2, 24, 71, . . . , and choosing 3 brings a surprise. The entire sequence
consists of 3 and 36. It simply dies after 36, since the rule prevents any number from
being the next term. Here is this strange rule:

We denote the digits of the current term ai by . . . abc and those of the (still unknown)
next term ai+1 by deh . . .. Pick the least-significant digit c of ai and the most-significant
digit d of ai+1, and generate the 2-digit intermediate number cd by choosing d such that
the number cd equals the di⌃erence ai+1 � ai. The sequence’s name is comma because
each intermediate number straddles the comma between terms.

Starting with a1 = 1, the intermediate number is 1d and it is easy to see that d
should be 1, producing an intermediate number of 11. This causes the next term a2 to
be 12, which results in a di⌃erence of 12� 1 = 11, identical to the intermediate number.

Proceeding in this way, the term a2 = 12 suggests an intermediate number of the
form 2d that would produce an a3 of the form 12 + 2d. Again, it is easy to guess that
d = 3 is the smallest candidate (although in many cases there are other candidates),
leadings to a3 = 35.
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As is usual in today’s mathematics, enthusiasts with time on their hands and fast
computers at their disposal, have shown an interest in this sequence. Checking its be-
havior with base-10 numbers, they computed many terms and ended up with a sur-
prise. The choice a1 = 1 (sequence OEIS A330128) leads to a sequence that dies
after 194,697,747,222,394 terms. Its last term is 99,999,945, which leads to an inter-
mediate number 5d. The next term can therefore start only with 9 or with 1, but
99999945 + 59 = 100000004 and 99999945 + 51 = 99999996, both with wrong di⌃er-
ences.

Another surprise is that choosing a1 = 3 ends after only two terms, namely 3 and
36. The reader may find it easy to verify that there is no way to add an intermediate
number of the form x = 6d to 36 and ends with a di⌃erence of x � 36 = 3d for any
decimal digit d. A surprise, a quick death, and a strange sequence indeed!

Research on the comma sequence has so far suggested that there are certain numbers
that kill it, and that they tend to cluster. Examples are 18, 27, 36, 45, 54, 63, 72, and
81; 918, 927, 936, 945, 954, 963, 972, and 981; 9918, 9927, 9936, 9945, 9954, 9963, 9972,
and 9981. As the terms of a comma sequence get bigger, the clusters become more and
more dispersed, but research in this area is still in its infancy, and there is no certainty
that it will continue.

We end with some ideas about this sequence:

Commas are crucial in the comma sequence, but they are used in two places, inside
the digits of large terms and between terms. Thus, it’s a good idea to use perhaps
semicolons to separate the terms of the sequence.

It is possible, even easy, to come up with extensions and variations of this sequence.
How about a sequence whose general term an is the total length of the comma sequence
that starts with n.

A multiplicative comma sequence can be defined such that the next term is the
product (instead of the sum) of the current term and their intermediate number. In
the discussion above, the next term is determined in each set by choosing the smallest
candidate. A possible extension is to check all feasible candidates and choose the one
that results in the longest sequence. A simple case is the choice a1 = 2, which leads to
an intermediate number 2d and the choice d = 4 or d = 5. The latter choice results in
the short multiplicative sequence 2 and 2 · 25 = 50, whereas the former choice results in
the two branches 2, 2 · 24 = 48, and 4032; and 2, 2 · 24 = 48, 3984, 163344, 7677168,
660236448, and 56120098080.

⌅ Exercise 5.9: The following numeric sequences, discussed in [funny.sequences 18], are
defined by simple rules that non-mathematicians may find misleading or even childish.
Try to guess them.

1, 4, 8, 48, 88, 488, 888, 4888, 8888, . . . .
61, 21, 82, 43, 03, 6. . . .
0, 0, 0, 0, 9, 5, 1, 1, 0, 55, . . . .
2, 4, 6, 30, 32, 34, 36, 40, 42, 44, 46, 50, 52, 54, 56, 60, 62, 64, 66, 2000, . . . .
13, 17, 31, 37, 71, . . . .
A bonus sequence: 131, 228, 331, xxx, 531, 630,. . .
(End of exercise.)
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5.9 Quasi-Numeric Sequences

The elements of a sequence may be numeric, but the rule determining the next element
may be nonnumeric. Such a sequence may be referred to as quasi-numeric. The following
elegant “look and say” sequence sequence, one of the many brainchilds of John H.
Conway, elegantly illustrates this concept (see also Page 62).

1
11
21

1211
111221
. . . ?. . .

one
one one
two ones

one two and one one
one one, one two, two ones

three ones, two twos, one one
one three, one one, two twos, two ones

It may be easy to come up with such a sequence, but extremely di⌥cult to guess
its rule. Even a very simple example of a quasi-numeric sequence, such as the sequence
m, t, w, t, f, and s, is confusing (these are the first letters of the names of the days of
the week in English, starting with Monday). Here are a few examples.

1. Which two integers come next in the infinite sequence 38, 24, 62, 12, 74, . . . ?
Answer. The next two integers are 28 and 102. The rule is simple but elusive.

Start with (almost) any positive 2-digit integer (we somewhat arbitrarily selected 38).
Multiply the two digits to obtain 3 ⇥ 8 = 24, then add 38 + 24 to generate the third
integer 62. Now multiply 6⇥ 2 = 12 and add 62 + 12 = 74. Similar multiplication and
addition produce the next two integers 28 and 102.

2. What is the next integer x in the sequence (12, 6), (6, 3), (10, x)?
Answer. The next integer is 3. The first integer of each pair is random, and the

second one is the number of letters in the English name of the integer.

3. What is the next integer in the sequence 3, 7, 10, 11, 12, . . . ?
Answer. It is 17. The elements of this sequence are those integers whose names,

when fully spelled in English, contain E but not any other vowels.

4. What is the next integer in the sequence 5, 25, 61, 113, 181, . . . ?
Answer. It is 265. Each integer is the sum of two consecutive squares. Thus,

12 + 22 = 5, 32 + 42 = 25, and so on.

5. What are the next two integers in the sequence? 2, 4, 6, 30, 32, 34, 36, 40, 42,
44, 46, 50, 52, 54, 56, 60, 62, 64, and 66?

Answer. This is the sequence of all the integers whose names, when fully spelled in
English, do not contain the vowel E. All the integers of the form 7x, 8x, 9x, 1xy, 2xy,
and so on until 2000 have an E in their names. Thus, the next two integers are 2000 and
2002. This is the Eban (for E is banned) sequence, also known as sequence A006933 in
[Sloane 08].

6. What is the rule of the sequence 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6,
6, 6, 9, 9, 9, 9, 9, 13,. . . ?

Answer. The nth element of this sequence is the number of ways of making change
for n cents using coins of 1, 5, 10, and 25 cents.
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7. What is the rule of the sequence 1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2, 3, 4,. . . ?
Answer. The nth element of this sequence is the number of letters in the Roman

numbering of the integer n.

8. What is the rule of the sequence 1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444,
55778,. . . ?

Answer. Given 145, we reverse it to obtain 541, add 145 + 541 = 686 and sort the
digits to obtain the next element 668. This is the RATS sequence (for reverse, add, then
sort), number A004000 in [Sloane 08].

A fun sequence. The elements of the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 15, 16, 20, 20, 100, and 1000 are all the numbers whose names in French are
monosyllabic (un, deux, trois, quatre, cinq, six, sept, huit, neuf, dix, onze, douze, treize,
quinze, seize, vingt, trente, cent, mille.)

5.10 Series

Here is an example that illustrates the ba�ing nature of convergence. The harmonic
series 1 + 1/2 + 1/3 + 1/4 + 1/5 + · · · diverges, albeit very slowly. However, if we omit
certain terms, the modified series may converge to a finite sum. For example, if we omit
the terms 1/n for all n whose decimal value contains at least one zero (such as 10, 50,
103, and 200), then the sum of the remaining terms converges to 23.10345. . . .

The P-series. The harmonic series is only a special case of a p-series, which itself is
a special case of the Riemann zeta function ⌃(s) for real values of s. P-series is a family
of infinite series defined by

�&

n=1

1
np

= 1 +
1
2p

+
1
3p

+ · · · .

The p-series converges for values p > 1 and diverges for any p ⌦ 1. This is known as the
p-test, which is proved here.

⌅ Exercise 5.10: Apply the p-test to the series
$�

n=1
n

n3/2+3
.

The proof of the p-test is straightforward and requires no big guns. We start with
the simple inequality

0 <

( �

1

1
xp

dx <
�&

n=1

1
np

< 1 +
( �

1

1
xp

dx

def= 0 < A <
�&

n=1

1
np

< B. (5.5)

It is obvious that if integral A diverges, the infinite p-series sum of Equation (5.5)
diverges too. Similarly, if B converges, then the sum also converges. On the other hand,
if the sum converges, then A will converge, and if the sum diverges, B too will diverge.
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Thus, the p-series of Equation (5.5) converges if and only if the integral of A and B
converges.

We therefore concentrate on this integral and start by deriving its indefinite form,
which is x1�p/1�p. Because the denominator is undefined for p = 1, we must treat this
case separately and we rewrite integral A as the limit

( �

1

1
xp

dx = lim
k⇧�

( k

1
x�p dx.

For p = 1, the integral becomes ln(k)� ln(1), which diverges at the limit. For p ⇡= 1, we
obtain

lim
k⇧�

( k

1
x�p dx = lim

k⇧�

x1�p

1� p

⌥⌥⌥
k

1
= lim

k⇧�

�
k1�p

1� p
� 11�p

1� p

�
,

which is the same as the limit of k1�p for large values of p.
It is now clear that for p > 1, where 1 � p is negative, the term k1�p is getting

smaller with large values of k, and its limit is therefore zero, implying that integral A of
Equation (5.5) converges. Similarly, for p < 1, 1� p is positive, the limit of k1�p is ⌫,
and integral A of Equation (5.5) diverges. This proves the validity of the p-series test.

For most values of p, the sum of a p-series series is unknown. Here are a few known
examples:
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n=1

1
n2

=
�2

6
,

�&

n=1

1
n4

=
�4

90
,

�&

n=1

1
n6

=
�6

945
.

A non-trivial example of a quasi P series. The famous Euler number e can be
defined as the limit of the interesting expression (1 + 1/n)n for large n. When this is
turned on its head, it becomes n1+1/n, and the above discussion of P series makes it
natural to ask about the behavior of the series

�&

n=1

1
n1+1/n

. (5.6)

This series is similar to the various P series, except that its exponent 1+1/n is not fixed
but goes down from 2 to 1, implying that the general term of the sequence goes down
from 1 to zero.

The proof presented here is not the most elegant, but is straightforward. We start
by showing that for all integers n, it is true that n1/n < 2, and therefore 1/n1/n > 1/2.
This is based on the well-known binomial expansion theorem, first derived by Newton.

2n = (1 + 1)n = (x + 1)n|x=1 =
n&

k=0

⌦
n

k

↵
xk
⌥⌥⌥
x=1

= 1 + n +
n(n + 1)

2
+ · · · > n,

which implies 2n > n and therefore 2 > n1/n. Based on this, we can rewrite Equa-
tion (5.6)
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1
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=
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1
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>
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n=1

1
2

1
n

.
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This shows that the infinite sum of Equation (5.6) is greater than half the harmonic
series, and it therefore diverges.

5.10.1 The Harmonic Series

.
The infinite sum of reciprocals
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,

is called the harmonic series. The name harmonic comes from music, where the harmon-
ics, or overtones, created by a vibrating string feature wavelengths that are multiples of
1/2, 1/3, 1/4, etc., of the basic wavelength.

The harmonic series is perhaps the simplest infinite series that has a chance of
converging to a finite value, since its elements get smaller and smaller. However, it is
easy to show that it diverges (albeit very slowly), and this has already been done by the
14th century. Consider the groups of elements in square brackets. The second group
consists of two elements, both greater than or equal 1/4, so this group is greater than
1/2. The third group consists of four elements, each greater than or equal 1/8, which is
why this group is greater than 4(1/8) = 1/2, and so on.

The harmonic series diverges, but extremely slowly. It takes 12,367 terms for it
to exceed 10, 272,400,600 terms to exceed 20, and (approximately) 1.5 · 1043 terms to
exceed 100.

Partial sums of the harmonic series are called harmonic numbers and are denoted
by Hn. Thus

Hn =
n&

k=1

1
k

.

5.11 The Real Harmonic Series

The harmonic series
$�(1/k) is defined for integer values of k, which is why it was only

natural that mathematicians, being curious, would try to extend it to any real argument
x. This section, following the clear presentation of reference [Lines That Connect 21],
explains how the discrete sequence of values that make up the harmonic series can be
generalized to a continuous, real function.

A simple example of extending a sequence of values to a continuous function is the
sum

n&

k=1

k

of the first n natural numbers. This series is defined only for integers k, but is easy to
extend to any real numbers, because it is trivial to prove (e.g., by induction) that this
sum equals n(n + 1)/2.
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Now, that n is not limited to integer values and can have any real value, we can
have, for example, the sum

5.7&

k=1

k =
5.7(5.7 + 1)

2
= 19.095,

which is somewhere between
$5 k = 15 and

$6 k = 21. Figure 5.12 shows how the real
function

f(x) =
x(x + 1)

2
,

is graphed as a continuous, smooth curve (part of a parabola) that passes through the
points of the discrete sum.
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n=8;
L2=ListPlot[Table[{k,Sum[i,{i,1,k}]},{k,1,n}],
PlotStyle->Directive[AbsolutePointSize[6],Red]];
L1=Plot[x(x+1)/2, {x,0,n}];
Show[{L1,L2}]

Figure 5.12: Discrete and Continuous Sums of n Integers.

Other sums, such as

n&

k=1

k2 =
n(n + 1)(2n + 1)

6
and

n&

k=1

2k = 2(2n � 1),

can be extended from discrete integers to continuous reals, and this section explains
how to achieve this type of generalization with the harmonic series. The first step is to
denote the partial sums of this series by

H(n) =
n&

k=1

1
k

, (5.7)
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which straight away produces the three related recursive relations

H(n) = H(n� 1) +
1
n

, (5.8)

H(n + 1) = H(n) +
1

n + 1
, (5.9)

H(n� 1) = H(n)� 1
n

. (5.10)

Notice that Equation (5.10) allows us to compute H(0) = H(1) � 1
1 = 0, but when

we try to extend this further and compute H(�1) = H(0) � 1
0 = undefined, we must

give up and realize that the harmonic series does not extend naturally into the negative
integers.

The next step is to write Equation (5.9) in terms of real numbers in the form
H(x + 1) = H(x) + 1

x+1 , and extend it from x + 1 to x + n, where it has the form

H(x + n) = H(x) +
n&

k=1

1
x + k

. (5.11)

The resulting Equation (5.11) will become one of the two components needed to produce
the final real harmonic series.

The other component is an interpolation that would propagate our final curve
smoothly and continuously, segment by segment, from any point H(n) on the curve
to its successor H(n + 1), such that individual segments connect smoothly to form one
shiny, unwrinkled curve. We know that the terms of the harmonic series get smaller
and smaller, which causes their partial sums to get closer and closer. The limit of the
di⌃erence of consecutive partial sums is therefore zero. Thus,

lim
N⇧�

(N + x)�H(N) = 0,

and this limit can be employed to produce the desired result. We simply substitute
Equation (5.11) for the first term and Equation (5.7) for the second term, to obtain
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which implies

H(x) = lim
N⇧�

�
N&

k=1

1
x + k

+
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Finally, the expression for the real harmonic series is obtained by replacing the limit
with an infinite sum

H(x) =
�&

k=1

�
1
k
� 1

x + k

�
.
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n=8;
L2=ListPlot[Table[Sum[1/i,{i,1,k}],{k,1,n}],
PlotStyle->Directive[AbsolutePointSize[6],Red]];
L1=Plot[Sum[(1/k)-(1/(x+k)), {k,1,1000}], {x,-4,n},PlotRange->{{-4,8.1},{-1,3}}];
Show[{L1,L2}]

Figure 5.13: Discrete and Continuous Harmonic series.

Figure 5.13 shows some points of the harmonic series, together with its continuous
curve. A part of the negative x-axis is also included, and it shows the strange, unexpected
behavior of our curve. It turns out that this curve is a shifted version of the less-known
digamma function ✓(x), which is the logarithmic derivative of the gamma (�) function,
Section 10.1.

5.12 The Book-Stacking Problem

Reference [WikiHarmonic 23] describes several applications of the harmonic series, per-
haps the most well-known of which is the block-stacking (or book-stacking) problem.
Given an unlimited number of rectangular books or blocks that are identical, uniform,
and have a length of one unit and a weight of one unit, how far away can they be stacked
vertically and overhang over the edge of a table without falling.

The key to understanding this problem, following reference [StackBlocks 16], is the
physics of center-of-gravity or moment. Imagine a uniform block partly protruding over
the edge of a table. The di⌃erence

(mass⇥ length of part on the table)� (mass⇥ length of part protruding)
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is the di⌃erence of its moments. The block can be slid toward the edge without dropping
until this di⌃erence is zero. The same di⌃erence of moments also governs the behavior
of a set of blocks.

We use induction to determine the di⌃erence of moments of a set of blocks. This
method starts with a set of n�1 blocks that are already balanced on the edge of a table.
An nth block is then slid under the set and the problem is to figure how it a⌃ects the
position of the total center of gravity. Figure 5.14 illustrates a set of n � 1 = 3 blocks
with its center of mass (red in the figure) right at the edge of a table. We now imagine
that the blocks are lifted up and an nth (fourth) block is inserted under them with its
front flush with the edge of the table. The new block is to the left of all the other blocks
and has shifted the center of gravity of the set of n blocks to the left (indicated in green
in the figure). We denote the distance between the old and new centers of gravity by x.

New center of mass

Previous center of mass

x=1/2n

Figure 5.14: Four Stacked Blocks.

On one hand, the center of gravity of new block is 1/2 a unit from the edge of the
table, so its moment is the product of its mass (which is 1) and half its length (which
is 1/2) or 1/2. On the other hand, the new set of n blocks, which used to have a zero
di⌃erence of moments, now has a net di⌃erence of moments of xn toward the left. This
di⌃erence is due to the new block, which allows us to write xn = 1/2 or x = 1/(2n).

Thus, we can now slide the new set of blocks a distance 1/(2n) to the left without
it dropping down. To complete the induction we notice that for n = 1, this distance is
1/2, which makes sense since half of the first block can safely protrude past the edge.

For five blocks, the relation x = 1/(2n) produces the series of lengths
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which is the harmonic series.
In theory, given enough blocks, a set of blocks can protrude any distance beyond

the edge of a table. In practice, however, non uniformity and minute variations in mass
and length put a limit on what can be achieved.

In theory there is no di⌃erence between theory and practice, but in practice there is.
—Yogi Berra.
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The following series comes up in one of the historical paradoxes by Zeno of Elea
(see him again in Section 6.2). Here, we discuss just the series, which is

1 +
1
2

+
1
4

+
1
8

+
1
16

+ · · · , (5.12)

which converges to 2.

⌅ Exercise 5.11: Prove that the series of Equation (5.12) converges to 2.

Euler series. The next natural question at this point is how to modify the harmonic
series so it converges, and the simple modification suggested here does just that. The
harmonic series adds the reciprocals, which are less than 1, so how about adding their
squares, which are smaller? It is easy to prove the convergence of the series
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The second and third terms are each smaller or equal 1/4, so their sum is smaller than
1/2. The next four terms are each smaller or equal 1/16, so their sum is smaller than
4 ·1/16 = 1/4, and so on. Each term in this series is smaller than the corresponding term
in the well-known converging series of Equation (5.12), which shows that series (5.13)
also converges, but to what value? It was Euler (who else) who proved that its sum is
�2/6 � 1.644, which is why this series is named after him. (An alternative name is the
Basel problem.)

The Euler proof presented here follows the description in reference [Dunham 91].
It is ingenious and unexpected, because it starts with the familiar sine function, which
comes from trigonometry and seems to have no connection with the Euler series. The
graph of sinx is a wave which cuts across the x-axis at x = 0,±�,±2�,±3�, . . .. These
values are the zeros of sine.

Once the zeros of the sine function are understood, we switch to the Taylor series
of sine

sinx =
x

1!
� x3

3!
+

x5

5!
� x7

7!
+ · · · ,

which expresses sine as a polynomial with only odd powers of x. Like any other polyno-
mial, this can be expressed as the product of terms that depend on its roots. In general,
given a polynomial P (x) that satisfies P (0) = 1, and with roots ri that are nonzero, it
can be written in the form

P (x) =
�
1� x

r1

� �
1� x

r2

� �
1� x

r3

�
. . . . (5.14)

It is easy to see that this satisfies P (ri) = 0 and P (0) = 1.
The next step is to divide this Taylor series by x (and remember that from now on,

x cannot be zero).
sinx

x
= 1� x2

3!
+

x4

5!
� x6

7!
+

x8

9!
� · · · . (5.15)
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The roots of this polynomial are the same as the roots of sinx, except that we must
ignore the root x = 0. Once we substitute those roots as in Equation (5.14), we end up
with

sinx

x
=
*
1� x
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1� x

��

� *
1� x
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�
· · · . (5.16)

Combining Equations (5.15) and (5.16) and applying the identity (a + b)(a� b) =
a2 � b2, we obtain our key equation
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In addition to bringing us very close to the elusive proof, this equation is ingenious
because it equates an infinite sum to an infinite product.

The almost-last step is to multiply out this infinite product, which happens to be
easy because of its special form. The result is
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And the last step is to equate the coe⌥cients of x2 on both sides, which yields
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An expression that leads directly to the final value �2/6 as any reader should be able to
verify.

Once Euler achieved this breakthrough, he employed his method, using sinx/x for
nonnegative x, to solve related problems, such as the sum of reciprocals of even squares$

1/(2k)2, the sum of odd perfect squares
$

1/(2k + 1)2, and the sum
$

1/k4.
The Euler series is a special case of the all-important Riemann zeta function

⌃(s) =
�&

n=1

1
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,

And Euler computed its values for all even integers. Thus, ⌃(2) = �2/6, ⌃(4) = �4/90,
and ⌃(6) = �6/945. The values of the zeta function for odd integers are still unknown,
but Euler came up with the ba�ing expression

⌃(�1) = 1 + 2 + 3 + · · · =
�1
12

,

a result about which people argue endlessly on YouTube and elsewhere.
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[Numbers] The di�erence between hearsay and prophecy is often one
of sequence. Hearsay often turns out to have been prophecy.

—Hubert H. Humphrey(1985).



6
Paradoxes

The term paradox is frequently heard. We also learn about paradoxes and their reso-
lutions or lack thereof, but what precisely is a paradox? A paradox is a puzzling issue
or riddle with a solution that appears to be unattainable. Certain paradoxes appear to
challenge our intuitive understanding or to reject our familiar grasp on reality. Para-
doxes can be created for amusement or education purposes, yet they can also represent
contradictions between our perceptions and beliefs.

The term paradox, from the Greek ⇤�✏�⌅o�o, is the concatenation of para (⇤�✏�,
meaning “opposite” or “distinct from”) and ⇥o�� (Doxa, “I express opinion or knowl-
edge”). So a paradox is something that is opposite to my opinion or distinct from our
knowledge.

6.1 Types of Paradoxes

Like many objects that we see around us, ideas that we might have, and terms that we
use, we intuitively try to distinguish di⌃erent types of paradoxes; we try to classify them
in an attempt to better understand them. The following three categories of paradoxes
are due to the philosopher Willard Quine, who defined them in 1961.

A falsidical paradox packs a surprise, but it is seen as a false alarm when we solve
the underlying fallacy. Such a paradox is a statement or question that appears to be
logical at first but upon closer examination leads to an impossibility. It can also be
described as a problem that uses an incorrect assumption to justify a result that is false.
A simple example is Which came first, the chicken or the egg?

A veridical paradox packs a surprise, but the surprise quickly dissipates itself as we
ponder the proof. Such a paradox is a statement that seems contradictory or even false
but is actually true. It can also be described as a situation that is ultimately, logically
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true, but is either senseless or ridiculous. A simple example is the phrase The more
things change, the more they stay the same (Plus ça change, plus c’est la même chose).

These two types have solutions and are paradoxes only to those who don’t know
the solutions.

An antinomy (literally, against law) packs a surprise that can be accommodated by
nothing less than a repudiation of part of our conceptual heritage. This type is a paradox
to all of us, since it has no solution. However, advances in science or mathematics can
provide a solution, which is why an antinomy (not to be confused with antimony, which
is chemical element of atomic number 51) may, in future, be resolved and become a
paradox of the first two types. As Quine said “One Man’s antinomy is another man’s
falsidical paradox, give or take a couple thousand years.”

An antinomy can also be described as a statement that lays out a set of conditions
and then asks a question, the resolution of which becomes self-contradictory, resulting
in lack of a valid answer.

⌅ Exercise 6.1: In his book Life of Theseus, Plutarch tells us “The ship wherein Theseus
and the youth of Athens returned [from Minoan Crete] had thirty oars, and was preserved
by the Athenians down even to the time of Demetrius Phalereus, for they took away the
old planks as they decayed, putting in new and stronger timber in their place . . . .” This
story is the origin of the well-known Ship of Theseus paradox. Consider the following
question, is the resulting ship the same as the original ship? In general, this is equivalent
to the question what makes something truly original? An alternative version has to do
with the body of an animal, where new cells are constantly replacing old ones. What
type of paradox is this and what can we say about its resolution?

⌅ Exercise 6.2: Come up with a paradox or a question similar to the Ship of Theseus
paradox.

Some philosophers suggest a fourth type of paradox, a dialetheia. This is similar
to an antinomy, but states that both a statement and its opposite can both be true
simultaneously. I could not find examples of this type, but there are arguments for why
they should or should not exist. It is a question of finding a condition that can be true
simultaneously with its opposite.

6.2 Examples of Paradoxes

• An example of a falsidical paradox is the racecourse, or dichotomy paradox, by Zeno
of Elea. Suppose a runner needs to travel from a start S to a finish F. To do this he must
first travel to the midpoint, M, and thence to F, but in order to reach M, he must first get
to N, the midpoint of SM. Extending this argument ad infinitum proves that the runner
cannot take a single step, let alone finish his run, because it is impossible to accomplish
an infinite number of tasks in a finite time.

This paradox started as an antinomy. It must have ba�ed the ancient Greeks
because no one knew the solution. and was resolved much later, when it became clear
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that the infinite sum
�&

i=1

1
2i

Converges to 1. Thus, this is now a falsidical paradox, something that surprises only
those who still don’t know about converging series.

This simple paradox becomes ba�ing when we compare it to Thomson’s lamp
paradox of Page 211. Assume that the runner has to cover a distance of one meter. In
order to do that, he first has to cover 50 cm, but to do that he first has to cover 25 cm,
and so on. On one hand, he can cover all this existence because their sum is one meter.
On the other hand, at every point in the process he is short of his goal of one meter.
How then can he be at one meter at the end. Also, how can there be an end to his
infinite set of smaller and smaller distances?

This is similar to Thomson’s lamp, which has no state at midnight. However, the
runner is at the one meter point after traversing his infinite distances, because he must
there! Obviously, he cannot be beyond that point, but why can’t he be short of it? Being
short of the one meter point means that he still has infinitely many short distances to
run, but he has already run all the infinitely many distances.

The Greek philosopher Zeno of Elea (not to be confused with Zeno of Citium) is
best known for his paradoxes which puzzled, challenged, influenced, inspired, infuriated,
and amused his contemporaries as well as later generations. All have since been resolved.

The first Zeno paradox is referred to as the dichotomy paradox. It is related by
Aristotle as follows “That which is in locomotion must arrive at the half-way
stage before it arrives at the goal.” In other words, before we can cover a dis-
tance d, we first have to cover half that distance, but in order to move a distance of d/2,
we first have to cover d/4, and so on. Thus, to cover any distance, we have to cover
infinitely many distances, which seems impossible. Yet everyone knows that motion is
possible, which results in a paradox.

To a contemporary reader, the resolution of this paradox is trivial. It is true that to
move a distance d we have to cover infinitely many distances, but because each distance
is half that of its predecessor, their sum converges.

In his 4th paradox, Zeno describes three rows of runners X, Y, and Z
. . . XXXXXXX. . .
. . . YYYYYYY. . .
. . . ZZZZZZZ. . .

The XXX runners are at rest, the YYY runners run at maximum speed to the left,
and the ZZZ runners similarly run at maximum speed, but to the right. The paradox is
that the relative speed between the YYY and ZZZ runners is twice the maximum speed.

This paradox was resolved in 1905 by the special theory of relativity, which states
that there is a maximum speed c, the speed of light, but speeds should not be added
arithmetically. Instead, special relativity provides the simple, unintuitive rule for adding
speeds u and v

u + v

1 + u v
c2

.

It is easy to see that when both u and v are maximum (both equal c, the combined
speed is also c.
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Another of Zeno paradoxes is concerned with repeatedly dividing a line segments
into smaller and smaller segments. In the limit, the length of each segment is zero
and there are infinitely many of them. To Zeno, the fact that a sum of zeros, even an
infinite sum, produces a positive result, was a paradox. Today, we resolve this paradox
by talking about the real numbers as non-denumerable, uncountable, or as forming a
continuum.
• Galileo’s paradox. Galileo, of the leaning tower of Pisa fame, noticed the mapping
n ◆ n2 that maps the positive integers to their squares. He realized that the set of
squares of integers is a proper subset of the positive integers, so he concluded that this
mapping constitutes a paradox, one that is named after him. Today, with the benefit
of set theory, this paradox is resolved by simply saying that the sets of positive integers
and of their squares have the same cardinality.
• A similar paradox of infinity is the Tristram Shandy paradox, resulting from story
where Tristram Shandy decides to write his biography in such detail as to devote a day
of writing to each day of his life. Contrary to any negative intuitive predictions, such
a target is possible if he would live forever. See The Life and Opinions of Tristram
Shandy, Gentleman, by Laurence Sterne, 1759.
• The preface paradox. Writing a book is not a trivial undertaking. The author
normally checks his manuscript for errors before sending it to the publisher, where an
editor, subeditor, associate editor, a production editor, and a copyeditor often also go
over the text, locate errors, make suggestions for improvements, and generally improve
the text. After all this work, errors, mistakes, and mistypes may still be found in the
book, especially if it is a technical textbook. Because of this, the author often includes a
disclaimer In the preface to the book, admitting the inevitability of errors, apologizing
for any errors readers may find, and promising to maintain a list of errors in the book’s
website.

If even one error is later found in the book, then the sentence or paragraph con-
taining the error is wrong, and it causes the book to have a false statement. If no errors
are ever found, then the inevitability of errors mentioned in the preface is itself a false
statement. Either way, such a book contains a false statement. This is the preface
paradox.
• The cable guy paradox. Your cable stopped working. The cable company has
promised that a technician would come to your house tomorrow between 8AM and
4PM. This time window can be divided into the equal intervals (8, 12] and (12, 4), that
we denote by AM and PM, respectively. If you had to bet on the technician’s arrival,
would you bet on AM or PM?

Clearly, at any time before 8AM, there is no reason to prefer any of the time
intervals. After 4PM, the result would be known and there is no point in betting. Life
experience teaches us that as you wait for the technician in the morning, you feel that
the chance he would show up during AM is steadily shrinking, which is why during the
AM interval you would tend to bet on PM. During the PM interval, it is pointless to
bet AM.

Thus, in early morning, the AM and PM intervals have the same chance, and after
that, you would tend to bet PM. The chance you would bet PM is therefore greater
than 0.5, yet we know that half the time, a technician arrives in AM, and half the time
he arrives in PM. This is the cable guy paradox.
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• The barber paradox, a variation of Bertrand Russell’s paradox, is an example of a
falsidical paradox. This antinomy assumes that there is a town in which “the barber
shaves all and only those men in town who do not shave themselves.” Now we ask who
shaves the barber? If he shaves himself, then he is shaving a man who shaves himself
and violates the premise.
• Quinn’s paradox. A poor person may sometimes be persuaded to donate blood
plasma or to participate in an experimental medical procedure for money. Imagine a
medical researcher who o⌃ers money for the following experiment. The subject is exposed
to a mildly painful stimulus and is o⌃ered more money to agree to each additional step
in the experiment, where the stimulus will be slightly increased. The steps are small
enough such that the pain in each step is indistinguishable from the previous step.

On one hand, as the pain increases gradually, we expect the subject to stop the
experiment at a certain point, feeling that the pain has become too much. On the
other hand, if the steps are small enough, the subject may always accept the next step,
because he knows from experience that the increased pain in the next step would be
indistinguishable from the present pain. This is Quinn’s paradox.
• Wang’s paradox. This is a close relative of Quinn’s paradox. It starts by stating “0
is small,” continues with “if n is small then so is n + 1,” and concludes by saying “so
every number is small.”

See also Exercise 6.2 for the sorites paradox.
• The rakehell paradox. The following quotation is from the novel That Uncertain
Feeling, by Kingsley Amis (Penguin books, 1955).

“Feeling a tremendous rakehell, and not liking myself much for it, and feeling rather
a good chap for not liking myself much for it, and not liking myself at all for feeling
rather a good chap, I got indoors, vigorously rubbing lipstick o⌃ my mouth with my
handkerchief.”

(Rakehell means a dissolute man.) This is a paradox because the man in the story,
being a rakehell, doesn’t like himself, while also liking himself, because he has the guts
to not like himself.
• Richard’s paradox. We are familiar with words such as thousand, million, billion,
and trillion, which describe large integers. In principle, it is possible to describe every
integer in terms of such words. The description may specify how many trillions, millions,
thousands, and so on, make up the integer. However, most real numbers are non-integers.
They may have infinitely many digits after the decimal point, and it is not clear if it is
possible to describe every real number in a finite number of words.

We therefore collect all the real numbers that can be described in a finite number
of words in a set E. The following argument shows that E must be denumerable. Let n
be the number of words used to describe an element R of E. We include R in a group
with all the other members of E whose description consists of n words. The members of
each group are arranged lexicographically. (This can be done even if a group is infinite
and even if it is non-denumerable.) The groups are then opened and their members
concatenated into one large list that contains all the members of E. Thus, set E is
denumerable.

Assume that element R of E has the integer tag n. We can construct a new real
number N whose integral part is zero and whose nth fractional digit is di⌃erent from p,
where p is the nth fractional digit of R. N is constructed in this way bit by bit from
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each R in E. Those who recall Cantor’s diagonal argument from Page 215 will agree
that N is di⌃erent from any element of E. However, N has just been constructed by
our finite description of it and must therefore belong to E; a contradiction.

This contradiction is Richard’s paradox, first described by Jules Richard in 1905.
See also Berry’s Paradox, Page 287.
• König’s paradox, by Julius König (1905), is closely related to Richard’s paradox.
We first notice that although the real numbers are non-denumerable (cannot be assigned
tags), the entire set R of the reals is well-ordered and for any two reals it is possible to
tell which is greater.

We again build a denumerable list E, a subset of R containing all the real numbers
that can be described in a finite number of words. The elements of E are ordered as
before, with tags assigned. Since R is well ordered, there must be a first real number
(first, according to the order of the reals) which lies outside subset E and therefore
cannot be defined by a finite number of words. But this number has just been defined
by the previous sentences; a paradox.
• St Petersburg paradox. This involves simple probabilities. A player is willing to
pay a fixed sum to play a simple game based on coin tossing. A coin is tossed again and
again, landing on tails, until it lands on heads at the nth toss. The player then receives
2n money units and the game is over.

This game and the resulting paradox were already discussed in 1738 by Daniel
Bernoulli. Reference [Feller 68] has a description and detailed statistical analysis of this
game as well as the entire concept of what makes a game fair.

Intuition suggests that this is a game where the player has the advantage over the
bank, because the chance of a fair coin to land heads is 0.5, and also because the longer
it takes for it to land heads, the greater the gain for the player. We can therefore expect
gamblers to be willing to pay handsomely, and to be happy to pay and play this game
many times. However, because of human nature and of limited resources, there will
always be a limit to what players are willing to risk in such a game. Here is a detailed
analysis of the probabilities involved.

If a coin lands heads on the nth toss, it must have landed tails on the first n � 1
tosses. The probability of this is 0.5n�1. The probability of landing heads at step n
is, of course, the same 0.5, so the chance of the coin landing heads on the nth toss but
not before, is 0.5n. This chance shrinks with the number of tosses, but since the payo⌃
is 2n, it grows, and it grows exponentially. Statistically speaking, we are dealing with
independent random variables that grow exponentially as 21, 22, 23, . . .with probabilities
2�1, 2�2, 2�3, . . . .

Thus, the expectation of winning at step n is the product 2n ⇥ 2�n = 1 and the
expectation of winning in n steps is the sum

$n
1 1 = n. This sum grows indefinitely,

which reinforces our initial intuitive feeling that the player is the one who has the
advantage in this game.

A variation of the game is to give the player a limit N such that he receives nothing
if no heads is achieved after N steps. Now the gain is no longer infinite and is limited
to the finite value N . This implies that the maximum a player should agree to pay to
enter this game is N , but in practice there is also the time the game takes when N is
large, and time, as we know, is money.

However, we know from experience with real players and gamblers, that there will
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always be a limit to what they are willing to pay for such a game, and this practical
fact is the source of the St Petersburg paradox. Following are a few points that can be
mentioned about this paradox.

1. In practice, this and similar games always have to be played with a limit, since
the funds available to the bank are always limited. This resolves the paradox, because
the gambler cannot expect infinite gains and would therefore not risk infinite money.

2. The concept of diminishing returns a⌃ects the amount a player is willing to risk.
As the game is played repeatedly many times, the player gains more money. A time
comes when large winnings, winnings that in the past were considered significant, are
now considered puny. The player is rich and wants to get richer, but his gains are getting
smaller and smaller the more money he has. A time may come when he decides to quit
because the small gains may not be worth his time.

3. The definition of a gambler is someone who is attracted to risks, but most players
in casinos are rational and try to avoid risks that they consider too high. Such a player
avoids games where the gain is huge, but the chance of winning is small. Such a player
may decide that the St Petersburg game is precisely of this type, and may decline to
play.

4. Sophisticated gamblers, casino executives, statisticians, and others who analyze
games and chances have developed the concept of a fair game. Here are a two informal
definitions of what makes a game fair:

A game is fair when the probability of winning is equal to the probability of losing.

A game is fair if its expected value equals its cost.

Meaning of “fair game” in English: Someone or something that people are allowed to
criticize.
Celebrities are fair game for the press.

Thus, a fair game can be achieved by adjusting the rules, rewards, or conditions of
the game so that the probabilities of each outcome are equal for all players. According
to the definitions above, the St Petersburg game is unfair.
• Self-deception paradox. If I know what you are up to, you cannot deceive me. I
always know what I am up to, so I can never deceive myself.

This simple statement proves by logic that a person cannot deceive himself, yet we
know that people deceive themselves all the time. This is the self-deception paradox,
whose most common example is self-denial. Psychologists and medical professionals
have long realized that a terminal patient goes through several stages, one of them is
self denial.

Fere libenter homines id quod volunt credunt (In general people willingly believe what
they want to).

—Julius Caesar, Commentarii de Bello Gallico, Book III, Ch. 18, 58–49 b.c.

⌅ Exercise 6.3: What are other common examples of people deceiving themselves.

• Self-fulfilling belief paradox. Statement X states:
I believe that I am believing statement X.
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Statement X is meaningless; it has no real content, yet if I believe in it, it becomes
self-fulfilling. A placebo is a good example. A placebo is a harmless pill, medicine,
or procedure prescribed more for the psychological benefit to the patient than for any
physiological e⌃ect. Yet placebos often works if the patient believes that he has received
something of value,
• The Unpleasant paradox. You are o⌃ered a large sum of money just to form in your
mind the intention to swallow an unpleasant pill. Once you have formed this intention,
you immediately receive the money, and you are still free to change your mind. This
surprising feature is explained to you in advance.

The paradox is that you know in advance that you can change you mind and reverse
your initial intention, yet not lose anything. However, this foreknowledge will prevent
you from forming the intention in your mind in the first place. In other words, you
cannot intend to do what you know you will not do.
• The Horror paradox. Script writers, movie directors, and television news producers
have long discovered that horror movies, tragic news, and frightening stories hold a
fascination for many readers and viewers. It is widely believed that the amount of
pleasure and satisfaction they receive from such stories is proportional to the amount
of unpleasantness and tragedy in the events themselves. The contrast between negative
occurrences and positive feelings can be considered a paradox.
• Achilles and the fly paradox. According to Martin Gardner, this interesting paradox
originated by A. K. Austin of She⌥eld, who published it in Mathematics Magazine in
1971. In one of the famous Zeno paradoxes, Achilles is pursuing the tortoise and will
never overtake it. (See also the racecourse paradox on Page 268.) In this modern version,
Achilles, running at 5 mph, is pursuing the tortoise, which is slow-moving at 1 mph,
but had a head start. At the point in time when Achilles catches up with the tortoise,
a fly, flying at 10 mph, arrives at the meeting point and starts flying back and forth
between Achilles and the tortoise as the distance between them grows. After one hour,
the distance between Achilles and the tortoise is 4 miles, and the question is, where is
the fly?

The unexpected answer, which is also the source of the paradox, is that the fly can
be anywhere between them. This is explained in two steps as follows:

Step 1. When the three start their shared running/flying trip at the meeting point,
the distance between them is zero. As they move in time, the distance is growing, but
initially it is very small. The fly must therefore reverse its direction right from the point
of meeting, and in fact it has to reverse its direction infinitely many times at any time
interval since the beginning.

To make this picture more rigorous, imagine the situation after a small interval of
⇧ time units. Achilles has moved a distance of 5⇧, the tortoise has moved one ⇧, and the
distance between them is the small 4⇧. In order to stay between the two runners, the
fly, which has flown 10⇧, must already have reversed its direction infinitely many times.
Since the ⇧ time interval is arbitrary and may be as short as we wish, it follows that
the fly must reverse its direction infinitely many times right from the meeting point.
There is no initial non-zero interval during which it flies straight without reversing his
direction. This situation is similar to the Thomson’s lamp paradox, Page 211.

Step 2. Going back in time from an hour after the meeting to the point of the
meeting. Assume that an hour after the meeting the fly is at an arbitrary point between
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the two protagonists. As we move back in time, the fly must reverse directions more
and more often and fly shorter and shorter segments. Right before it approaches the
meeting point, the fly must reverse its direction infinitely many times, which implies
that it has no first direction. Hence, it will traverse back in time and reach the meeting
point in space as time reaches the meeting time, regardless of where it was at the end
of the hour (i.e., when the time reversal started). The inescapable conclusion is that at
time ⇧, or at one second, or at the end of an hour, or in fact at any time—the fly could
be anywhere between Achilles and the tortoise.

There is another unusual feature to this hypothetical race. At the time of meeting,
the fly is already flying. It has reached the meeting point from a certain direction.
Hence, at that time it has a well-defined velocity (a vector describing its speed and
direction). During the hour-long race, the fly’s speed is constant, but its direction
reverses all the time. Its velocity is therefore a discontinuous function that has sharp
changes at infinitely many points where it is also non-di⌃erentiable. Acceleration is the
derivative of velocity, so when the velocity vector changes from the constant 10 mph
to the constant �10 mph, the acceleration vector must change from zero to �⌫ (stop)
and then instantaneously to +⌫ (start). This acceleration function is discontinuous at
infinitely many points.
• An example of a veridical paradox is Gabriel’s horn (also called Torricelli’s trumpet).
This is a three-dimensional geometric figure that has infinite surface area but finite
volume. Its name originates in the traditional belief that the archangel Gabriel will
blow his horn to announce Judgment Day. Evangelista Torricelli seems to have been the
first to rigorously study, in the 17th century, the properties of this object.

The horn is the figure obtained when the curve y = 1/x is drawn from x = 1 to
x = a for some positive value a > 1, and is then rotated 360⇤ about the x-axis. Reference
[WikiHorn 23] proves that the volume of the horn is �(1 � 1/a), while its surface area
is 2� ln a. Thus, for a at infinity, the volume is the very finite �, while the surface area
is infinite. In simple terms, this horn is infinitely long but has a finite volume. It seems
to connect the finite with the infinite, or at least to blur the boundary between them;
unexpected, weird, and surprising. This is a veridical paradox because it is a surprise
that tends to evaporate as we ponder it and get used to its unusual but true results. Here
are a few more words that may help the reader to come to terms with this surprising
horn.

A simple explanation of the finite volume of the horn is to consider it a series of
infinitely many thin disks of diminishing radii. The radius of a disk located at coordinate
x is r = 1/x, so its area is �r2 = �/x2. The volume of the horn is the infinite sum of
the disk areas and this sum converges because the infinite sum of 1/x2 converges. (The
exact volume is obtained when the disks are infinitely thin, which requires a definite
integral instead of an infinite sum.)

An infinite number of mathematicians walk into a bar. The first one orders a pint.
The second one orders half a pint. The next ones order a quarter, then an eighth,
and so on. The bartender hands them two pints and says “You mathematicians, you
don’t know your limits.”

—A mathematical joke.

The fact that the horn has finite volume but infinite surface area gives rise to the
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Figure 6.1: Gabriel’s Horn.

a=10; (*Gabriel’s Horn*)
ParametricPlot3D[{2Cos[u]/w, ( 2Sin[u])/w, w}, {u,0,2Pi},
{w,1.5,a}, PlotStyle->{LightOrange,Specularity[Green,2]},
Boxed->False,Axes->None,Mesh->None]

painter’s paradox, another veridical paradox. It takes a small, finite amount of paint to
fill the horn, and this paint already covers its interior surface. Yet it takes an infinite
amount of paint to actually paint the infinite (interior or exterior) surface. This paradox
is veridical because it disappears when we understand that paint in the real world has
finite thickness, but the paint needed for the horn must be infinitely thin. Trying to fill
the horn with such paint would also require an infinite amount.

Another way to explain this paradox is to understand the meaning of the term
dimension. When we say that the length of a line is a foot, we have simply compared
the line to a known object, a ruler or a tape measure, marked in feet. Without a standard
of length such as a ruler, it is impossible to measure any length and assign it a value.
Also, when comparing dimensions, it is meaningful only to compare dimensions of the
same type. It is meaningless to compare apples and oranges, to compare time to mass,
or to compare surface to volume.

We intuitively feel that the volume of an object is greater than its length or surface
area, but this is only a feeling we got from our experience with everyday objects; it is not
a precise concept. Therefore, volume and area cannot be compared. A similar example
of dimensions that are not commensurate is the fractal known as the Koch snowflake. It
has a finite area, but its boundary curve is so fragmented, jagged, crinkled, and zigzaggy
that its length is infinite.

The guiding principle in cases where we are surprised by seemingly impossible math-
ematical results is to remember that mathematics is a creation of the human mind and
is not restricted by the features and limitations of the real world.

⌅ Exercise 6.4: Come up with an everyday object that is easy to construct, but when
carried to infinity it features the same infinite area and finite volume.

• Another example of a veridical paradox is a someone who is 20 years old but has
had only five birthdays. The solution is that his birthday is on a Leap Day, February
29th, and only occurs once every four years. Such a case is logically consistent, but it
could be argued that the statement is nonsensical.

⌅ Exercise 6.5: Two baby girls were born on the same day, to the same mother, in the
same hospital, yet they are not sisters. How can this be?



6.2 Examples of Paradoxes 277

• A self-contradictory phrase such as “There is no absolute truth” can be considered
an antinomy because this statement seems absolutely true, and therefore denies itself.
Other antimonies are: You can’t lose what you never had. “You must unlearn, what
you have learned” (Yoda). The restaurant owner said “the customer is always right
and I am wrong” and the customer answered “you’re right.” If an all powerful being,
an omnipotence, creates an immovable object, then by definition, he cannot move it.
He has created an object that even he is not powerful enough to move, thus ceasing to
be omnipotent. The liar paradox: Pinocchio says: “My nose will grow.” If his nose
is growing, then he wasn’t lying, so his nose shouldn’t have grown. If his nose doesn’t
grow, then he was lying, but in this case his nose should have grown. (A simpler version
of this paradox is: “this sentence is false.”) Time travel is a fertile source of paradoxes.
Perhaps the most obvious is for a person to go back in time and kill his grandfather
before his father is born. I’ll leave you to ponder the implications of this.

⌅ Exercise 6.6: What is the original version of this paradox?

The liar paradox is well known because it has many relatives. Here are a few:

Consider the infinite sequence of identical statements “All the following statements
are untrue.” It turns out that it is impossible to assign consistent true or false values
to these statements.

The following two statements are cyclic and therefore self referential:
Socrates: “What Plato is saying is false.”
Plato: “What Socrates is saying is true.”

The following finite sequence of statements alternate between true and false. If the
last statement is true, then the first one must be untrue and vice versa. The precise
values depends on whether n is odd or even.

1 The following sentence is untrue.
2 The following sentence is untrue.
3 The following sentence is untrue.
...
n The first sentence is true.

• Aristotle’s wheel paradox This paradox has to do with physical objects, namely
rolling wheels. A general reference is [wikiAristoPardox 23]. Consider the wheels of
Figure 6.2. As shown in part (c) of the figure, such a wheel consists of two parts, large
(R), and small (r), that are attached and must spin together like the wheel of a train
(imagine a dime glued to a half-dollar). Assume that the wheel on the left of part (a) is
rolled without slipping (or skidding) one full revolution to the right. The figure implies
that both points 1 and 2 travel horizontally a distance of 2�R units (the circumference
of the large wheel), but a little thinking suggests that point 2 should travel only the
circumference 2�r of the smaller part (in red); a paradox!

The same paradox appears if the small wheel rolls on a narrow track and causes the
large wheel to roll with it, as happens, for example, in trains wheels. In such a wheel,
the small part rides on the rail while the large part is a flange which protrudes down
the side of the rail.
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Figure 6.2: The Aristotle Paradox.

This paradox is attributed to Aristotle. For centuries, it has ba�ed mathemati-
cians and philosophers such as Cardano, Mersenne, Galileo, and Bolzano, but to our
amazement, the solution is quite simple and is presented here in both a physical and
mathematical form.
• Physical solution. The wheel must be rolled on the track without slipping or skid-
ding, but this is true only for point 1, which is on the circumference of the large wheel.
Point 2, on the other hand, is both rotating and slipping all the time. It is slipping
with respect to the track. This slipping is not noticed by the viewer of a diagram or
the observer of a video or real wheel rolling, because the rim of the small wheel does
not touch anything. However, the following simple experiment can reveal the slipping.
Roll the large wheel along its track while holding another, narrow track, such as a rough
strip of wood or plastic, to the rim of the small wheel.
• Mathematical solution. Part (b) of Figure 6.2 illustrates the subtle fact that when
the wheel is rolled, both points 1 and 2 move first down and later up in addition to
moving horizontally. It has been known for centuries that a point attached to the rim of
a rolling wheel moves along a curve called a cycloid. It is obvious from the figure that
the cycloid path of point 2 is shorter than that of point 1, and that the path plotted by
the center of the wheel is the straight-line limit of the black, outermost cycloid. Thus,
all points between the rim and the center of the wheel move along cycloids whose lengths
get shorter as we move toward the center, and there is no paradox.
• A game with a simple logical paradox. Two envelopes contain money, one twice
as much as the other. We pick up one envelope to win its content, but before we open
it, we are given the option of swapping the envelopes. This seems pointless, because
the only information available is the amounts of money, say, M and 2M , but consider
the following. If the original envelope we chose contain X amount, then the other
envelope contain either 2X or X/2. The expected value (EV) of that envelope is therefore
EV = (2X + X/2)/2 = 1.5X, which is greater than X! This is a paradox, because once
we swap envelopes, we would be facing the same dilemma!

The solution is that there is really no advantage in swapping. We only need to
realize that the two X values in the above expression do not refer to the same amount.
In the case where swapping is going to double our money, the X (what is in the original
envelope) is the smaller of the two amounts, while if by swapping we are going to lose,
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the X is the larger amount. Suppose the amounts are 100 and 200. The average, which
is also the expected value EV, is 150. When we swap, the 2X amount is 100 while the
X/2 amount is 200. Thus, the EV in this case is [2 · 100+ 200

2 ]/2 = 150, the same as the
EV with the original envelope.
• The friendship paradox. In a set of people that are not complete strangers, there
may be relations that we can generally group under the title “friendship.” A member of
the set may have friends, neighbors, partners, relatives, or other persons toward which
he has special feelings. The paradox discussed here is due to Scott L. Feld [Feld 91].
From his surveys of social interactions of real people he concluded that on average, the
friends of a set member A have more friends than A himself has.

This is unexpected and it seems to contradict common sense. What is special about
A’s friends and why should they be friendlier than A himself? After all, A was chosen
at random in the set. One explanation is that friendly people, people with many friends,
are simply more likely to also be A’s friends. Similarly, if B has few friends, it is unlikely
that A would be one of them. A more rigorous explanation is given on page 1470 of
[Feld 91], where Feld derives a simple expression that proves his claim.

L’ami de mon amie (the friend of my friend) is a 1987 movie by the French director
Éric Rohmer.

• The Dartboard Paradox.
Dartboards are popular entertainment in certain parts of the

world. The following information is from darting.com. The stan-
dard international dartboard is known as the “clock” board. The
standard dartboard measurement is 18 inches in diameter and has
20 numbered, pie-shaped segments of equal size, plus the bull’s-eye.
Each numbered segment has a double ring on the outside perimeter
of the scoring area and an interior triple ring (which count as double
and triple of that number respectively). The bull’s-eye has an outerbull area (also know
as the single bull, which scores 25) and an inner bull (also known as a double bull’s-eye,
which scores 50).

But our interest in darting is mathematical and it involves probabilities. We con-
sider the dartboard a mathematical circle and the dart tip as a mathematical point.
Since the board is circular, it makes sense to use polar coordinates (r, �) and assign two
real numbers to each point on the board. The number of points is not just infinite, but
uncountable, which is why the probability of the dart hitting any point at random is
zero, yet an experienced player can hit a point on the board most of the time.

This behavior of the board (as well as any uncountable space, a continuum) is
ba�ing. We normally work with discrete probability spaces, such as coin toss, die roll,
or choosing an integer between 0 and 100 at random. In such a space, each result has a
probability, a real number in the interval [0, 1], and the probabilities add up to 1.

In an infinite but countable space of events, there is an infinite number of probabili-
ties, but they may also make sense because we know that certain infinite series converge
to a finite value. However, in a continuum, an infinite series of probabilities, i.e., nonneg-
ative values, grows without bounds, has an infinite sum, and cannot converge. (Except
if it has only a finite number of nonzero values or a countable number of positive values
that shrink and converge.)
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Thus, probabilities in an uncountable space, a continuum, present a paradox that
needs to be resolved. The following discussion leads to the concept of probability den-
sity, the probability of a group or a range of events, which is considered a satisfactory
resolution of this paradox.

We start with familiar concepts. How to compute probabilities in a discrete space,
where there is either a finite number or an infinite but countable number of cases.
Examples are a coin toss (two results), rolling a die (six cases), drawing a card (one
of 52 possibilities), or choosing a number in a large lottery (millions of cases). In such
cases, the probability that a value chosen at random will fall into a given set of cases is
the sum of the individual probabilities.

In drawing a card, for example, the probability P (x ⇠ {#,$,%}) of a draw produc-
ing a clubsuit, or a heartsuit, or a spadesuit is the sum of the individual probabilities
P (x = #) + P (x = $) + P (x = %) = 3/4. (As always, we have to be careful when
adding probabilities.)

In the case of an infinite but countable space of probabilities, we can still apply the
same rule, but only if the individual probabilities converge to a finite sum. If the sum
converges, we can normalize the individual probabilities such that their sum would be 1.
Consider a process that proceeds in steps, where the probability of some outcome is
halved in each step. If the probabilities of the first few steps are p, p/2, p/4,. . . , we can
normalize them by dividing each by 2p to obtain the sequence of normalized probabilities
1/2, 1/4, 1/8, . . . , 1/2k, . . . , whose sum is 1. In such a case, we can add probabilities
to find the probability of a set of events. The probability of the set of events 1, 2, and
8 would then be the sum

1/2 + 1/22 + 1/28 =
27 + 26 + 20

28
= 193/256 = 0.7539.

⌅ Exercise 6.7: What could be an example of such a process?

However, these arguments break down when dealing with a continuum, where there
is an uncountable number of cases or results. Such a case presents a di⌃erent situation. A
set of probabilities that is halved in every step cannot exist here, because in a continuum
it is impossible to proceed in individual steps. A step in a continuum does not have an
immediate successor or predecessor, much as a real number does not have them. Stated
di⌃erently, there cannot be an infinite convergent series of probabilities of the form 1/2k

(or any other form) simply because in a continuum of events, an event cannot have an
integer tag k. There are infinitely many integers, yet there are “not enough” integers to
tag every real number or every element of a continuum.

Thus, when dealing with a continuum, we seem to have a paradox. We can no
longer talk about the probability of an individual case or result. Given any interval of
real numbers, we can easily choose any number R in it at random, even though the
probability of choosing it is zero! This probability cannot be positive, because that
would cause the total probability of choosing a number, any number, in the interval—
0.4 or 0.67 or 0.88 or 0.601 or any other—to be infinite, and probabilities must be in
the interval [0, 1]. The paradox is that when we choose a number R at random, we have
chosen it even though its probability to be chosen is zero!
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Therefore, in a continuum, we can only consider the probability of a range of cases.
This important idea resolves our paradox by taking us from the basic concept of probabil-
ity to the advanced concept of probability density (PDF), the probability of an interval
of values or events rather than that of an individual value.

Given an interval such as [0, 1], the probability of choosing any one of its elements
is 1, because we know that we can choose 0.5 or 0.46, or any other element. Also, the
probability of choosing a number in a subinterval such as [0.55, 0.65] is 0.1, because this
is the ratio of the length (0.1) of the subinterval to the length (1) of the entire interval.
We can therefore think of the probability of the subinterval [0.55, 0.65] as a rectangle
of height 1, centered on the subinterval, whose width is 0.65 � 0.55 = 0.1. Its area is
therefore 0.1 and it equals the probability of choosing a real number at random out of
this subinterval.

So far we have assumed an interval with uniform probability; every item has the
same probability. In practice, there may be a probability curve that determines the
probability of an event. Going back to the dartboard, assume that someone devious
has hidden a magnet behind the board (Figure 6.3b), which attracts the darts and
pulls them closer to a point away from the bull’s-eye. For simplicity, let’s consider
the one-dimensional interval [0, 1], rather than the two-dimensional circular dartboard,
and assume that events, marked by real numbers in this interval, have probabilities
as indicated by Figure 6.3a,b. These probabilities, which are defined by the function
x3(1 � x3), start at zero, climb and reach a maximum at x = 0.793701, and then drop
smoothly down to zero at x = 1.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

magnet

(a) (b)

Figure 6.3: Probability of a subinterval.

(*Probability of a subinterval in a continuous interval*)
crv[x_]:=x^3(1.-x^3);g1=Plot[crv[x], {x,0,1},
PlotStyle->{Thick}, AspectRatio->.3];
g2=Plot[crv[x], {x,0.55,0.65}, AspectRatio->.3,
Filling->0,FillingStyle->{Cyan}];
Show[g1,g2]
Solve[D[crv[x], x]==0] (* Find point of maximum *)
a = Integrate[crv[x], {x, 0, 1.}]
b = Integrate[crv[x], {x, 0.55, 0.65}]
b/a

This is an example of nonuniform probability. The probabilities of subintervals are
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di⌃erent, so we try to look for probability density rather than a probability at a point
and we concentrate on the subinterval [0.55, 0.65] marked in the figure in cyan. The
Mathematica code listed with the figure indicates that the curve reaches its maximum
at x = 0.793701. The two integrals that follow show that the two areas under the curve
(1) over the entire interval and (2) over the subinterval are 0.107143 and 0.0169217,
respectively. In order to normalize the area 0.107143 to 1, it has to be multiplied by
a factor of (approximately) 9.333. When the area 0.0169217 is multiplied by the same
factor, the result, 0.157936, is the probability of choosing a point at random on the
curve in the subinterval [0.55, 0.65] (or, alternatively, the probability density of any of
the events that correspond to this subinterval).

⌅ Exercise 6.8: Compute the probability of choosing a point at random on the same
curve in the subinterval [0.75, 0.85]. Why is the result di⌃erent?

We end with a quotation from Wikipedia, reference [WikiDensty 23]: “In a more
precise sense, the PDF is used to specify the probability of the random variable falling
within a particular range of values, as opposed to taking on any one value. This proba-
bility is given by the integral of this variable’s PDF over that range, that is, it is given
by the area under the density function but above the horizontal axis and between the
lowest and greatest values of the range. The probability density function is nonnegative
everywhere, and the area under the entire curve is equal to 1.”
• Bertrand paradox. The Bertrand paradox, introduced by Joseph Bertrand in 1889,
has to do with the computation of probabilities, where di⌃erent methods of choosing the
relevant objects lead to di⌃erent results. The problem is easy to describe and understand.
See, for example, reference [Bertrand paradox 24]. An equilateral triangle is inscribed
in a circle. A chord is chosen at random in the circle. What is the probability that the
chord is longer than a side of the triangle? Bertrand himself provided three solutions,
all seemingly correct, and all leading to di⌃erent probability values. Here they are.

Method 1. Random endpoints. Two points are chosen at random on the circum-
ference of the circle. They define a unique chord. The triangle is rotated such that one
of its vertices coincides with one of the two points, as in Figure 6.4a. No generality is
lost in this process, but it is now easy to make a decision just by examining the other
endpoint of the chord. If this point lies on the arc between the endpoints of the triangle
side opposite the first point, then the chord (red in the figure) is longer than a side of the
triangle. The length of that arc (green in the figure) is one third of the circumference
of the circle, implying that the probability in question is 1/3.

Method 2. Random radial point. A line segment is down from the center C of the
circle to the circumference. It becomes a radius, as shown in part (b) of the figure. A
point P is chosen any random on the radius to become the midpoint of a chord which is
drawn perpendicular to the radius. The circle is rotated, with the triangle, so that one
side of the triangle is perpendicular to the radius. The point where this side intersects
the radius is denoted by Q. If CP < CQ, then the chord (red in the figure) is longer than
the triangle side. However, because the triangle is equilateral, Q is also the midpoint of
the radius, which implies that half the time CP will be less than CQ and half the time
CP will be greater than CQ. The probability derived by this method is therefore 1/2.

Method 3. Random midpoint. A point P is randomly chosen within the circle
whose radius is denoted by r. A chord is drawn with P as its midpoint. The chord will
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(b)

C P

Q

(c) r

Figure 6.4: Probabilities in Bertrand Paradox.

be longer than a side of the triangle if P happens to be located within a concentric circle
of radius r/2. It is now clear that this method yields a probability of 1/4, because the
area of the inner circle is 1/4 the area of the original circle.

The same problem seems to have three di⌃erent solutions, which is a paradox. The
first attempt at a resolution is often to use our powerful, fast computers to simulate
the problem by drawing random (actually, pseudorandom) numbers, and produce an
approximate numeric result. However, when the three methods above are programmed
and run many times, each produces the theoretical value obtained earlier. The paradox
still exists.

Careful scrutiny and analysis explain that the paradox is the result of counting the
diameters (the longest chords). The di⌃erent geometric constructions used by the three
methods result in counting too many or too few diameters, which a⌃ect the computed
probabilities. Here is why.

Method 2 shows preference toward long chords, because it chooses each diameter
in two ways, while choosing any other chord uniquely.

Method 3 is based on the observation that a chord is uniquely determined by the
location of its midpoint in the circle.

This method results in the lower probability of 1/4 because it misses diameters. A
diameters is a chord whose midpoint is the center of the circle. The center, however, is
the midpoint of all the infinitely many diameters, but choosing the center at random is
rare, which is why this method misses diameters. Any other random point inside the
circle correspond to exactly one chord.

Bertrand’s resolution of this paradox says that special care must be taken when
considering probabilities in an infinite space. It may happen that a statement such as
“choose a random blah” may not be well defined and it is possible to choose the blah in
di⌃erent ways that eventually result in di⌃erent probabilities. Thus, Bertrand concludes
that the method of selecting chords at random should be specified as part the problem,
not as part of the solution. Instead of having a problem with three di⌃erent solutions
(a paradox), there really are three problems, each with its own solution.

Another approach to a resolution is to claim that there is a unique solution to the
problem and we can find it in the following process.

1. Fill up the infinite two-dimensional space with straight lines.
2. Draw a circle of radius r somewhere and construct an inscribed equilateral

triangle t.
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3. Some of the lines created in step 1 pass through the circle and define chords.
Count the number of chords that are longer than a side of t and divide by the total
number of chords in the circle. If those numbers is infinite, approach the quotient as a
limit.

4. Now move the circle and perhaps also vary its radius many times, each time
performing the computations of step 3. If the results are consistent, it proves that the
desired probability exists and is well defined.

Notice that this process implicitly assumes that a chord is an infinite line that passes
through a circle and not a finite segment that touches two points on the circumference.

⌅ Exercise 6.9: Here is a seemingly foolproof way of generating a random chord in a
circle. Draw all the possible chords in the circle. Assign each chord a number, and
choose one number at random. No geometric construction is needed, and no diameters
are omitted or counted multiple times. What is wrong with this idea?

Yet another approach to a resolution is more philosophical. One could say: We use
probability in cases where there is not enough information to obtain a precise result.
Does this always permit us to use precise numbers between 0 and 1 for our probabilities?
Can we always trust mathematics and let it assign cold numbers to our ignorance? In
Bertrand’s case, perhaps the best that we can do is take an average of the three solutions
above and claims that (1/2 + 1/3 + 1/4)/3 = 13/36 is the best result that we can hope
for.

• Bertrand’s box paradox, not to be confused with Bertrand paradox, is somewhat
similar to the Monty Hall problem. Introduced by Joseph Bertrand, also in 1889, it
is easy to understand and solve once we realize that this is an example of conditional
probability, so here is a short discussion of this important topic.

Conditional probability is the case where the probability of an event B is a⌃ected by
conditions A that are related to B and a⌃ect it. Bayes’ theorem (or Bayes’ rule), named
after Thomas Bayes, describes the conditional probability P (A|B), the probability of
event A occurring given that B is true, by the simple expression

P (A|B) =
P (B|A)P (A)

P (B)
,

where (1) A and B are events and P (B) ⇡= 0, (2) P (A|B) is a conditional probability;
the probability of event A occurring given that B is true, (3) P (B|A) is the probability
of event B occurring given that A is true (it can also be interpreted as the likelihood
of A given a fixed B), and (4) P (A) and P (B) are the probabilities of events A and B
respectively without any a⌃ecting conditions.

Examples. A game—such as sport, chess, or cards—played by two teams. It is
obvious that the presence of a major player in one of the teams is likely to a⌃ect the
outcome.

This is actually a large set of examples. A set of objects is given. What is the
probability that all the objects of the set have some property, given that at least one of
them does.
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A die is rolled and you are told that the result was greater than four. What is the
probability of the result being an even number?

A bag has known numbers of red, green, and blue marbles. A marble has just been
drawn and put back, and you are told that it was not green. What is the probability
that it was red?

Once the idea of conditional probability is clear, the Bertrand box paradox can be
described. Three boxes are given, each with two drawers. There is a coin, gold (G) or
silver (S), in each drawer. One box has a gold coin in each drawer (GG), another box
has a silver coin in each drawer (SS), and the third box has a gold coin in one drawer
and a silver coin in the other drawer (GS). A box is chosen at random, a random drawer
in the box is opened, and a gold coin is found inside it. What is the probability of the
coin in the other drawer being gold?

The following, wrong, answer is commonly given. Initially, each of the three boxes
had the a probability of 1/3 to be chosen, P (GG) = P (SS) = P (GS) = 1/3. The box
actually chosen had gold, so could not be box SS; it must have been GG or GS. These
two boxes are now equally likely to be chosen. The only box where the other coin is also
gold is GG, which is why the desired probability is 1/2.

This result is wrong for the (subtle) reason that the phrase “two boxes are now
equally likely to be chosen” is wrong. Initially, the two cases GG and GS were equally
likely, with probability 1/3 each. Now, however, we know that SS was chosen, so this
becomes a case of conditional probability. If box GG will be chosen, the probability of
finding a gold coin in its other drawer is 1, while if box GS will be chosen, the probability
of finding a gold coin in its other drawer is 0.

To find the correct probability we apply Bayes’ rule, which in our case becomes

P (GG|found gold)

=
P (found gold|GG)⇥ 1

3

P (found gold|GG)⇥ 1
3 + P (found gold|SS)⇥ 1

3 + P (found gold|GS)⇥ 1
3

=
1

1 + 0 + 1/2

=
2
3
.

⌅ Exercise 6.10: A woman is walking with a boy. She drops her bag and we pick it up
and return it, which starts a conversation. After thanking us, she tells us that she has
two children and that the boy is her son. What is the probability that her other child
is also a boy? (See reference [Bar-Hillel 82] for this and other examples of conditional
probability.)

• The Monty Hall problem. (This problem or paradox is listed here even though it is
described in a vast number of sources. I decided to discuss it because (1) It is probabilistic
and it illustrates how probability problems can be subtle, (2) It is often explained in
complex, opaque, and statistical terms, but I have found a simple explanation that many
might like, and (3) It gives me a chance to include several quotations that I like.) I chose
[WikiMonty 23] as one reference out of the many that are available.
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The Monty Hall problem is based on the American television
game show Let’s Make a Deal and is named after its original host,
Monty Hall. It was originally published in the scientific journal Ameri-
can Statistician in 1975, and in 1990 became famous when it appeared
in Parade magazine in the column “Ask Marilyn.” This column was
written by Marilyn vos Savant, who has also solved it, to much dis-
cussion, opposition, and war of words. (Marilyn vos Savant is an
American magazine columnist who has the highest recorded intelli-
gence quotient (IQ) in the Guinness Book of Records.) The problem is easy to explain
and to grasp.

Hi Marilyn, wherever you are.
—Arthur C. Clarke about his ex wife Marilyn Mayfield in The View from Serendip,
(1977), New York: Random House.

Suppose you are on a game show, and you are given the choice of three doors:
Behind one door is a car; behind the others, goats (Figure 6.5). You pick a door, say
#1, and the host, who knows what is behind the doors, opens another door, say #3,
which has a goat. He then says to you, “Do you want to change your mind and pick
door #2 instead of #1?” Is it to your advantage to switch your choice?

Figure 6.5: Three Doors and a Goat.

Most people who considered this problem, among them logicians, probabilists, and
statisticians, argued that once you have eliminated door #3, the problem reduces to just
two unknown doors, which now have equal probabilities. It was the genius of Marilyn vos
Savant to notice the subtle point that changes the situation, namely that the contestant
does not know what is behind the doors, but the host knows! It turns out that this
knowledge changes the probabilities from 0.5 and 0.5 to 1/3 and 2/3 in favor of door
#2, i.e., the contestant should change his or her mind. Here is the explanation that I
prefer.

Instead of three doors, imagine five doors. Initially, each door has a 0.2 probability
of having the prize. After the contestant chooses, say, door #1, the remaining four doors
have a collective probability of 0.8. The host, knowing where the prize is, opens, say,
doors 2, 3, and 4, revealing goats. At this point, the 0.8 probability has completely
transferred to door #5, making the final choice obvious.

Obvious is the most dangerous word in mathematics.
—Eric Temple Bell.
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This explanation becomes even more convincing if we consider a million doors in-
stead of just three or five. Each door now has a probability of 0.000001, so the initial
choice of a door is very likely wrong. The host opens 999,998 doors, revealing goats,
which changes the probability of the last remaining closed door to 0.999999, extremely
large.

Enough with the goats, they smell.

• Berry’s Paradox. Consider the following sentence “The least integer not describ-
able in fewer than twenty syllables.” This sentence consists of nineteen syllables, which
implies that the—least integer not describable in fewer than twenty syllables—is de-
scribable in fewer than twenty syllables; a paradox. See also Exercise 2.9.

The simple concept of a successor o⌃ers a possible resolution. Any natural number
(nonnegative integer) can be described as the successor of the one preceding it, which
makes it possible to write a sequence such as:

0 is a number.
1 is the successor of the number defined in the last line.
2 is the successor of the number defined in the last line.
3 is the successor of the number defined in the last line.

Assuming that the digits count as one syllable, each of the lines above consists of
16 syllables, which shows that there is no smallest number that can be described in no
fewer than twenty syllables. Once we agree with this, Berry’s Paradox disappears, but
there are reasons to object to this explanation. (1) The digits must be spelled, leading
to lines with more and more syllables, and (2) the description of the number n must
include the n lines that precede its line. Well, perhaps this paradox will stay unresolved
for now (sigh).
• You are now invited to use your gray cells, à la Hercule Poirot, to try to grasp the
sophisticated Grelling-Nelson paradox. This 1908 antinomy is a semantic self-referential
paradox, due to Kurt Grelling and Leonard Nelson, which asks whether the word het-
erological applies to itself. First, some terms. Autological (also called homological) is a
word that describes itself. The word “pronounceable” is pronounceable, “polysyllabic”
consists of several syllables and is therefore polysyllabic. The word “noun” is itself a
noun; it is not a verb, so it is autological. In contrast, the term heterological refers to a
word that does not describe itself. Examples are “green” (it is not green), “circle” (it is
not circular), and “hyphenated” (which I hope is not hyphenated).

The paradox is the simple question: is the word “heterological” itself heterological?
• An answer of no implies that “heterological” describes itself and is therefore auto-
logical. Since it is autological, it must describe itself and is therefore heterological. A
contradiction!
• A yes answer implies that the word “heterological” is itself heterological and there-
fore should not describe itself. But it does describe itself, because it says, in e⌃ect “I
am heterological.” Therefore it is not heterological. An impasse!

Enough is enough. Such long words and convoluted logics can give even a whale a
substantial headache. (But see elsewhere in this book, especially the Ross-Littlewood
paradox on Page 211.)

However, lovers of paradoxes should consult the long list found at [WikiPara-
doxes 24].
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How wonderful that we have met with a paradox.
Now we have some hope of making progress.

—Niels Bohr.



7
Probabilities: the Rule of
Chance

One of the many branches of mathematics is probability, the study and measure of the
likelihood of events and the truth of propositions. We learn intuitively the meaning of
probability from our life experiences, but in order to turn this vague term into a practical
and important concept, it has to be quantified, which allows for probability calculations
and estimations.

Here is a sample that illustrates the significance of probability and luck. There is a
ra�e in which only one ticket will be selected as the winner. One million tickets are sold
rapidly and you purchase the ticket with the number 32,768. You reasonably assume
you won’t win, as there is nothing distinctive about your number. If you think you won’t
succeed, you will feel that way no matter what your specific chances are. However, you
are aware that one number is certain to emerge victorious. Therefore, your belief and
your knowledge do not align, creating a paradox. Introducing the concept of probability
solves this straightforward paradox. There is no certainty that you will lose. You are
aware that your chances of winning are minimal, but this does not go against your
understanding that someone will emerge as the winner.

7.1 Basic Concepts

The first step in quantifying probability is to locate (or to generate artificially) a set
of independent, equiprobable events, to choose an outcome A, and to count how many
events end with A. (The important term “independent” is discussed a few paragraphs
down.) The probability of outcome A is then denoted by P (A) and is defined as the
ratio

P (A) =
number of cases with outcome A

total number of cases
. (7.1)
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Equation (7.1) implies the following basic features of a probability:

A probability is always non-negative.

Of outcome A never occurs, then P (A) = 0, and if it always happens then P (A) = 1.

The probability of a result A not occurring is the di⌃erence A = 1�A.

The special case of outcomes A and B never occurring in a set of events is given
by P (A or B) = P (A) + P (B), but this is a special case. The general case is given by
Equation (7.2).

Thus, probabilities are always numbers in the interval [0, 1], where the numeric
values in this interval lead from impossibility to certainty. However, the discussion of
probability in this chapter and the many examples and surprises shown here serve to
emphasize the fact that probability is a subtle concept, full of surprises, unintuitive
results, and conceptual pitfalls.

“Great.” He holds my gaze for a beat. “Bella’s going flip when I tell her I ran into
you. What are the odds?”
“In a city of nine million? Less than zero.”

—Rebecca Serle, In Five Years, 2020.

One such pitfall has to do with the two extreme values, 0 and 1, of a probability. In
everyday speak we assume that 0 probability indicates impossibility of an event, while 1
indicates certainty, but consider an event with an infinite number of possible outcomes,
such as randomly turning a wheel of fortune. The result is the angle of turn, a real
number in the interval [0, 360], that we divide by 360 to obtain a real number in the
range [0, 1]. The probability of obtaining any given real number, such as 0.8604263, is
zero. In practice we may not even be able to measure such a result accurately on a wheel
or in a computer, but most of the time we are satisfied with a close approximation, such
as 0.86. Thus, when a result such as 0.00003 is obtained, we may replace it with 0 and
realize that 0 means a result very close to 0. The event in question may not happen in
our lifetime, but it may happen in principle.

A similar surprise is the percentage of transcendental numbers among the real num-
bers. This is well described by the statement, found on Page 94 “If you select a real
number at random among all the real numbers, it will be transcendental with probability
1!”

There are areas of science, dealing with very large systems, in which probability
methods and techniques must be used instead of exact treatment. Perhaps the simplest
example is gas, which involves dealing with vast numbers of molecules. The atomic
weight of oxygen is 16, which is why 16 grams of oxygen contain� 6.02⇥1023 (Avogadro’s
number) atoms of oxygen. (Free oxygen exists in the form of molecules, which contain
two atoms each, so the number of oxygen molecules is half that of atoms.) A precise,
deterministic treatment of such vast numbers is out of the reach of existing technology,
which is why probabilistic (or rather statistical) description of the properties of real
gases is feasible. A similar example is weather forecasting, an important science which
deals with large numbers of variables that change constantly.

Another common mistake we tend to make when computing probabilities is handling
partitions. This is easy to understand when we consider dice throwing. A die has six
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sides, which is why throwing a single die results in one of six outcomes. Throwing two
dice produces one of 62 = 36 results, and in general, there are 6n possible outcomes when
throwing n dice. The case of n = 3 is simple enough to consider and analyze in detail.
There are 63 = 216 possible outcomes, but they are not equiprobable. The smallest
result, 3, is obtained with (1, 1, 1), and the largest outcome is a throw of (6, 6, 6), but an
outcome of 9 is obtained in the six cases (6, 2, 1), (4, 3, 2), (3, 3, 3), (2, 2, 5), (1, 3, 5), and
(1, 4, 4), which raises the question of how many times to count each of these partitions
in the calculation of the probability P (9).

The correct answer, already understood by Galileo, is not immediately obvious and
depends on the number of di⌃erent components in a partition. The simple rule is as
follows:

A partition of the form (x, x, x) should be counted once as an outcome for the
purpose of computing a probability.

A partition of the form (x, y, x) should be counted three times, as (x, y, x), (y, x, x),
and (x, x, y). This is because its two equal components cannot be distinguished.

Similarly, A partition of the form (x, y, z) should be counted 3! = 6 times because
its components can be permuted this many times.

In the case of outcome 9, for example, partition (3, 3, 3) should be included once, par-
titions (2, 2, 5) and (1, 4, 4) should each be included three times, and partitions (6, 2, 1),
(4, 3, 2), and (1, 3, 5) should each be included six times. The probability of obtaining 9
in the throw of three dice is therefore

P (9) =
1 + 2⇥ 3 + 3⇥ 6

216
=

25
216

� 0.1157,

or approximately 11.6%.
Probability may also be of interest to gamblers, philosophers, poets, medical work-

ers, and others, but mathematicians like to treat this concept rigorously, which is why an
entire branch of mathematics, probability theory, has been developed and is continually
studied and expanded, in order to place the nebulous, intuitive concept of probability on
a firm mathematical foundation. Such a process starts with a set of axioms (postulates
or assumptions that are self evident) on which are built new and useful terms, theorems,
and concepts.

The chief terms used in probability theory are an experiment, event, probability
measure, and sample space. An experiment is a test that involves real, physical objects
or quantities. It can be real or a thought experiment. Examples of simple experiments
that are common in the study of probability are the throw of a die or a coin, choosing a
card from a deck of playing cards, and turning a wheel (of fortune or of a roulette). An
event is the result (outcome) of an experiment. In the case of a coin, the two possible
events are head and tail. The sample space of an experiment is the set of all possible
events of the experiment. A probability measure is the probability of an event.

. . . the view that the universe is essentially probabilistic in character, or, to put it in
more colloquial language, that the world is full of random happenings.

—Patrick Suppes, Probabilistic Metaphysics, Oxford: Blackwell, 1984.
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Probability calculations. Another unusual aspect of mathematics is found in
probability calculations, which may be very subtle. First, a short discussion of the
di⌃erence between probability theory and the science of statistics. These two disciplines
are in some sense opposites or inverses of each other. In probability, we start with a
process driven by randomness or uncertainty, and we try to figure out the results of
running it. It is like predicting the future. In statistics, we start with known past events
and then try to guess the process that generated them or that can explain them.

The events dealt with in probability calculations may be dependent or independent.
Snowy days are a good example of dependent events. The event “it is snowing today”
a⌃ects the probability that it will snow tomorrow. On the other hand, a house fire
that happens today in our neighborhood does not a⌃ect (we hope) the probability that
another house fire will happen in a di⌃erent neighborhood tomorrow. These events are
independent.

The probability that two independent events will occur is simply the product of
the individual probabilities. Thus, P (A and B) = P (A)⇥ P (B). Perhaps the simplest
example is the probability of getting heads in two consecutive throws of a coin. The
probability of getting a head in each throw is 1/2, so the combined probabilities is the
product 1/2 ⇥ 1/2 = 1/4. It is smaller than each of the individual probabilities, which
brings us to the important fact that a probability must always be a number between zero
and 1. Computations with probabilities must therefore be done with care, to keep any
results within this interval. It is therefore wrong to simply add probabilities without
subtracting anything, because this may result in a sum greater than 1. In general,
probability computations involve operations such as A⇥B and 1�A = A.

Example: Dependent events. It is easy to see why the following two events are
dependent. Simply multiplying probabilities of those events produces absurd results.

Event A: Only 1% of the population of Shambhala are taller than 190 cm (six feet
three inches). If you pick a random Shambhala population of 10,000, you can expect
about 100 to be that tall.

Event B: Only 500 people of Shambhala’s population of 500 million played profes-
sional basketball in year 2000. The percentage in this case is 10�6.

What is the probability of a Shambhala resident to be both tall and a professional
basketball player? Simply multiplying 10�6 ·10�1 produces 10�7. This low value implies
that we can expect only 5 · 106 ⇥ 10�7 = 0.5 people to be in this category. However,
a short visit to a Shambhala training camp for basketball players verifies that perhaps
80–90% of them are tall.

Assuming that we know how to compute the probability of A and B (the product of
two events), how do we compute that of (A or B), the so-called sum of two independent
events. The trick is to start with the inverse probabilities A = 1 � A and B = 1 � B,
and examine a new case C where both inverse events occur, i.e., A does not happen and
B does not happen. The probability of C is therefore the product P (A)⇥ P (B). Now
consider the inverse of C. This is the case where both inverse events do not occur, i.e.,
either one or the other occurs. Thus, the sum (A or B) of two events is the inverse of
C, implying that its probability is

P (A or B) = 1� P (C) = 1�
�
1� P (A)

⇥�
1� P (B)

⇥
. (7.2)
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It’s easy to see why Equation (7.2) makes sense. Given two events A and B with
high probabilities of occurrence, it is clear that P (A or B) must be high, and this is also
implied by the equation. If P (A) is large, then (1 � P (A)) is small, and similarly for
P (B), which produces a large value for P (A or B).

If the probabilities of A and B are 0.65 and 0.95, respectively, then the probability
that either A or B will happen is 1�(1�0.65)(1�0.95) = 1�0.35⇥0.05 = 0.9825, much
higher than either of the individual probabilities. This simple example of determining
the probability of the sum of two events illustrates how computing the probabilities of
even simple events may be subtle and far from trivial.

It is always probable that something improbable will happen.
—Logan E. Bleckley.

7.2 More Probability Concepts

A Bernoulli trial is a random experiment or event with two possible outcomes that are
normally termed success and failure (or yes and no, 1 and 0, or anything else) and where
the probability of success is constant (implying that the probability of failure is also
constant).

Expected value. Imagine a random experiment that is run (or an event that occurs)
many times, resulting in di⌃erent outcomes. In the simplest case, where the outcomes
occur with the same probability, the expected value of the experiment is the arithmetic
average of the outcomes. In the general case, where an outcome xi occurs with proba-
bility pi, the expected value of the experiment is the weighted average of the outcomes,$

i xipi. In practice, we count the number of times wi each outcome xi occurs and we
can either compute the individual probabilities pi = wi/

$
k wk or compute the expected

value of the experiment as the weighted sum
$

i xiwi$
i wi

.

Notice that the value of an arithmetic average or a weighted sum may be di⌃erent from
any of the individual outcomes xi. Thus, the expected value of an experiment may not
be any of its actual outcomes. Perhaps the simplest example is a dice throw. Throwing
a die results in a value between 1 and 6, but the expected value of such an experiment,
the average, is 3.5.

Probability and likelihood. Experimental scientists, such as physicists and biolo-
gists, perform experiments. They observe and record phenomena and draw conclusions
about unknown properties of the world around us. We can say that those people deal
with likelihoods. They can only say that a certain outcome of an experiment is, say,
80% likely. Theoretical scientists, on the other hand, propose various properties and
calculate the probabilities of what we can expect to observe if those properties were
real.

In general, if the outcomes of an experiments are known in advance, we refer to them
as probabilities. In order fo them to make sense they must add up to 1, indicating that
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some outcome must occur. If the outcomes are unknown, we can perform experiments
and assign likelihoods, not probabilities, to the observed outcomes.

A simple practical example is a coin throw. If the coin is fair, we know the prob-
abilities of the outcomes in advance, and we also know that one of the two outcomes
must happen. In contrast, if the coin is unfair, the only conclusion we can draw from
an experiment (the throw of such a die) is a likelihood. We don’t know how much the
coin is unfair, so we can only observe outcomes and assign likelihoods, because we don’t
fully understand the factors that determine the results of the experiment. Given enough
time and experiments, those likelihoods may converge to probabilities.

In other words, if we throw a coin and observe an outmode of heads, we don’t know
whether the coin is fair or unfair, so we can only make an observation and assign a
likelihood to this outcome.

Law of large numbers (LLN). We know from experience that any individual outcome
of a random experiment may be far from the expected value of the experiment, but we
also know, or trust, that repeating the experiment many times will result in outcomes
whose average (arithmetic or weighted) will get closer to the expected value. The law
of large numbers guarantees this behavior.

A practical example is a winning streak. It sometimes happens that a gambler in a
casino experiences a series of consecutive (or almost consecutive) wins, which encourages
him to continue to play, hoping for his luck to hold. Such behavior is known as a
gambler’s fallacy. The LLN, however, dashes this hope and guarantees that in the long
run, the gambler would lose and the casino would win, according with the expected
value of the particular game being played.

The LLN is named after Jacob Bernoulli and the phrase “large numbers” refers to
the large number of trials needed for the result to approach the expected value. There
are random experiments whose expected values are infinite or do not exist, and such
cases do not obey the LLN.

Law of truly large numbers. This is more a proverb than a law. In plain words it
states that given a very low-probability (an extremely unlikely) event x, the probability
of it occurring in n trials can become arbitrarily close to 1, if n is truly large. This
is true regardless of how small the probability p(x) is. An important consequence of
this law is that even very unlikely events may a⌃ect the overall behavior of a random
experiment, and should therefore not be ignored without further consideration. Here
are two examples that the law may explain.

Psychics. History has many examples of people claiming to predict the future. Such
a person makes predictions of future events and publicizes them. The law proposes that
the more predictions are being made, the more would prove correct, and because of the
gullibility of people, the few correct predictions would tend to erase the memory of the
many wrong ones.

Similarly, when a gambler wins, this low-probability event helps him forget the
many high-probability losses he had su⌃ered. This is termed selective memory bias.

Elementary probability calculations show why we should accept this law. Given
an event with probability p, the probability that it doesn’t happen is 1 � p, and the
probability that it never happens in n trials is (1�p)n. Thus, the opposite of this event,
i.e., the probability that is does happen at least once, is 1 � (1 � p)n. It is easy to see
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that if p is small, then 1� p is close to 1, causing (1� p)n to be smaller and smaller as
n gets bigger. This, in turn, causes 1 � (1� p)n to get bigger and approach 1 for very
large values of n.

For p = 0.1, 1000 independent trials produce (1 � p)1000 � 0.3677, which implies
that the probability of such a low-probability event to happen during 1000 trials is
1� 0.3677 = 0.6323, quite high.

For the very low value of p = 10�7, similar calculations produce

1� 0.9999999991000000000 � 0.63,

A surprisingly large value.
A close relative of the law of truly large numbers is the black swan theory, reference

[BlackSwan 24]. It deals with real, historical events that were extreme outliers; rare,
unexpected, and important. The theory argues that such events, even though rare, and
even though rationalized by hindsight, played important roles in history and a⌃ected its
progress more than the many familiar, common historical milestones.

Another cousin of the law of truly large numbers is Littlewood’s law which states
that a person can expect to experience events with odds of one in a million at the rate
of about one per month. This intriguing observation is due to J. E. Littlewood who
developed it in an attempt to curb and debunk claims of supernatural phenomenology.

The quantitative justification of Littlewood’s law assumes that an average person
experiences an event (either trivial or significant) every second and does that for eight
hours a day. This rate translates to 60 ⇥ 60 ⇥ 8 ⇥ 35 = 1008000 events every 35 days,
implying that it is reasonable to expect one rare event, with probability 10�6, about
once a month. Thus, rare events should be common and should happen more often than
we intuitively expect.

⌅ Exercise 7.1: (A joke). What is the law of small numbers?

In fact, my mother was more mathematically inclined than she realized. She used
probability every day of her life and called it intuition.

—Liane Moriarty, Here One Moment, Sept. 2024.

7.3 Randomness

Determinism is the philosophical view that events are completely determined by pre-
viously existing causes. Causal determinism is the idea that every event—even our
deliberations, choices, and actions—is necessitated by past events and conditions, work-
ing together with the laws of nature. However, the occurrence or existence of yet other
things depends upon our deliberating, choosing, and acting in a certain way.

Our view of randomness has varied considerably over time, swinging from deter-
minism to randomness and chaos. In 1814, Pierre-Simon de Laplace has published his
belief in causal determinism. Essentially, he stated that if an intellect exists which, at
a certain moment knows all forces that set nature in motion, and all positions of all
items of which nature is composed, he (or it) would embrace in a single formula the
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movements of the objects, from astronomical bodies to the tiniest atoms. For such an
intellect, randomness would not exist. Nothing would be uncertain and the future would
be completely predictable and pre-determined.

Randomness

Chaos weaves its tapestry, a dance untamed,
Random whispers in a wild, wild game.
No pattern guides the cosmic dice,
Chance reigns supreme, a gamble precise.
In quantum realms, uncertainty’s delight,
Particles waltz in unpredictable flight.
A roll of dice, a shu�ed deck,
Randomness unveils the unforeseen trek.
Nature’s brush strokes, scattered and free,
A cosmic canvas in random decree.
Uncharted paths, where chaos gleams,
In randomness, life births its dreams.
Composed by ChatGPT Jan 2024.

In 1867, James Clerk Maxwell had a similar idea which today is known as Maxwell’s
demon. The nature of heat as movements of atoms and molecules became clear in his
time, so Maxwell imagined an intelligent being that can see molecules. By allowing only
fast molecules into one side of a container and only slow molecules into the other side,
such a being could “magically” create hot and cold parts in the same container, an e⌃ect
that contradicts everything we see in nature. This was an attempt to convert a random
system into a well-organized one without the use of external energy.

Once radioactivity was discovered, in 1896, early researchers in this field quickly
realized that radioactive decay involves randomness. It is impossible to predict when a
given atom would decay. Only the probability of its decaying in the next time unit is a
meaningful, physical quantity that can be measured and used in experiments. This way
of thinking has reintroduced randomness into science, a process that continued in the
early 1920’s by the creators of quantum theory.

Later in the 20th century, mathematicians started gaining deeper understanding
of randomness and its relation to determinism, and today we feel that the behavior of
quantum particles is random, but aggregates of the same particles exhibit behaviors that
look more deterministic as more particles are involved.

Faced with something that seems to have no patterns and looks unpredictable, we
tend to assign it the label “random,” but this term is only an intuitive, imprecise name
for something that is very common, that seems to pervade the world around us, and
that should be studied further, understood better, and be defined more precisely.

The term “random” is commonly but wrongly used (misused) in many contexts
that involve rare events. Phrases such as “I was randomly walking when. . . ” and “She
randomly ran into her ex at the gym,” are common. Such events may be rare and
unrelated, but are not the same as a patternless process.

Randomness is an important concept that is closely related to and much used in
probability studies and work. A simple, working definition of randomness is the absence
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of a pattern, but randomness is more than that. Here are some thoughts to help explain
and shed more light into this important concept:

Life is a school of probability.
—Walter Bagehot.

Many processes that seem random to us are actually deterministic, but there are
processes that are (or at least we currently believe that they are) truly random. The
familiar trials of coin flips (tossing a coin or flipping it on its edge on a surface) and
dice rolls seem random, but are in fact deterministic [Keller 86]. An entity who knows
the initial conditions and the forces and velocities that a⌃ect a toss or a roll could in
principle compute the final outcome in advance, and be correct every time! See also
Section 7.5.

Rival captains James Rodriguez and Justo Villar were left scratching their heads over
a bizarre coin toss before Colombia’s Copa America clash with Paraguay.
Rodriguez made the call as the referee flipped the coin only for the U.S. nickel to land
perfectly on its edge, wedging in the grass on its side.
The referee threw up his hands in amazement, while Rodriguez and Villar both laughed
out loud.
The odds of a coin, specifically a U.S. nickel, landing on its edge are 6000:1.

—Yahoo Sport Australia, 8 June 2016.

It is possible, even practical, to construct a coin flipping machine that consistently
applies the same force to a coin and throws it in the same direction and at the same
orientation, such that it always lands heads. Therefore, coin tosses, which are random
in practice, are not random in principle. They are completely determined by physics
causality, and their apparent randomness is the result of the input variables that of-
ten vary widely. We use coin tossing often to demonstrate concepts of probability and
randomness, and yet this simple and well-known process is physics, not random. In
practice, we make it seem random by tossing it with slightly di⌃erent forces and direc-
tions. Since its movement in the air is described by nonlinear expressions, any small
change in its initial conditions is greatly amplified during its short trip, which causes a
large uncertainty in the result (see Page 299).

(The following bias is known from experience. A coin tossed and caught by hand is
slightly fairer than a coin tossed and allowed to end up on the floor. This is because a
coin hitting the floor tends to spin before it comes to rest.)

On the other hand, some processes are currently believed to be truly random, and
here are three examples:

1. Quantum mechanics claims that many processes on the atomic level are random
and all we can ever hope to achieve is to discover or compute their probabilities. This is
because of the nature of our universe and not because of our limited knowledge or lack
of computing power. One such process is radioactive decay, and reference [hotbits 24]
explains how to use it to generate random bits.

2. The movements of gas molecules are believed to be truly random, which is
why URL random.org uses atmospheric noise to generate and freely provide strings of
random bits.
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3. Similarly, the “snow” that used to be so common in old television sets was
believed to be random, but I don’t know of any attempts to use it to generate random
strings.

4. Reference [Kac 84] describes an elegant experiment where a small mirror sus-
pended from a quartz fiber in a tank full of stable air (no air currents) was discovered to
rotate randomly because of collisions with air molecules. The number of collisions per
second is vast, so we assume that at any time, the mirror is bombarded equally from all
sides, but the variance in the speed of the individual molecules is great, which occasion-
ally results in a pressure di⌃erence that pushes the mirror slightly, causes it to randomly
rotate on the thread. This is similar to the e⌃ect of Brownian motion described on
Page 300.

Albert Einstein is known to have claimed that God does not play dice with the
world. Today we may say that if he was wrong, if God does play dice, then His are truly
random, perfect dice that do not depend on our physics.

Irrational numbers have been discussed in Section 2.4. Such a number has an infinite
number of digits to the right of the decimal point, and this sequence of digits is random.
It has no pattern and it is impossible to guess the next digit in this sequence even
after examining all its predecessors. However, such a sequence is deterministic and it is
possible to compute any number of its digits, given enough time and computer storage.

Is randomness random?
—An unanswered question.

The outcomes of an experiment may be random, but may be subject to a probability
distribution. A throw of a pair of dice results in an integer between 2 and 12. The next
outcome of such a throw is unpredictable and therefore random, but repeating this
experiment many times shows that some integers in this interval will be more common
than others. The sequence of dice throws is random, but the distribution of its results
is not.

Random numbers are used in probability and other computations, which is why
it is important to be able to generate long random sequences of numbers by software.
However, software is deterministic. There is nothing random about the results generated
by a computer program. Therefore, the random sequences of numbers generated by
software are, in principle, not random. They appear random, they satisfy the statistical
tests for randomness, which is why they are termed pseudo-random.

Computer users may sometimes try to generate a random sequence of characters
by randomly hitting keys on a computer keyboard, but the results of such a process
are far from random. One reason is that as we quickly touch keys, we tend to use our
hands alternately. The result is a sequence where consecutive symbols tend to come
from di⌃erent sides of the keyboard. Another reason for the non-randomness of such
a sequence is the frequency of occurrence of double and triple symbols. We intuitively
feel that two consecutive occurrences of the same symbol would be rare in a random
sequence, but it is easy to show that in a sequence of decimal digits, where there are
only 10 di⌃erent symbols, the probability of a double is 0.1⇥ 0.1 = 0.01 or 1%, not very
rare.
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Humans in general, not just computer users, are a poor source of random numbers.
Reference [37everywhere 24] shows that when we are asked to produce a random integer
between 1 and 100, the most common choices are 3, 37, and 73. See Section 7.10 for an
unexpected appearance of 37 in real life.

Linear computational processes are deterministic and generate results that are re-
producible. When we compute consecutive elements of the Fibonacci sequence, which is
defined by xn+2 = xn+1 +xn, we always get the same sequence. The sequence, however,
depends on the initial conditions, which in the Fibonacci sequence are the values of
x1 and x2. Subsections 5.6 through 5.6.2 show how changing those conditions produces
di⌃erent sequences, but the point is that varying the initial conditions of a linear process
just slightly, varies the final results only a little. This property of linear processes makes
them useful in many areas of science and mathematics, because a user can perform a
series of experiments while varying the initial values in small steps, and the results would
also vary in small steps and in a predictable way.

Nonlinear computational processes behave in a completely di⌃erent way because
they tend to be sensitive to initial conditions. Such a process can be deterministic
and can generate results that are reproducible and do not depend on chance in any way.
However, such computations tend to generate results that are very sensitive to the initial
conditions. Running such a process many times, while changing the initial conditions
only slightly, may produce results that look and behave completely di⌃erently, and may
thereby create the illusion that the process includes an element of randomness.

A common example of a nonlinear process is the simple sequence produced by the
rule xn+1 = r · xn(1 � xn). This is a nonlinear rule of computation because of the
term �x2

n. Its only initial value is x1, and it is easy to run for many values of x1 and
examine the behavior of the resulting sequence. Of the many references that describe and
illustrate the unexpected and unusual behavior of this sequence, only [WikiBifurcat 23]
and [Bifurcation 20] are mentioned here.

This surprising, and perhaps even disturbing, behavior of nonlinear processes was
discovered in 1961 by the meteorologist Edward Lorenz while working with early comput-
ers, trying to forecast weather based on a complex mathematical model. Later workers in
the field of mathematical chaos have extended his work, understood nonlinear processes
better, and created the well-known adage (Figure 7.1) “Does the flap of a butterfly’s
wings in Brazil set o⌃ a tornado in Texas?” See also Page 337.

⌅ Exercise 7.2: Chaos theory is now well established and there are many sources and
examples of nonlinear processes whose unpredictable outcome may seriously a⌃ect our
future. Find such an example.

Another experiment that further blurs the boundary between randomness and de-
terminism is described by Mark Kac in Chapter 3 of reference [Kac 85] as well as in
[Kac 84]. There he shows that given any truly random sequence R, it is possible to
deterministically compute another sequence D that would not be identical to R, but
would be similar enough to make it impossible to distinguish it from R by means of any
statistical test for randomness. It would then be impossible to tell which sequence is the
“true” random one and which is the artificial, deterministic one. Kac then finishes by
asking “So, what is chance?”
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Figure 7.1: The 1972 Announcement of Chaos.

In English, the phrases “a fat chance” and “slim chance” have the same meaning.
—Anonymous.

We generally agree that the best way to generate a truly random sequence is by
sampling certain natural phenomena such as the times between consecutive radioactive
decays, Brownian motion of a small particle, the “snow” sometimes seen on television
screen, and the fluctuations of the stock market index. However, Kac’s claim is that no
matter how “natural” the source of a random sequence is, it can always be mimicked
by a deterministically-generated sequence that would not be identical to, but would be
indistinguishable from, the original sequence. This challenges our intuitive idea that
there is absolute randomness and that randomness and determinism are opposites.

Considering the points above, perhaps we can claim that chance is a fractal. Fractal,
from Latin fractus (broken), is a word coined and popularized by BenoˆMandelbrot. It
is a geometric shape containing detailed structure at arbitrarily small scales. Many
fractals appear similar to themselves at smaller and smaller scales, and are accordingly
referred to as self-similar. A curve is normally thought of as being one-dimensional (this
is its topological dimension) and a surface, similarly is two-dimensional. But fractal
curves can be assigned fractal dimensions in the interval [1, 2) and fractal surfaces can
similarly have dimensions greater than 2. An example is the random path taken by a
small particle which is subject to Brownian motion. It has been conjectured, and then
proved, that the fractal dimension of such a curve is 4/3, thereby relating randomness
and chance, which are probabilistic concepts, to fractals, which are geometric figures.

Brownian motion is caused by the fast movements and many collisions of gas or
liquid molecules. When such molecules hit a small object such as a pollen particle, they
cause it to move erratically in a path that looks random.

The following numbers serve to put the scale of those processes into focus. Un-
like collisions between macroscopic objects, collisions between microscopic particles are
elastic; there is no loss of kinetic energy. A molecule in gas at room temperature can
su⌃er on the order of 1014 collisions per second from other molecules. Gas molecules at
room temperature are moving at up to 300–400 meters per second, but there is a huge
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variation in speed. While some molecules move fast, other may move very slow, and
it is this wide speed variation that creates the Brownian e⌃ect. It often happens that
more fast molecules hit a pollen particle from one side and slow molecules hit it from
the opposite side.

However, some may claim that the randomness of Brownian motion is not “true,”
because even though molecules are microscopic particles, their movements are governed
by the deterministic rules of classical physics. The randomness that we perceive is
the result of the vast numbers of molecules and the large variance in their speeds. If
we accept this argument, then the phrase “a pollen particle is hit by gas molecules at
random,” simply hides the fact that the randomness is illusory and is the result of the
large numbers involved.

Randomness and information. We are familiar with the term “information.” We
hear all the time that information is power, that we live in the Information Age, and that
more and more people are information workers, information technicians, or information
manipulators. However, like so many other basic concepts and terms, information is
di⌥cult to define rigorously. We intuitively feel that information is about order. A long
string of random text conveys no information, whereas a short string of familiar words
may have important meaning if the words are ordered in a certain way.

On the other hand, it has long ago been observed that the distribution of letters
in typical text is far from uniform. Today it is easy to scan, say, the complete works
of Shakespeare and discover that the letters E, T, and A are the most common in this
collection of fine English, while x, j, q, and z are the rarest. The pseudo words ETAOIN
SHRDLU have come to denote this property of natural languages.

The non-uniformity of the letters can be considered a source of redundancy in text
and it suggests a way to compress text. Replace each letter with a variable-size code,
such that common letters are assigned the shortest codes. Already in the 1840’s Samuel
Morse understood this principle and used it in his popular code (that some people believe
was actually developed by his assistant, Alfred Vail.)

In the study of languages, a digram (or bigram) is a pair of consecutive letters
or other symbols. Similar to letters, the distribution of digrams is non-uniform. For
example, the most common diagram in English is th. As if this isn’t enough, we can
safely guess that a th would be followed by an e. These features and others are sources
of redundancies in natural languages and they help in devising algorithms to compress
meaningful text.

Another source of redundancy in natural languages is the proliferation of vowels,
which many consider unnecessary. Consider how easy it is to understand a sentence
such as “if u cn rd ths u cn gt a gd jb w hi pa!” (from a 1983 poem by James
Merrill).

Images are common in current computer applications, and they too can easily be
compressed. Raise your head and observe the wall in front of you. As your eye moves
from point to point on the wall, the color may gradually vary. At the end of the wall,
the last point of the wall and its immediate neighbor, the first point on the adjacent
wall, may have very di⌃erent colors, but in general, points that are near neighbors tend
to have identical or similar colors. This feature of images, both natural and artificial, is
widely used in many algorithms to compress images quickly and e⌥ciently.

Digital videos, which are also very common, can be compressed by utilizing the
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fact that scenes in a video tend to vary smoothly, resulting in adjacent video frames
that tend to be very similar. A compression method for videos can achieve impressive
compression ratios by simply recording the di⌃erences between the current frame and
its predecessor.

As for a future life, every man must judge for himself between conflicting vague
probabilities.

—Charles Darwin.
Therefore, data, particularly in digital format, can be condensed no matter the

type—whether it be text, pictures, audio, or video—due to redundancies, patterns, and
predictability to some degree. Simply put, it is not by chance. But to what extent can
compression reduce the size? Data is compressible because it is not random, implying
that it can be compressed further and further until it seems entirely random. A random
data file would hold all the original information, but in a compact form. The technical
term would be compressing the data to its entropy. Such unstructured information would
be considered pure information, indicating that randomness, often linked to disorder
(also known as entropy), is also pure information, a surprising finding.

Algorithmic information theory, the brainchild of Gregory Chaitin, defines informa-
tion in relation to compression and randomness. The idea is that the information content
of a string is equivalent to the length of the most-compressed possible self-contained rep-
resentation of that string.

A string that consists of n copies of the same symbol x is uniform, has low en-
tropy, and can be maximally compressed to nx. The algorithm needed to compress it is
extremely simple, and since this algorithm measures the amount of information in the
string, the string has almost no information. The string 142857142857 . . . 142857142857
is simply repetitions of the fraction 1/7 and can therefore be highly compressed by a
simple, short algorithm. It also has little information, as measured by the length of
the algorithm. On the other hand, a truly random string cannot be compressed by any
clever algorithm. It has no redundancies, no patterns, and its individual components
are unrelated. None can be predicted by any of the others. The compressed image of
such a string must be the original string itself, which is why such a string is considered
to have high information content or the maximum entropy.

So much for the relation between information and randomness, but a random string
contains no meaning for us. A string of random text is gibberish. An image of random
pixels looks to us as noise, as is also a video of random frames. We must therefore
conclude that what is meaningful to us is data that has patterns and redundancies, and
as a result contains no information. It is the patterns in the data that convey meaning,
be it text, images, audio, or anything else. Along the same lines, we can consider a
scientific theory an attempt to compress a natural phenomenon that may be familiar to
us, into a set of equations that is meaningless to most people, but has precise meaning
and can be used to make future predictions.

Freedom is nothing but a chance to be better.
—Albert Camus.

⌅ Exercise 7.3: Sometimes, a gambler might say “I haven’t seen 27 come up recently,
so it must be due.” Can such a claim be true? Can a number be “due” in a random
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sequence?

⌅ Exercise 7.4: A gambler might say “I haven’t seen 27 come up recently, so it must be
cursed.” Can such a claim be true? Can a number be “lucky” or “cursed” in a random
sequence?

Lest men suspect your tale untrue, Keep probability in view. John Gay.
The only rule of chance is that any result is possible. Anonymous.
The first half of life consists of the capacity to enjoy without the chance; the last

half consists of the chance without the capacity. Mark Twain.
Never miss a good chance to shut up. Will Rogers.
How dare we speak of the laws of chance? Is not chance the antithesis of all law?

Bertrand Russell.

7.4 Benford’s Law

During the 1940s, I possessed a logarithm table. This thin yellow book was packed
with many numbers that were helpful for making rough calculations to solve physics
problems. After several years of heavy use, I observed that the pages were smudged in
a non-uniform manner. The initial pages got the most dirty, whereas the final pages
remained fairly clean. Those who can still recall those tables might remember that the
initial pages had logarithms with a leading digit of 1.

Initially puzzled by this, I soon switched my attention to more important things,
but years later I discovered that other, more observant people, had observed it, and had
researched it and published unexpected, interesting, as well as practical conclusions.
Today, this phenomenon is named after Frank Benford [Benford 38], who published it
in 1938, but Simon Newcomb had noticed this phenomenon as early as 1883.

No scientific discovery is named after its original discoverer.
—Stigler’s Law of eponymy.

Benford’s law, also known as the law of anomalous numbers, or the first-digit law,
is a surprising observation. Imagine a large set of real numeric data, data culled from
some area of real life. The numbers included in such a set may seem random, they may
even be random and may pass all tests of randomness. Specifically, the distribution of
digits in the set may be uniform; each of the ten digits may appear about 10% of the
time, but there will be at least one hidden feature that would make this data less than
random. The distribution of the leading (most-significant) digits of those numbers may
not be random and may instead obey Benford’s law. Surprisingly, the digit 1 would
appear about 30% of the time, 2 would appear about 18%, 3, about 12%, and so on,
down to 9, whose prevalence would be only about 5%.

It is crucial to understand to what sets of data Benford’s law applies, so here is the
main types:
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Quantitative data and not qualitative data. Quantitative data consists of (contin-
uous) measures or (discrete) counts, and is saved as numbers. Such data describes how
much, how many, or how often. Consisting of numbers, a set of quantitative data can be
sorted or ordered by size. Numbers of animals in a corral, as also heights and weights,
are examples of discrete quantitative data. Examples of continuous quantitative data
are sets of pressure values and counts of blood cells.

Qualitative data consists of descriptions, types, and names that are assigned to
quantitative data items. Such data describes an attribute that does not originate from a
measurement. Not being made of numbers, a set of qualitative data cannot be sorted or
ordered by size. Examples of sets of qualitative data are animals’ ages, peoples’ names,
and colors of bolts of cloth.

Data that is measured and not simply assigned arbitrarily. Typical examples of
assigned data are zip codes, telephone numbers, and sets of identification numbers.

A set of data must be big enough to provide enough statistics. Also, the data items
should range over several orders of magnitudes. A set of numbers that are in the interval
[0, 10] may not exhibit the law even if the set itself is large.

The set of data items must be complete. It should not be artificially restricted, cut,
or pruned by the user.

The data must be real and accurate. If the data is based on units, the law still
holds for any choice of units, even though the choice a⌃ects the digits, as for example,
12 inches equal 30.48 centimeters.

Given several data sets where each satisfies Benford’s law, the combined set will
also obey the law. This is referred to as mixed population.

The following facts make this law more general and fundamental:

This behavior of the leading digit holds even when the data is converted between
di⌃erent number bases. The leading digit is the most common one when the same data
is stored in decimal form, binary, octal, or any other (integer) number base.

The law holds for many sets of data taken from widely di⌃erent sources and at
di⌃erent historical periods. Some examples are street addresses, stock prices, sports
statistics, reviews of products, financial data, decision-making documents, tax returns,
and billing amounts. In fact, when a large set of real data does not conform to Benford’s
law, this law may be used as a reason for suspecting the data, although not as a proof
of wrongdoing.

Later research by [Hill 95] has discovered that not only the leading digit but also
the nth leading digit obeys a similar distribution law. Given a data set where the
leading digit obeys Benford’s law, each following digit obeys a similar logarithmic law
which rapidly approaches a uniform distribution as n gets bigger. Even more, the joint
distribution of the leading n digits also obeys a similar law, which gets weaker as n gets
bigger, thereby showing that the n leading digits of the numbers in Benford-complying
data sets are statistically correlated.
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The mathematical form of Benford’s law is logarithmic. In a data set that obeys
Benford’s law, the leading digit d (an integer in the interval [1, 9]) occurs with probability

P (d) = log(d + 1)� log(d) = log
�
1 +

1
d

�
.

Thus, P (d) is proportional to the space between d and d + 1 on a logarithmic scale.

7.5 Randomness in Dice

A die is a uniform, perfect cube, with its six sides numbered. Children learn very early
that they can entertain themselves for a few minutes by repeatedly tossing dice and
yelling the numbers obtained in this way. Initially, a child may lift a die, assuming that
the number they need is the one on the bottom face of the die, but a guiding adult may
explain how choosing the number on the top face is easier, faster, and has the same
meaning as the number on the bottom face.

It take a while for the child to grasp the basic concept of probability, a discovery
which happens when he realizes that a die has the same chance of landing on any of
its six faces. It takes even longer to discover that dice can have other shapes, more
interesting than a mere cube, and it is this fact that encourages toy manufacturers to
make dice of many shapes and colors, encourages children to visit toy stores and collect
dice, and obliges harassed parents to lecture their children about the evils of wasting
money on worthless junk.

Stories abound about probability enthusiasts who tried to prove the fairness of a
cube experimentally, by constructing machines that throw a number of dice simultane-
ously several times a second, photograph the results of every throw, and use computers
to analyze the photographs and automatically count the results of more and more dice
throws.

However, even the fairest die may not conform to the theoretical results and may
not land on each of its six sides precisely one-sixth of the time, because of the following
reasons:

Over many tosses, the die material, often plastic, may wear unevenly, especially at
its corners.

The small dents drilled on the cube’s faces for the numbers (see picture on Page 144)
introduce a slight, but real, deviation from perfect symmetry. Casinos have been known
to correct for this by filling the dents with paint whose specific weight equals that of the
die material.

The behavior of the die at its point of landing depends on the surface it lands on.
Landing on a hard surface, on a carpet, on sand, mud, rubber, or on someone’s hand
may a⌃ect the statistically perfect behavior of the die while it was in the air. Specifically,
landing on a hard surface may cause the die to tumble a few more times before coming
to rest.

It seems that already Archimedes knew that there are only five shapes, known today
as the Platonic solids, that are convex and regular as explained below. They are some of
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the 13 Archimedean solids which are convex polyhedra whose faces are regular polygons
and whose vertices are all symmetric to each other.

A Platonic solid is a convex regular polyhedron. One definition of convex is that a
line segment that starts on the surface of the polyhedron and travels inside, is completely
included in the polyhedron until it comes out of the other side. A regular polyhedron is
one that features congruent (identical in shape and size) faces, angles, and edges. Also,
the same number of faces meet at each vertex. The five Platonic polyhedra, the Tetra-
hedron, Cube, Octahedron, Dodecahedron, and Icosahedron are shown in Figure 7.2.
For those who like to see these shapes in 3D, reference [wolfram.platonic 24] o⌃ers a
Wolfram notebook.

Figure 7.2: The Five Platonic Surfaces.

The discussion here is based on reference [Keller et al. 89], where the authors con-
centrate on the term “fair,” define it rigorously, and distinguish between polyhedra that
are fair by symmetry and those that are fair by continuity.

The term “fair by symmetry” is the more important one. A convex polyhedron
is fair by symmetry if and only if it is symmetric with respect to all its faces. Any
face can be transformed into any other face by means of symmetric transformations
(those that transform the polyhedron to itself). Those include rotation, reflection, or
any combination thereof. Section 3.2 explains symmetry groups and how such a group
consists of all the symmetry transformations of an object. Given a symmetry group
where certain group elements (transformations) take any face to any other face, we can
refer to the group as transitive on the faces.

All the polyhedra that are fair by symmetry have been identified and classified after
many years of research. In addition to the 13 Archimedean solids, the fair-by-symmetry
polyhedra include two infinite classes of prisms and anti-prisms. Section 5.4 (Convex
Polyhedra with Triangular Faces) of reference [Behnke et al. 74] lists all these solids.

The Rhombic Tricontahehdron

The rhombic triacontahedron, Figure 7.3, got its unusual (ugly?) name because it
is the most common 30-sided polyhedron. It is convex and it features 30 rhombic faces,
60 edges, and 32 vertices of two types. The figure makes it easy to see how certain
vertices are common to five faces each while only three faces meet at other vertices.

The rhombic triacontahedron is face-transitive; its symmetry group acts transitively
on its set of faces. For any two faces A and B, there is a symmetric rotation or reflection
that transforms face A to face B. The rhombic triacontahedron is also edge-transitive,
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Figure 7.3: The Rhombic Triacontahehdron.

and therefore a member of the small, exclusive set of nine edge-transitive convex poly-
hedra. The other members being the five Platonic solids, the cuboctahedron, the icosi-
dodecahedron, and the rhombic dodecahedron. However, the rhombic triacontahedron
is not vertex-transitive. When we hold this solid such that a 5-face vertex is nearest
our eyes, and then rotate it such that a 3-face vertex is in the same position, the object
would look di⌃erent! This kind of rotation is therefore not a symmetry.

We thus conclude that the rhombic triacontahedron is fair, but is not as fair as,
for example, a cube, because it is not vertex-transitive. This said, it is fair enough so
that is has the same probability to land on each of its 30 faces (at least, this is what we
currently believe, there being no known experiments to contradict this).

Reference [Rhombictricontahedron 24] shows how to cut and paste a paper model
of this intriguing polyhedron.

It has been proved that a die that is fair by symmetry must have an even number
of faces, but mathematicians, being both curious and devious, have found a way to go
around this result, and the next paragraphs show how fair polyhedra can be constructed
(at least in principle) that are fair by continuity but not fair by symmetry.

Consider the figure on the right. It shows a Toblerone
chocolate bar, an image that may be familiar to many. For our
purposes, this polyhedron is a long prism, so when tossed in the
air, it almost always lands on one of its three long, rectangular
sides. Now imagine that we cut a thin slice of this prism and
also toss it. Naturally, it would tend to land on one of its
triangular sides. (Those who are not on a diet tend to dispose
of it tastily after the experiment.) Thus, the same object tends to land either on its
longer, rectangular sides or on its small, triangular sides depending on its length. Since
we can, in principle, cut it to any length, there must be a length where it has the same
probability of landing on either type of side. In e⌃ect, this unusual solid becomes a five-
sided fair polyhedron, but in order to distinguish it from fair-by-symmetry polyhedra,
we can refer to it as fair by continuity.

On February 14, 1979, the author [Knuth] bought a box of chocolates and placed
the box on a piece of graph paper (after suitably disposing of the contents). The
experimental data gathered in this way led to a “definitive” heart shape:

—Donald E. Knuth, The METAFONTbook, Addison Wesley, 1986.
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Many solid objects, not just polyhedra, can exhibit the same unusual behavior and
become fair by continuity. A coin, for example, tends to land on one of its large, circular
sides, because its edge is narrow, but if we extrude it and make it look like a sausage,
we would end up with a length where the coin, now a short cylinder, has the same
probability of landing on its circular ends or on its round body.

A natural question is how long should such a prism or coin be? It is reasonable
to guess that the correct length is achieved when the total areas of the two triangular
sides equal the total areas of the three rectangular sides, but experiments seem to suggest
that the behavior of such a fair-by-continuity polyhedron depends much on the surface it
lands on, and factors such as dynamics and surface roughness, elasticity, and suppleness
play an important role. This migrates our problem from the realm of mathematics to
that of physics.

For the interested reader. Page 95 of reference [Poundstone 95] contains a true
anecdote related to such a coin.

The familiar 6-sided cube used as a standard die has many unknown cousins. They
are 6-sided polyhedra where the faces are di⌃erent quadrilaterals with the same area.
Such a solid has edges of several lengths, and looks di⌃erent when viewed from di⌃erent
vertices. However, as claimed in reference [WeirdFairDice 16], its six sides have equal
probabilities, which makes it fair, although not fair by symmetry.

⌅ Exercise 7.5: Explain how to use a standard, six-sided die to draw numbers in the
interval [1, 5] with equal probabilities.

⌅ Exercise 7.6: Can there be a spherical six-sided die?

7.6 Go-First Dice

People love games, and this is especially true for mathematicians. An elementary step
in many games consists of a player making a move, and it has been known that in
certain games, chess being a notable example, the player who has the first move has
an advantage. Reference [first.move 24] proposes several games where first or second
movers have statistical advantages.

White has a slight advantage in chess because it always moves first, thereby con-
trolling the direction of the game, and causing Black to always be half a move behind
and therefore reacting defensively to White.

“Who’s on First?” is a comedy routine made famous by American comedy duo Abbott
and Costello.

—From Wikipedia.

In a game where first or second movers have an advantage, it makes sense to throw
dice to decide the order of players. However, ordinary dice create ties when several
players roll the same number. An obvious idea that may come to mind is to play several
games and change the order of first, second, etc., players. Mathematicians, however,
know that n!, the number of permutations of n players, grows very quickly with n, so
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a better idea is to explore the possibility of having a set of special dice, the so-called
go-first dice, with the following properties:

No ties. If a die has a face labeled, say, 4, then no other die has a 4 on its faces.

Each possible ordering of the players (determined by highest result, next highest
result, etc.) has a mathematically equal chance of occurring.

The above conditions hold for every subset of the whole set. This makes the set
useful for games with smaller number of players.

The problem of constructing sets of n go-first dice was researched and solved by
several people, most notably Eric Harshbarger [harshbarger 24], starting in 2010.

The first step toward solving any problem is to develop a proper notation, and the
notation used here to describe a set of go-first dice has two parts. The first part is a
string of the form 2d3+d12+4d6 that indicates two dice with three faces each, one die
with 12 faces, and four dice with six faces each.

The second part is an alphabetic string which specifies the labeling of each die’s
faces. Given a set of n go-first dice, each possibly with a di⌃erent number of faces, we
denote the total number of faces by f and construct a string of size n⇥f , consisting of
n distinct letters, one for each die, where a letter x in position k indicates that die x has
a face labeled k. Such a string defines the entire set of dice unambiguously, because of
the first property above (each label appears once).

Example: The alphabetic string accbabbcacaa has an a in positions 1, 5, 9, 11,
and 12, implying that die a has five faces labeled with these numbers. Similarly, die b
has faces labeled 4, 6, and 7, and die c has faces labeled 2, 3, 8, and 10.

⌅ Exercise 7.7: Given an alphabetic string that is also a palindrome (has mirror sym-
metry), what can we conclude about the arrangement of the faces of the dice?

The second property above implies that a set of go-first dice must be fair, so the
concept of fairness must first be defined rigorously, and it turns out that there are various
levels of fairness, three of which are described here in increasing levels of di⌥culty.

Go-First fairness. This is fundamental to the concept of go-first and it is obvious.
When rolling go-first dice with this fairness, each player has the same chance of rolling
the highest number.

Place fairness. This is the case where, in addition, each player has the same chance
of rolling the second highest number, the third highest, etc.

Permutation fairness. In addition to the above conditions, every possible ordering
(permutation) of players must have an equal chance of occurring. (This is unclear to
me.)

When constructing a set of go-first dice, it is also possible to consider any symmetries
that they exhibit. The following three types are basic symmetries:

Column Grouped symmetry. Arrange the dice of the set in rows and write the
numeric labels of each die in ascending order. The set of three dice of Table 7.4(left) ex-
hibits column grouped symmetry because the smallest values, 1, 2, and 3 are distributed
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1 6 8 12 13 17
2 4 9 11 15 16
3 5 7 10 14 18

1 8 11 14 19 22 27 30 35 38 41 48
2 7 10 15 18 23 26 31 34 39 42 47
3 6 12 13 17 24 25 32 36 37 43 46
4 5 9 16 20 21 28 29 33 40 44 45

Table 7.4: Symmetries in Dice Sets.

in the three dice, the next smallest values, 4, 5, and 6 are also distributed in the three
dice, and so on.

Column Paired symmetry. Table 7.4(right) shows a set of four dice, the faces of
each are listed in ascending order. Notice that the first two columns of each row of the
table add up to 9, the next two columns add up to 25, and so on. It is not clear what
advantage this type of symmetry bestows on the set of dice.

Mirror Symmetry. This is described in Exercise 7.7.

⌅ Exercise 7.8: So far, this has been pretty complicated, but mathematicians enjoy com-
plexity. However, before reading ahead, I want you, the reader, to explain why this
go-first business is actually a solution calling for a problem, and why there are simpler
ways to solve the problem of who is first.

Finally, some results, described in [harshbarger 24] with names and dates of dis-
covery.

For three players, a set 3d6 defined by acbbacbccaabacbbac.
For four players, a set 4d12 defined by

abcddcbadbaccabdcbaddabccbaddabcdbaccabdabcddcba.
For five players, the impractical set d24+d32+d48+d72+d90 defined by

aaaaaaabcdedccccdedcbbbcdedccccdedcbbbcdedccccdedcbaaaaaaaaaaaaaaaaaaaa.
aaaaaaaaaaaabcdedccccdedcbbbcdedccccdedcbbbcdedccccdedcbaaaaaaaaaaaabcd
edccccdedcbbbcdedccccdedcbbbcdedccccdedcbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aabcdedccccdedcbbbcdedccccdedcbbbcdedccccdedcbaaaaaaa.

7.7 Subjective Probability

The term “probability” is an indicator of how certain or uncertain we are that an event
will occur. This (un)certainty is based on rigorous analysis, on recorded observations,
on a long history of collected data, and on precise computations. Thus, a better, more
precise term for probability is “objective probability,” but this term is too long for
practical use. In contrast to objective probability there is also the important area of
subjective probability.

Subjective probability is any case where we apply our opinions and beliefs (gut
instinct or personal judgment), rather than rigorous analysis or formal calculations, to
determine or estimate probabilities. Here are a few typical examples
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It snowed yesterday and it is snowing today. I have every reason to believe that it
will snow tomorrow. (Even though we know that the weather can change dramatically
overnight.)

My girlfriend was very late yesterday as well as the day before. Chances are she
will be at least 30 minutes late today. I am on time, but why wait for her outside in
this rain?

I am late for my dentist appointment, but my main problem is her forthcoming bill.
I doubt if it would be less than 2000 dinars.

In contrast with objective probability, which produces a precise number, subjective
probability is normally flexible and is expressed in terms of an interval (believe me, the
chances are no more than 20–30%).

One advantage of subjective probabilities is that they keep their owners happy.
Thinking that he knows the chance of a future event, helps keep a person satisfied.
Another advantage is the intuitive knowledge provided by a guesstimate. A guesstimate
is based on previous knowledge, and is therefore a form of subjective probability.

On the other hand, it is easy to see the downside of subjective probabilities. Its main
negative features are: (1) A subjective probability reflects the personality and belief of
someone, and may therefore be wildly inaccurate. (2) The subjective probabilities of
two persons of the same event are the results of high degrees of personal bias. They may
therefore be very di⌃erent and may clash and cause serious disagreements and other
negative e⌃ects. (3) A person who comes up with a subjective probability may know
nothing about probabilities. Specifically, he may not realize that if the probability of an
event is p, then the probability of its opposite is 1� p.

⌅ Exercise 7.9: Come up with both good and bad examples of common subjective prob-
ability.

Our brains are just not wired to do probability problems very well.
—Persi Diaconis.

7.8 Probability and Psychology

So far we have considered rational behavior in our discussion of probability, but psychol-
ogy and other aspects of human behavior also play a part in the study and understanding
of probability. One aspect of the e⌃ect of psychology in probabilistic processes is the
di⌃erence between risk and uncertainty.

Imagine a test that consists of choosing one among several alternatives whose prob-
abilities are known. The right choice results in a large benefit to the subject being
tested. We may say that this kind of choice involves risk. Testing many subjects and
recording their responses may teach the examiner something about human nature and
its approach to risk taking. Now consider a similar test, but this time the probabilities
of the options are unknown. This time, the choice involves uncertainty (or ambiguity)
rather than risk. Testing a large number of subjects may also lead to a greater under-
standing of our behavior under conditions of uncertainty. Now imagine two such tests
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that are similar, so that their results can be directly compared. The following paradox
has been proposed by Daniel Ellsberg:

In step 1, an urn contains 100 red and black balls with unknown proportion. The
subject being tested is given a choice of two options, to get a prize if a red ball is drawn
from the urn or the same prize if a black ball is drawn. This test involves uncertainty,
and experiments on a large number of participants have shown that most subjects choose
an alternative at random.

In step 2, an urn contains 50 red and 50 black balls, so the probability is known
and is also obvious. The subject is given similar alternatives, get a prize if the next ball
drawn is red or get the same prize if it is black. There is risk in this alternative, but no
uncertainty. In extensive experiments, it was again discovered that most participants
choose an alternative at random, even though the probabilities are known.

The final test proposes the following three alternatives to the subject: A ball will
be drawn from one of the two urns. You get a prize if it is red. Do you prefer the ball
to be drawn from urn 1, from urn 2, or do you have no preference? The results of many
experiments indicate that most participants prefer urn 2. One possible conclusion that
can be drawn from this is that we feel more comfortable dealing with events and options
whose probabilities are known.

7.8.1 The Psychology of PIN Choosing

A picture is worth a thousand words, and the following text demonstrates one conse-
quence of this adage. Scientists, statisticians, and public opinion researchers know that
it is often possible to learn much about a subject if data on it is graphed in a certain
way. Presently, in 2024, each of us is the owner of many passwords, identity numbers,
and pins (short for Personal Identification Numbers).

Many pins—including those that protect our bank accounts, smart phones, and
other digital devices—are only four digits long, which provides for easy memorization
and entry. Such pins should be random, but are they? It is reasonable to assume that
human nature, being what it is, would cause many users to prefer certain pins, such
as symmetric numbers, easy-to-remember numbers, or pins that are based on dates of
birth, telephone numbers, national identity numbers, and similar sources.

Reference [youtube.twit 24] presents an analysis of about 3.4 million 4-digit pins
in the form of a 100 ⇥ 100 chart consisting of 10,000 dots of various shades of orange.
Dots with bright shades correspond to popular pins, while black dots indicate pins that
no one has chosen. The data was obtained from several data breaches. The chart
demonstrates how easy it is to come up with useful and enlightening information about
how people choose such pins. The chart itself is not shown here for copyright reasons,
but can be clearly seen in the reference youtube video. Here are some interesting (and
disappointing) conclusions about peoples’ choices of pins that can be drawn from the
chart.

The bright diagonal line indicates that many pins are of the form xyxy. Some of
these, such as 0000, 6666, 6969, 7777, and 9999 are very popular. It is now obvious that
a hacker trying to guess a pin, would try all 100 possibilities of these numbers, starting
with the 10 ones of the form xxxx.

Numbers with numerical runs (consecutive digits), such as 1234, 4321, 4567, 5678,
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6789, and 0987 are popular.

Birth years from 1930 to 1999 and from 2000 to 2004 are common choices. Those
are people in the obvious age group to be current computer users.

The bottom-left part of the chart, the area from 0000 to 2530, is brighter than the
rest, indicating that birthdates, month (1 to 12) and day (1 to 31), are preferred choices
for pins. Rows 10–12 are especially bright, which indicates that many people choose a
birthday of the form mmdd as opposed to ddmm. Choosing a birthday to protect important
information is obviously risky.

Numbers taken from literature or movies also tend to be popular. Examples are
2001, 1984, 0007, and 0070. However, numbers drawn from science and mathematics,
such as 3141 (�), 2718 (e), and 1618 (⌘), are rare, indicating that most pin users are
non-scientifically savvy.

When the original 100 ⇥ 100 color chart is converted to grayscale (Figure 7.5),
another unusual pattern emerge. It becomes obvious that there are 100 distinct 10⇥ 10
grids of cells, each with shades of gray varying uniformaly between opposite corners.
This reflects the tendency of people to choose pairs of nearby digits, such as 23, 89, and
67, while avoiding distant pairs such as 29, 71, and 38.

Figure 7.5: 100 10⇥ 10 grayscale Grids of Pin Numbers.

There are about 40 cells that are black or almost black, indicating that only a few
users (or none) have chosen them. They are mostly in the top one-third of the chart.
See, for example, 6806, 6827, and 6835 (black) and 7036, 7065, and 9938 (almost black).
Cells 8437 and 8438 are adjacent and similar, one black and the other almost so. The
pair 8397 and 8398 is a similar unexplained example of adjacent and similar cells. An
extreme example of opposites is the pair 8146 (black) and 8246 (very bright).

What is the probability that a 4-digit pin will not be chosen by any of 3.4 million
users? There are 10,000 4-digit numbers, so the probability of any one being chosen
at random is 10�4, and the probability of it not being chosen is (1 � 10�4) = 0.9999.
The probability that none of our 3.4 million users will not choose this pin is therefore
(1 � 10�4)3.4·106 � 2.15 · 10�148. This is so incredibly small, that the fact that there
are about 40 such pins implies that pin choosing is not random but is a⌃ected by
psychological factors.
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Overall, it is intuitively clear that the distribution of pins is far from uniform, and
the following fact makes this obvious. The 20 most common pins—0000, 1004, 1010,
1111, 1122, 1212, 1234, 1313, 1444, 2000, 2001, 2222, 3333, 4321, 5555, 6666, 6969,
7777, 8888, and 9999—account for 27% of the 3.4 million pins that make up the chart.
At the opposite side of the distribution, the 21 least-common pins—8557, 9047, 8438,
0439, 9539, 8196, 7063, 6093, 6827, 7394, 0859, 8957, 9480, 6793, 8398, 0738, 7637, 6835,
9629, 8093, and 8068—account for only 2.2% of the 3.4 million pins. Simple, convincing
statistics, but don’t use 8068 because of an obvious reason.

The conclusion is that a user should consider (1) one of the black cells in the chart,
or (2) a 4-digit number that is meaningless to the user, or (3) a longer pin, preferably
one that also includes letters and symbols.

See also [datagenetics 24].

⌅ Exercise 7.10: Why would pin 2580 be common?

7.9 The Birthday Paradox

Given a group of n > 1 people, what is the chance that at least two of them will have
the same birthday (month and day, not year). Obviously, the chance depends on n, and
the surprise is that even with only 23 people, the chance already exceeds 50%. Thus,
this problem is not a paradox (it does not involve any logical contradiction), but is a
surprise, one of many unexpected, unintuitive results that involve probabilities.

To compute this probability, we ignore leap years and also assume that birthdays
are evenly distributed throughout the year. (This is not completely true. For example,
if hospitals do not schedule Caesarian sections on weekends, then more babies are born
on Mondays and Tuesdays than on weekends. It is also known that more children than
average are conceived during long holiday periods, such as Christmas.)

We define event E as: At least two of n people will share the same birthday. The
opposite event Ē is therefore: None of the n people will share the same birthday (or
alternatively, each of them will have a di⌃erent birthday). There are 365 days in a year,
so at most 365 people can have distinct birthdays. A 366th person will always share a
birthday with one of the original 365. If we denote the probability of event E by P (E),
then P (E) + P (Ē) = 1 and P (366) = 0, implying P (366) = 1.

We start by computing P (Ē) for various values of n. For n = 2, the first person
could be born on any of the 365 days. In order for the second person not to share a
birthday with the first one, he must be born in one of the remaining 364 days. The
chance of this happening is 364/365. This leaves 363 days for a third person. Thus,
the chance that a third person does not share a birthday with either of the first two
is 363/365 (we assume that births are independent events, which allows us to multiply
their probabilities), and the probability that all three will have distinct birthdays is
therefore (364/365)(363/365) or about 0.9918.

Given four people, the chance that they will not share birthdays is, similarly

364
365

· 363
365

· 362
365

� 0.9836,
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and in general, given n people, the probability is

(365� 1)
365

(365� 2)
365

(365� 3)
365

(365� n + 1)
365

=
365!

(365� n)! 365n
.

The rest is easy. We know P (Ē) and can compute P (E) as 1�P (Ē) for any value
of n. Figure 7.6 shows the results graphically for n = 2 through 70 (for greater values
of b, the probabilities are very close to 1). The figure also illustrates the fact that for
n = 23, this probability is slightly greater that 50%.
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a = 365!;
Plot[1-a/((365-n)! 365^n), {n,2,70}, AxesOrigin->{0,0},
AspectRatio->.5,
TextStyle ->{FontFamily->"CMR10", FontSize->10}]

Figure 7.6: Probabilities of Sharing a Birthday Among n People.

7.10 Choosing a Candidate

In the 1964 movie Mary Poppins, Mr. George W. Banks decides to choose a new nanny
for his children Mike and Jane. He advertises in the The Times, and pretty soon there
is a line of candidates at his door, 17 Cherry Tree Lane. He expects them to come in
one by one and be interviewed, but instead he unwittingly chooses the very first one, the
mysterious Mary Poppins, thereby providing us with a delightful 138 minutes of pure
entertainment.

Now for real life (see also reference [Symonds 14]). You have a vacancy in your
organization and you want to hire the best person for the job. You advertise it and a
total of N people apply. This is too many for you to interview, so you decide to use the
power of mathematics, specifically probability theory, for an optimal way to choose one.
He may not be THE best, but he may be the best that can be chosen after interviewing
only K of the N applicants.

Your plan is to interview only K applicants, find the best of them, say person B,
and then continue to interview applicants until you find the first who is better than B.
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This applicant is then chosen and the remaining applicants are politely told that the
position had been filled.

Y-yes, sir?
Tell the other applicants they may go! The position has been filled!

—From Mary Poppins, 1964.

The problem is to determine the best value of K as a percentage of N . Naturally,
this solution is a compromise. We may never interview the BEST applicant, but on the
other hand, we may save much time, especially if the optimal K turns out to be much
smaller than N . For the mathematical treatment, we have to distinguish between the
first K applicants and the remaining N �K ones.

The probability of any of the N applicants waiting in line in position i is 1/N . For
each applicant in the first K positions, the probability of him being chosen is zero, while
for the other applicants, from position K + 1 to position N , the probability of anyone
being chosen is slightly more complex.

Let’s examine the applicant in position K + 2 and think negatively. If this person
is NOT chosen, it is because one of his K + 1 predecessors had been chosen. The
probabilities of any the first K applicants to be chosen are all zeros, and the probability
of the (K + 1)st is 1/(K + 1). Therefore, the probability of the (K + 2)nd person to BE
chosen is 1� 1/(K + 1) = K/(K + 1).

Once this is grasped, the probability of success is given by the sum

P (K) =
K&

i=1

P(applicant being in position i)P(applicant i is chosen)

=
K&

i=1

1
N
⇥ 0 +

N&

i=K+1

1
N

K

i� 1

=
K

N

�
1
K

+
1

K + 1
+ · · · + 1

N � 1

�
. (7.3)

We now notice that the sum in the square brackets is a discrete, approximate version of
the continuous function 1/x from K + 1 to N (where x takes the place of K/N). The
definite integral for 1/x is

( N

K+1

1
x

dx = ln(x)
⌥⌥⌥
N

K+1
= ln(N)� ln(K + 1) = ln

⌦
N

K + 1

↵
,

Which allows us to approximate Equation (7.3) by substituting x � K/N , to get P (x) �
x ln(1/x) = �x ln(x), a simple function whose maximum is easy to compute by equating
its derivative to zero. Thus, P ⌥(x) = � ln(x) = x(1/x) = � ln(x)� 1, and equating this
to zero produces x = e�1 � 0.368 . . ..

Since the continuous variable x takes (approximately) the place of the discrete
K/N , we conclude that the optimal value for K is 0.368N or about 37% of N . Thus
our successful strategy is to interview, rank, and reject the first 37% of applicants and
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f[x_]:=-x Log[x];
Plot[f[x], {x,0,1}, AspectRatio->.25]
FindMaximum[f[x],x]

Figure 7.7: Function �x ln(x) and its Maximum.

choose the first one after that who is better than the best rejectee. Figure 7.7 lists
Mathematica code to plot P (x) and compute its maximum.

Ignorance gives one a large range of probabilities.
—George Eliot, Daniel Deronda II.

7.11 Examples of Unexpected Probabilities

The following examples are mostly drawn from reference [Bogomolny 20]), and their
solutions were contributed by many volunteers. They were included here because they
are easy to understand and their solutions are short and mostly unexpected.

The 1965 movie Paris Vu Par (Paris seen by) is a set of six episodes, one of which is
titled Montparnasse et Levallois. Directed by Jean Luc Godard, this vignette describes
the tribulations of a young woman in Paris. She writes and places letters to her two lovers
in envelopes, addresses and seals them, and drops them in the pneumatiques. Later, she
starts suspecting that she had mixed up the letters (she did not). This vignette gave
me the idea for the following cute problem.

A busy secretary writes four di⌃erent business letters and places them in four en-
velopes addressed to di⌃erent recipients. What is the probability that exactly three
envelopes will have the correct letters?

Answer. Once three letters go in the correct envelopes, the fourth letter has only
its correct envelope left and must go into it. The probability of it going in a wrong
envelope is accordingly zero.

In 1962, on the occasion of his receiving a second Nobel prize, in peace, the well-
known chemist Linus Pauling claimed, perhaps as a joke, that the probability of receiving
this prize a second time is actually large, because only a few hundred living people have
ever received this prize once. Thus, while it is remarkable to receive a Nobel once, it is
much less so to receive it again. What is the fallacy of this argument?

Answer. Receiving a Nobel prize, first or second, has nothing to do with the number
of those who had received the prize in the past. The prize committee decides on the
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winner regardless of whether or not he has already won the prize. Thus, the chance of
winning a second Nobel (or any similar) prize is the same as winning a first one.

I picked up a hitchhiker the other day in my car. He said, “how do you know I am
not a serial killer?” My response, “the chance of having two serial killers in the same
car is astronomically small.”

—Anonymous.

Given a 7 ⇥ 7 matrix, fill it up with the digits 1 through 7 such that each column
will have all seven digits and the matrix will also be symmetric about the main diagonal.
What is the probability that the diagonal has all the integers from 1 to 7?

Answer. The point of this problem is that the matrix is symmetric and also has an
odd number of columns. We concentrate on occurrences of the digit 1. This digit must
appear seven times in the matrix and must appear exactly once on each column. For
each occurrence of this digit o⌃ the diagonal, there is another, o⌃-diagonal symmetric
occurrence of it on a symmetric column, for a total of six occurrences. Thus, the seventh
occurrence of the digit 1 must be on the diagonal. This argument is true for each of
the seven digits, which means that each appears on the diagonal and the probability in
question is 1.

We learn from Wikipedia that a loaded, weighted, cheat, or crooked die is one that
has been tampered with so that it will land with a specific side facing upwards more
often (or less often) than a fair die would. There are several methods for making loaded
dice, including rounded faces, o⌃-square faces, and weights.

A group of organized crooks may load a bunch of dice identically in order to cheat
wholesale in a set of games. Your task is to show them that when playing with identically-
loaded dice, the probability of getting a double is always at least 1/6.

Answer. This is easy. We denote by pk the probability of such a loaded die to end
up with side k on top. The sum of the six pk’s is 1, which enables us to write

1 = 12 = (p1 + p2 + p3 + p4 + p5 + p6)2

= (1 · p1 + 1 · p2 + 1 · p3 + 1 · p4 + 1 · p5 + 1 · p6)2

⌦ (12 + 12 + 12 + 12 + 12 + 12)(p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6)

= 6(p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6),

Or (p2
1 + p2

2 + p2
3 + p2

4 + p2
5 + p2

6) ↵ 1/6. (The inequality above is referred to as Cauchy–
Schwarz inequality.)

According to Wikipedia, the George Washington Bridge, which opened in New York
in 1931, is the world’s busiest vehicular bridge. The bridge carries 14 lanes of tra⌥c,
seven in each direction. This is in addition to pedestrians and cyclists, who use its upper
deck, often getting soaked by rain.

The bridge in our problem is much smaller, taking just five minutes to cross by foot,
and is also much less used, with only 1000 people cross it during the 12 hours it is open
daily. To simplify your task, we assume that the density of crossers is uniform and does
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not depend on the time of day. Under these assumptions, find the probability that the
bridge will be empty at noon.

Answer. An empty bridge at noon implies that no one has entered it since 11:55 AM.
There are 144 5-min intervals in 12 hours, which is why, given such an interval, the
probability that a person will enter the bridge during that interval is 1/144. Therefore,
the probability that none of the 1000 daily people using the bridge will enter it during
a given interval is

�
1� 1

144

�1000
=
��

1� 1
144

 144
� 1000

144

� e�
1000
144 � 0.000963976.

This small probability applies to any 5-min interval, not just at noon.

Nature permits us to calculate only probabilities.
—Richard Feynman, QED: The Strange Theory of Light and Matter, 1985.

With n an even positive integer, choose n real numbers a1 through an at random.
Consider them points on the real number line and examine the n/2 segments defined by
the pairs a1 a2, a2 a3, . . . , an�1 an. (Notice that sometimes ai may be greater than ai+1.)
What is the probability that one of these segments would be principal (i.e., include all
the other ones)?

Answer. This is easy. We are looking for an index k such that ak would be the
smallest of the n numbers and ak+1 would be the largest. Suppose that a5 is the smallest
random number chosen. It is paired with a6, and the probability of a6 to be the largest
of the n� 1 remaining random numbers is 1/(n� 1). A quick check is the case n = 2,
where there are two numbers and one segment, whose probability is 1/(2� 1) = 1.

Another approach to the answer is more complex: The n indexes can be permuted
in n! ways. In order for a principal segment to exist, there must be two extreme indexes
k and k + 1. The remaining n� 2 indexes can be permuted between these two extremes
in (n�2)! ways. Thus, for a principal segment to exist, only m = 2(n�2)! permutations
of the total of n! should be considered. For each of the m permutations, a di⌃erent
segment is principal, which is why the probability of there being a principal segment is

n · 2(n� 2)!
n!

=
1

n� 1
.

⌅ Exercise 7.11: (Half jokingly). What is the chance that three people and a monkey
who just happen to be in the same location would all be left handed?

You are given n cards with the integers 1 through n written on them, one per card.
Shu�e the cards and draw m cards. What is the probability that they are drawn in
their natural order, from smallest to largest?

Answer. The m drawn cards can be in any of m! permutations, but in only one of
which they are in their natural order. Thus, the probability that they have been drawn
in that permutation is 1/m!. Simple.
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A philosopher once said “It is necessary for the very existence of science that the same
conditions always produce the same results.” Well, they do not.

—Richard Feynman, The Character of Physical Law.

The outside faces of an n⇥n⇥n cube (for n > 1) are painted red. The cube is cut
into n3 unit cubes which are mixed up and placed in a bag. One small cube is withdrawn
at random from the bag and tossed across a table. What is the probability that the
cube stops with a red face on top?

(The English phrase “Our faces are red” means we are embarrassed.)
Answer. The original cube has six faces, each of size n ⇥ n. The total number of

small red faces is therefore 6n2. Once it is cut, each of the n3 small cubes has its own six
faces, for a total of 6n3 faces. As a first approximation we can say that the probability
of picking a red face is simply 6n2/(6n3) = 1/n, but this has to be further checked and
refined, because some cubes have up to three red faces while others, which used to be
located inside the original cube, have no red faces. So let’s count the small cubes in
groups according to how many red faces each has.

Group 1. Each of the eight small cubes at the corners of the large cube has three
red faces.

Group 2. Each of the six faces of the large cube consists of four columns of n � 2
small cubes each. The total is 6⇥ 4 = 24 columns, but this counts each column twice.
Thus, this group consists of 12(n� 2) small cubes, each of which has two red faces.

Group 3. Without its corners and surrounding columns, each large face has (n�2)2
small cubes, each with only one red face. The total number of this group is 6(n� 2)2.

Group 4. The interior small cubes. We simply peel o⌃ the outside faces of the large
cube, to end up with an (n � 2)⇥(n � 2)⇥(n � 2) cube, having (n � 2)3 small cubes,
each without any red faces.

The total number of small cubes is therefore 8 + 12(n� 2) + 6(n� 2)2 + (n� 2)3,
and this really equals n3. Now for the probabilities. We first define a function f(k, n)
that returns the number of small cubes with k red faces

f(k, n) =

⌧
����

����

(n� 2)3, for k = 0;
6(n� 2)2, for k = 1;
12(n� 2), for k = 2;
8, for k = 3;
0, for k = 4, 5, 6.

.

With this function, the probability we are looking for is straightforward

P (n) =
6&

k=0

P (red face up|cube has k red faces)P (cube has k red faces),

=
6&

k=0

k

6
· f(k, n)

n3
,

=
1

6n3

⇤
6(n� 2)2 + 24(n� 2) + 24

⌅
,

=
1
n

.
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Surprisingly, this is the same result as obtained earlier without detailed analysis of the
groups of small cubes.

All knowledge resolves itself into probability.
—David Hume, A Treatise of Human Nature, 1985.

There are six red balls and eight green balls in a bag. Five balls are drawn randomly
and placed in a red box; the remaining nine balls are placed in a green box. What is the
probability that (the number of red balls in the green box) plus (the number of green
balls in the red box) is not prime?

Answer. We denote by g the number of green balls in the red box. It is in the range
0 ⌦ g ⌦ 5. Since the red box has five balls, 5�g of them must be red. This implies that
in the green box (which has nine balls) there must be 8 � g green balls and g + 1 red
balls (elementary but confusing). Thus, the sum (green balls in red box) + (red balls
in green box) is g + (g + 1) = 2g + 1. This is an odd integer in the interval [2, 11], and
we notice that out of all the primes in this interval, only two, namely, 1 and 9, are odd.
They correspond to g = 0 and g = 4, respectively. The former is the case where all five
drawn balls were red, and the latter is the case where four were green and only one was
red.

The probability of drawing (zero green balls out of eight) and (five red balls out of
six) our of a total of 14 balls is

p1 =
�8
0

⇥�6
5

⇥
�14

5

⇥ =
6

2002
.

Similarly, the probability of drawing (four green balls out of eight) and (one red ball out
of six) out of a total of 14 balls is

p2 =
�8
4

⇥�6
1

⇥
�14

5

⇥ =
420
2002

.

Finally, the probability that either of these cases occurs is 1�(1�p1)(1�p2) = 0.212158
and the probability that neither occurs is 1� 0.212158 = 0.787842.

Ten coins are labeled with numbers 1 through 10 on one side. They are tossed and
the numbers on the top faces of the coins are added. What is the probability that the
sum is at least 45?

Answer. The sum can be at most 1 + 2 + 3 + · · · + 10 = 55, so all we have to do
is find out how many times ten distinct digits in the interval [1, 10] can add up to 45
or less. However, it is easier to do the opposite, to figure out the (identical) probability
that the sum is at most 10, i.e., the number of ways to add ten distinct digits in the
interval [1, 10] to get at most 10. This information is available as Sequence A000009 of
the OEIS, reference [Sloane 08], listing the number of ways to partition the integer n
into distinct parts

n 0 1 2 3 4 5 6 7 8 9 10
1 1 1 2 2 3 4 5 6 8 10.
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Example: the integer 8 can be partitioned in 6 ways as follows

8 = 8 + 0 = 7 + 1 = 6 + 2 = 5 + 3 = 1 + 2 + 5 = 1 + 3 + 4.

The 11 numbers on the bottom row of the table add up to 43, so this is the number of
ways to get at most 10 in our problem. Tossing the ten coins can produce one of 210

results, which is why the probability in question is 43/210 � 0.041992.

Who ever heard a theologian preface his creed, or a politician conclude his speech
with an estimate of the probable error of his opinion.

—Bertrand Russell.

Given a 3⇥ 3 grid, we place the numbers 1,2,...,9 in it at random.
1. What is the probability that the sum of every row and every column is odd?
2. What is the probability that the sum of every row, every column, and the two

diagonals are also odd?
3. Similar, but exactly one of the diagonal sums is also odd?
Answer. Case 1. Each row, column, and diagonal consists of three integers, and the

sum of three integers can be odd only if one of them is odd or all three are odd. There
are only five odd integers in the interval [1, 9], so in order for three rows to each sum to
an odd value, one must have three odd integers and each of the other two must have a
single odd integer, and similarly for the columns.

The row and column with the three odd integers have only odd integers, and must
therefore have an odd integer at their intersection. There are 3⇥3 = 9 ways of choosing
a row and a column. There are 5! ways (permutations) to choose the order of the
five odd integers, and there are 4! ways of arranging the remaining four even integers.
Accordingly, there are 9⇥5!⇥4! grids where each row and column sum to an odd number.

The total number of 3⇥ 3 grids in our case is 9!, which yields the probability

9⇥5!⇥4!
9!

=
1
14

= 0.0714286.

Case 2. We already know that there are a row and a column, each having three
odd integers. Therefore, there are not enough remaining integers to have three of them
on a diagonal. The only way for the two diagonals to have odd sums is for each to have
exactly one odd integer. Out of the nine ways of choosing a row and a column, only one,
the one where the common integer is at the center (and therefore lies on both diagonals)
guarantees that both diagonals will have an odd integer. Accordingly, the probability
of this case is

5!⇥4!
9!

=
1

126
.

Case 3. In order to have one diagonal sum to an odd number and the other one
sum to an even number, the odd integer that is common to a row and a column must
lie on one of the four corner of our grid, which is why the probability of this case is

4⇥5!⇥4!
9!

=
4

126
.
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⌅ Exercise 7.12: (A joke.) How can a stock broker obtain a large number of followers
who eat out of his hand (at least temporarily) because of his unbelievably accurate
predictions?

⌅ Exercise 7.13: (1) After flipping a coin six times, what is the probability of getting
exactly three heads (not necessarily in a row)?

(2) Tossing a coin six times, what is the probability of getting three heads in a row?
(3) what is the probability of getting exactly three heads in a row?

In the small town of Little Stempington there live two races, The Eloi (dark blue
skin, constitute 90% of the population) and the Morlocks (dark gray skin, and only
10%). Neither race is especially violent, but there is some crime—mostly theft, burglary,
and mugging—at which both races are equally guilty. Someone complains that he was
mugged by a Morlock in the dark. Tested by the police under similar lighting conditions,
he manages to correctly identify both Eloi and Morlocks 80% of the time. The prevailing
opinion in the town is that, given some suspects, the complainer has an 80% chance of
identifying the culprit. It is your job, as a mathematician/statistician, to prove that his
chance of doing so is only 4/13 � 0.31%.

The analysis is quite simple and is based on the very di⌃erent sizes of the two
races. The chance that the mugger is correctly identified AND is also a Morlock is
0.1⇥ 0.8 = 0.08. Similarly, the chance that the mugger is wrongly identified as Morlock
but is an Eloi is 0.2⇥ 0.9 = 0.18. Morlocks are therefore identified 0.08 + 0.18 = 0.26 of
the time, but only 0.08 of the time are they identified correctly.

The chance of identifying a Morlock correctly is therefore 0.08/0.26 or 4/13.

Every second that passes is a second lost forever, yet we always yearn for more.
(Is this human nature or a paradox?)

—H. G. Wells, The Time Machine, Heinemann, 1895.

7.12 Probabilistic Counting and HLL

HLL stands for Hyper-Log-Log. It is the latest improvement of an algorithm which
originated in 1985 with reference [Flajolet 85]. The HLL algorithm computes a fast
estimate of the number of distinct items in a dataset. The term probabilistic counting
is used with HLL, because this algorithm makes use of basic probability concepts.

We start with simple illustrations of the problem. Imagine a train or subway sta-
tion in a big city. Thousands pass through the station every day, and many may find
themselves there several times a day. The transportation authorities are interested in
how many distinct individuals use the station daily. A similar example may be a free,
historically-important exhibition (Picasso, Vermeer, and Rembrandt come to mind) in a
large museum or exhibition hall. The organizers want to know, at least approximately,
how many distinct individuals have visited during the exhibition. The exhibition being
free, the organizers may also be interested in how many times the average visitor came,
but this is a separate problem.
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It is possible to place face-recognition cameras at the entrances, to identify individ-
ual faces and count distinct visitors. Currently, in 2024, this technology is not mature
and may provide only a rough estimate of the count, but the HLL technique outlined
here promises better estimates at the cost of simple computations.

⌅ Exercise 7.14: Come up with another example of a useful application of counting
distinct events (or visitors).

The term “cardinality” of a set of items is used to indicate the number of distinct
elements of the set.

Given a large set of items (in practice, a file on a disk drive or other digital volume)
the simplest way to estimate its cardinality is based on sampling. Given a file of size
N , take a small random sample of size N0, compute its cardinality using any algorithm
that counts and compares items directly, and consider the ratio N/N0 an estimate of the
cardinality of the entire file. This is simple, but less accurate than the HLL algorithm.
Also, a random sample may not be a good sample if di⌃erent regions of the file exhibit
di⌃erent distributions of its data.

The HLL algorithm is based on probability concepts, so we start with flipping coins.
The probability of a run of n consecutive heads (or tails) while flipping a coin n times
is 1/(2n). For n = 5, this is 1/32, a small, but not very small, number. We can expect
to obtain such a run by actually flipping coins for perhaps an hour or so. However,
the probability of getting 20 heads in a row is the much smaller 1/220 = 1/1,048,576 �
0.000000954, so it may take several years of actual flipping to finally see such a run.

Turning this conclusion on its head, imagine that we flip a coin and suddenly see
a run of 20 heads. This very probably means that we must have been flipping coins
for a long time. In general, this idea implies that while flipping coins, the length of the
longest run of heads that we have seen so far is an excellent indication of the time we
have been spending (wasting?) in flipping coins.

This simple, surprising insight into probabilities and coin flipping is at the heart of
the HLL algorithm, but since any practical implementation of the algorithm will be on
a computer, the algorithm must be described by means of numbers (specifically, binary
numbers) instead of with coins. As the first step in this description, we go back to
our museum and its many visitors. In order to introduce a numeric element into the
discussion, we assume that visitors are identified not by their faces, but by the six (or
seven or eight) least-significant digits of their telephone number. We must assume that
those digits are uniformly distributed and that each of the six digits of a number may,
with equal probability, be any of the ten decimal digits.

Once we obtain those six digits from each incoming visitor, we simply count the
number N of leading (most-significant) zeros of each number and only save the largest
N seen so far. (The least-significant digits can be used instead.) When a visitor arrives
at the museum for a second time, his number is again checked, but since it had already
been checked and was used to update (or not update) N , the second appearance of this
number is essentially ignored. The earlier discussion of coin flipping implies that, in
random data, a run of k zeros will occur on average once in every 10k items. Thus, if N
stands at, say, 4—implying that one or more visitors with numbers of the form 0000xx
have been found—chances are that about 104 = 10,000 visitors have already entered
and their numbers checked.
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Is it possible that all 10,000 visitors had numbers of the form 0000xx? Not if the
numbers are distributed uniformly. If we suspect that visitors’ telephone numbers are
somehow related, perhaps because their being from the same city, then another measure
must be chosen as a key to the HLL algorithm. However, reference [Flajolet 85] and all
its successors propose that a hash table should be used to (1) improve the uniformity
of whatever keys are used and (2) guarantee that only distinct keys are counted. (The
latter is true because the hash table generates identical keys for identical inputs.) Such
a table generates binary numbers, which is why any logarithms used by HLL must be
to base 2. We now pause the description of HLL in order to introduce the important
concept of a hash table and hashing in general.

Hashing and hash tables

The JAVA programming language is commonly used in computers and other pro-
grammable devices. Among others, JAVA is the main tool used to implement the well-
known Android operating system. A JAVA compiler is software that reads a JAVA
program and converts it to a set of machine instructions. One of first tasks of this and
other compilers is to identify the keywords of JAVA in the input program and invoke
the correct routine to deal with each. Typical keywords in a higher-level programming
language are phrases such as public, do, int, if, else, and while. When the compiler
identifies such a phrase, it uses a hash table to convert the phrase to an index, a location
within an array A. Each location of A contains the start address of a special routine
that reads and compiles the particular JAVA text that is associated with the phrase.

The important feature of this type of hashing is collision avoidance. Di⌃erent
phrases should hash to di⌃erent indexes. Reference [WikiHash 24] lists several methods
for handling hash collisions.

Another example of hashing is password verification. We all have many passwords
that permit us to use various online accounts and resources. When a new user opens an
account at, say, Bobmart, the Bobmart computer asks for a username and a password,
a string of characters. It then scrambles the bits that constitute the password (a process
known as hashing) and stores the resulting binary string, together with the username,
in a password file. When the user logs into Bobmart’s computer, they enter their name
and password. The Bobmart computer (1) hashes the password to create a string C,
(2) uses the username as an index to the password file, and (3) compares C to what it
finds in that location.

In this type of hashing, it is crucial to have an irreversible (one way) computational
process to create string C. If a hacker manages to break into Bobmart’s computer and
steal the password file, they may be unable to use any of its hashed C strings in order
to retrieve an original password.

Thus, a hash table is a set of rules or computations that starts with a string of
characters and generates a string that may then be used as an array index or simply
stored for future verification. The hashing computations must be irreversible (one way)
and should avoid collisions as much as possible, i.e., they should hash di⌃erent inputs
to di⌃erent outputs. Also, every bit in a string C that is output by hashing should have
equal probability of being a zero or a 1.

(End of hashing and hash tables.)
The HLL algorithm starts by hashing an input data v into a binary string x, but
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before we continue with the algorithm it is important to analyze the rare case where
one of the early x strings output by the hash process has many consecutive leading (or
trailing) zeros. The statistical term for such an occurrence is outlier, but in English,
such an unfortunate case is often termed a fiasco.

Fiasco, a thing that is a complete failure, especially in a ludicrous or humiliating way.
—From the dictionary.

The developers of HLL have adopted the following elegant solution to this problem.
Create an array M of m counters (or registers) that are initialized to 0. Any string x
generated by the hash process is partitioned into two parts, an index j to array M and
a remainder w whose run length r(w) of trailing zeros is measured. If r(w) is greater
than the value of M [j], then M [j] is set to the new maximum r(w). An outlier w may
still happen and may greatly impair the maximum stored in a counter, but outliers are
rare and if the number m of counters is large enough, their average may considerably
mitigate the damage done by any outlier.

Thus, at the end of the input stream, when all the data items have been read
and processed, the algorithm computes the average of the m counters of array M and
multiplies the product by m to obtain the final result, the estimate of distinct data
items. The only remaining question is what type of average to use in order to minimize
the impact of the few very large counters. The best choice of average, as explained in
Section 10.7, is the harmonic mean.

It is easy to see that a large number m of counters increases the accuracy of the final
estimate, while only slightly increasing the memory requirements of array M . However,
a large m requires a large index j, which leaves fewer bits in string x for the all-important
remainder w with its consecutive zeros.

In practical applications, the input file may be very large, consisting of billions of
data items. A simple way to significantly increase the speed of HLL is to run this algo-
rithm on the p individual processors of a large, parallel computer. Each processor reads
part of the input file, runs the algorithm, and ends up with its individual m counters.
When all the processors are done, the counters are merged by a union operation. Coun-
ters #1 of the p processors are examined and the largest of their values is selected. This
is repeated for the remaining m� 1 counters. HLL is therefore an example of a parallel
algorithm.

Following is a summary of the algorithm. A data item v is input. It is hashed to a
bitstring x, which is partitioned to form an index j and a remaining part w. In order
for j to be an index to array M of m counters, its length should be log2 m. Counter
M [j] is compared to the number r(w) of consecutive zeros (leading or trailing) in w. If
r(w) > M [j], M(j) is set to r(w).

When the entire input file has been read and processed, the harmonic average of
M is computed by

Z = m
m&

j=1

1
2M [j]

,

and the final estimate of the cardinality of the input is mZ. In practice, this estimate
su⌃ers from the inevitable hash collisions, so the developers of HLL recommend to further
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multiply mZ by the complex and hard-to-compute constant �m which is given by
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In initial experiments with very large sets of data, HLL produced estimates that
were about 2% o⌃ the correct values.

It only remains to explain the game of the name. Why Hyper-Log-Log?
This algorithm went through several development steps. The first version was

named LogLog because after processing all n data items, the total number of bits in
the m counters is of the order of log2(log2 n). Here is a detailed explanation of this fact.

First, we discuss the length L(k) (the number of digits) of a given integer k. The
length depends on the size of k, and the following discussion shows why it is expressed
by a logarithm.

Each of the first 10 decimal digits 0–9 is one digit long. Each of the first 100 decimal
integers 0–99 is two digits long. It doesn’t take lone to realize that each of the first 10d

decimal integers is d digits long. Thus, the length of the integer k is  log k! decimal
digits. Since there is nothing special about 10 as the base of a numbering system, the
same argument applies to binary numbers, and the length of k in bits is also a logarithm,
but to base 2.

Now, to the choice of the name LogLog. What is actually stored in a counter M [j]
of M is the length r(w) of a run of consecutive zeros in the output string x generated by
the hash function for a visitor. The basic idea that underlies HLL is that the length of
the longest run of heads that we have seen so far is an excellent indication of the number
of coin tosses so far. Therefore, if we expect a maximum of n visitors, the largest value
of r(w) can be about log2 n.

On the other hand, since HLL deals with estimates, we don’t need to know the
precise value of r(w). Instead of storing r(w) in M [j] we can store its length in bits. For
example, if n = 100,000, then we can expect the maximum r(w) to be 5 = 1012, which
is expressed in three bits, so the number 3 is what eventually can be saved in counter
M [j].

This discussion shows that the total number of bits needed to save the various
maxima in the m counters of array M is essentially log2 log2 n, hence the name LogLog.

In the second version of HLL, dubbed SuperLogLog, the problem of outliers was
dealt with by deleting several counters with the largest counts, while retaining the
counters with 70% smallest values.

The third version, assigned the name HyperLogLog, uses harmonic instead of geo-
metric average.
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Poem on Probability and Chance

In life’s vast weave of fate and chance,
A dance of numbers, randomness,
Probability’s nuanced glance,
A subtle play in life’s vastness.

In coins that spin and dice that roll,
In cards dealt from an unseen hand,
The likelihood of outcomes’ toll,
Unfolds within a structured land.

A flip of heads, a toss of tails,
In each event, a story starts,
The odds and ends of life’s details,
In randomness, a beating heart.

The bell curve’s arc, a graceful rise,
In standard forms, predictions lie,
Normality where data lies,
A realm where chaos seems to die.

In quantum worlds, uncertainty,
Where particles in mystery,
Exist in states we cannot see,
Yet bound by chance’s history.

From weather’s whims to stock market
trends,
From simple games to cosmic ends,
Probability shapes and bends,
The path of fate, the dice it sends.

Each lottery ticket, a distant dream,
In odds so vast, the chances gleam,
A spark of hope, a fleeting beam,
In numbers’ game, life’s silent scheme.

The gambler’s fall, a siren’s call,
In past events, no future claim,
Yet patterns seem to rise and fall,
In streaks and runs, the mind’s own game.

In science and in daily life,
Probability cuts like a knife,
Through certainty and through the strife,
It marks the boundaries of our life.

Bayesian thoughts and Pascal’s bet,
In reason’s light, our paths are set,
With every choice, a thread is met,
In life’s great web, a net is kept.

The dice are cast, the wheels will spin,
In chance’s realm, we seek to win,
Yet often find, within, akin,
A dance of fate and luck within.

So in the chaos, find the rhyme,
In odds and ends, in space and time,
Probability’s grand paradigm,
A dance of chance, a silent chime.

Each moment is a coin’s soft spin,
Each breath a roll, where odds begin,
In probability, we find our kin,
In life’s grand game, we play, we win.

By chatGPT 4o, May 2024.

The 50-50-90 rule: Anytime you have a 50-50 chance of getting
something right, there’s a 90% probability you’ll get it wrong.

—Andy Rooney.
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Geometry

Geometry Quotes

Let no one ignorant of geometry enter.
—Engraved at the door of Plato’s Academy

There is geometry in the humming of the strings, there is music in the spacing of the
spheres.
—Pythagoras

I was very slow in maths, geometry I actually enjoyed.
—Liam Neeson

Music is the arithmetic of sounds as optics is the geometry of light.
—Claude Debussy

Geometry is not true, it is advantageous.
—Henri Poincare

There is no royal road to geometry.
—Euclid

The description of right lines and circles, upon which geometry is founded, belongs to
mechanics. Geometry does not teach us to draw these lines, but requires them to be
drawn.
—Isaac Newton

One of the great sources of employment for people with Ph.D.s in geometry is the
animation industry.
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—Margaret Wertheim

It is hard to convince a high-school student that he will encounter a lot of problems
more di⌥cult than those of algebra and geometry.
—E. W. Howe

You can’t criticize geometry. It is never wrong.
—Paul Rand

Poetry is as precise a thing as geometry.
—Gustave Flaubert

The early study of Euclid made me a hater of geometry.
—James Joseph Sylvester

Geometry was the first exciting course I remember.
—Steven Chu

I’ve always been passionate about geometry and the study of three-dimensional forms.
—Erno Rubik

It is marvelous enough that man is capable at all to reach such a degree of certainty
and purity in pure thinking as the Greeks showed us for the first time to be possible in
geometry.
—Albert Einstein, as quoted by Paul Arthur Schilpp, 1951.

8.1 Fractals

The term “fractal,” from the Latin fractus, meaning broken or fractured, was coined by
Benôıt Mandelbrot in 1975. Mandelbrot used this term to describe geometric shapes
that are extremely complex, and in his writings and lectures he managed to popularize
it, perhaps because fractals often have intriguing and surprising shapes, thereby serving
as a form of art, especially when artificial colors are added.

We start with an informal definition that is easy to understand. A fractal is a
geometric shape that is either self similar, or parts of it are self similar, or it scales
di⌃erently from most other geometric shapes, or is infinitely jagged and rough (non
di⌃erentiable). There have been attempts to come up with a rigorous definition of
these intriguing objects. A widely accepted definition is: A fractal is any object whose
fractal dimension exceeds its topological dimension. Fractals are also found in processes
that develop over time, and this fact must also be included in any complete, rigorous
definition. For the purposes of this section, however, it is enough to consider the three
parts of the definition above.

Self-similarity. When a circle is magnified, we may end up seeing only a small part
of it, and this part starts resembling a straight line as the circle grows steadily. Thus,
a circle, and many other familiar geometric figures, are not self-similar. However, a
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straight segment, a square, and a cube are self-similar; they look identical to smaller
parts of themselves. Hence, self similarity is not a su⌥cient condition for a fractal.

Scaling. When a circle’s radius is doubled, its circumference also doubles, but its
area increases by four. Similarly, when the radius of sphere is doubled, its volume
increases by eight. Fractals, however, behave di⌃erently in this respect. Imagine an n-
dimensional complex geometric shape that consists of infinitely many straight segments
and occupies an area or a volume in that space. If the length of every segment is
doubled, the space occupied by this object increases by a factor that is not necessarily
an integer. This factor is the fractal dimension of the object, and is normally di⌃erent
from its topological dimension, which is n, the number of dimensions of the space where
the object “lives.”

The familiar functions are either smooth (have a well-defined slope or tangent vec-
tor at every point) or have a number of points, finite or infinite, where they are non-
di⌃erentiable because of a corner or a sudden turn. A fractal, on the other hand, may
be continuous, but may have a corner or a change of direction at every point in its
codomain. It may be infinitely jagged.

The fractal dimension is the standard mathematical tool used to define fractals.
Traditionally, dimensions are natural numbers, but fractal dimensions tend to be frac-
tions. When a straight segment of length r is broken into two identical segments, each
remains one-dimensional and has length r/2. Similarly, partitioning a square up into
four smaller squares preserves the two-dimensionality and cuts each side to 1/2 of the
original. Breaking a cube produces eight smaller cubes that are still three-dimensional,
but with side length of 1/2 of the original. Thus, length sizes change in a predictable
way regardless of the dimension of the figure.

In contrast, the area or volume of an object (we’ll use the term mass instead of area
or volume, since geometric objects may have many dimensions) varies according to the
spatial dimension of the object. Assuming that the three geometric figures above are real
and have mass, what happens when they are reduced in size as before? The mass of a
half straight segment is reduced by a factor of 1/2, which can be written as (1/2)1. The
mass of each of the four smaller squares is 1/4 = (1/2)2, and that of each of the eight
smaller cubes is 1/8 = (1/2)3. The mass (and with it, the area or volume) decreases
according to the spatial dimension of the figure, and those dimensions are integers.

It is therefore easy to agree that this also applies to higher dimensions. If a sym-
metric n-dimensional figure would be broken up into 2n smaller copies of itself, the mass
of each would be smaller than the original mass by a factor of (1/2)n.

We can summarize these conclusions in (1) a length L varies according to (1/2)L,
but (2) a mass M varies by (1/2)dM , where d is the spatial dimension of the figure.

Now take a familiar self-similar fractal, such as the Sierpinski triangle, Figure 8.4.
It consists of three main parts, so it makes sense to partition it into three parts. From
the figure, it is clear that the length of each part is 1/2 the original length. However,
because it is made of three parts, it is reasonable to claim that the “mass” of each would
be 1/3 the “mass” of the original triangle. The earlier discussion of mass suggests that
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its mass would shrink by a factor of (1/2)d, which yields the important equation

⌦
1
2

↵d

=
1
3
, 2d = 3, d = log2 3 � 1.585.

This non-integer, fractal dimension makes sense because the Sierpinski triangle is
defined as the limit of infinite recursion where, in each step, the figure consists of a curve
passing through many points, but leaving many other points vacant. The curve never
becomes a solid surface, and its dimension is always less than 2.

It seems that neither the length of this curve nor its area are good indications of its
dimension. In the limit, its length is infinite, and its area is zero, because the figure is
always a curve consisting of straight segments connecting points, never a solid surface.
On the other hand, the figure of 1.585 suggests that the “final” figure (in practice, of
course, it is never final) is more than a mere curve, yet not exactly a two-dimensional
area. Some may suggest that perhaps at the limit, this triangle is 58.5% of the way from
being a curve to being an area.

Another example of a fractal dimension is the von Koch snowflake, Figure 8.3. This
fractal is naturally broken into four identical copies of itself, each scaled by a factor of
1/3. Hence, the length (or in general, the scaling factor) is 1/3 and the mass scaling
factor is 1/4, leading to the relation (1/3)d = 1/4 , that solves to d = log3 4 � 1.262.
This lower fractal dimension makes sense. Comparing the shapes of the von Koch and
Sierpinski curves, it seems intuitively that even at the limit, the former occupies less
space on the xy-plane than the latter.

The next example is the Hilbert curve, Figure 3.62, which can also be viewed as
a version of the von Koch curve, right angled. Here, the scaling factor is 1/4 and
the mass scaling factor is 1/8, leading to the relation (1/4)d = 1/8, which solves to
d = log4 8 = 1.5, an exact value which suggests that this fractal is somehow midway
between a curve and a two-dimensional surface.

Geometric shapes, which are precise and well-defined, have fractal dimensions that
are easy to calculate, but what about an arbitrary shape whose boundary may be rough
and jagged, as in Figure 8.1. The figure resembles an island, whose coastline is contin-
uous, but is fractured and is not described by a mathematical function. Even more. As
we zoom in and examine smaller details of this coastline, it often happens that what we
see is always about the same. The coastline expands before us. We see less of it, but
in more detail, yet this detail is similar overall to the way the entire coastline looked
earlier. If we observe such behavior, then the coastline is self-similar and is a fractal.

In order to determine if such a coastline is self-similar, we surround the entire island
by a screen and mark those screen boxes that cover the coastline. The number N of
boxes provides a rough approximation of the unknown length of the coastline. In order
to get a better approximation, we shrink the screen by a factor S, and again mark the
boxes that cover the coastline. Each screen box is now smaller, so more boxes cover
the coastline. Their number is therefore a better approximation of the length of the
coastline.

It is reasonable to assume that if the coastline is self-similar, the number N of boxes
would grow proportionally to the shrinking scale factor S. It is even more general to
expect N to be proportional to a certain power d of S, where d depends on the particular
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log(N)N

Sd log(S)

Figure 8.1: A Fractal Coastline.

fractal nature of the coastline.
We therefore write N � Sd or N = cSd, where c is a proportionality factor. After

scaling the screen many times and counting many values of N , we can try to estimate d by
plotting one point with coordinates (S,N) for each scaling, and trying to fit a parabola
of the form f(x) = cxd to the points as depicted in the figure. A better approach is
to plot the points on a log-log scale (log S, log N), which in principle, if the coastline is
self-similar, should give a straight line of slope d. In practice, the points would normally
be located close to this line, and a method such as least squares (Section 8.5) can then
be applied to compute the line closest to all the points, to measure its slope, and find
d, the fractal dimension of the coastline.

Historical Notes

The scientific recognition of fractals seems to have started with Gottfried Leibniz
who mentions the term “fractional exponents” in his writings. In 1872, Karl Weier-
strass published the first description and definition of a continuous function that is
non-di⌃erentiable everywhere (Section 8.2). As is common when a revolutionary ef-
fect or concept is first announced, some mathematicians couldn’t accept such functions.
They started referring to them as monsters and declared that the entire discipline of
mathematics was in a crisis.

However, later in the 19th century, Georg Cantor introduced what is now called the
Cantor sets, and was followed by Felix Klein and Henri Poincaré who both introduced
a family of fractals that came to be called self-inverse fractals. Those pioneers were
followed by (among others):

(The Cantor set, Figure 8.2, is obtained from [0,1] by removing the open middle
third and iteratively removing the middle third of each remaining interval.)
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Figure 8.2: The Cantor Set.

Figure 8.3: A Koch Snowflake.

The 1915 Koch snowflake of Niels Helge von Koch.

The 1915 Sierpinski triangle, Figure 8.4, and Sierpinski carpet (or gasket), both by
Wac law Sierpiński.

Figure 8.4: The Sierpinski Triangle.

The 1918 Julia set, by Gaston Julia and, independently, Pierre Fatou.

The 1938 Lévy C curve, named after Paul Lévy. This name, by the way, is a classic
example of an object named after the last person who invented it, because both Ernesto
Cesàro in 1906 and Georg Faber in 1910 described and analyzed this object before Lévy.

The name of M. C. Escher is often mentioned in connection with original and
unusual drawings and paintings, and it seems that Escher was also a pioneer in fractal
art. His well-known 1959 drawing Circle Limit III consists of shapes that shrink as
they are repeated and approach the edges of the drawing, thereby creating a circular
self-similar pattern that looks the same when magnified.
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We eventually reach Benôıt Mandelbrot, the individual primarily credited for pop-
ularizing fractals among mathematicians, scientists, artists, and the public. He became
interested in the subject during the 1960s, focusing on self-similarity in his thoughts
and writings, but his most significant impact on the subject’s popularity came from his
famous book The Fractal Geometry of Nature, published by W. H. Freeman in 1977.
Of the numerous individuals who were captivated and intrigued by fractals, I will only
highlight Loren Carpenter, whose software for creating and displaying fractal landscapes
was unexpected and a revelation to many.

Mandelbrot obituaries:
[I]f we talk about impact inside mathematics, and applications in the sciences, he is
one of the most important figures of the last fifty years.

—Heinz-Otto Peitgen.
An icon who changed how we see the world

—Chris Anderson.
Mandelbrot had a powerful, original mind that never shied away from innovating and
shattering preconceived notions [. . .h]is work, developed entirely outside mainstream
research, led to modern information theory.

—Nicolas Sarközy.

Techniques for generating fractals

Iterated function systems (IFS). This type of fractal starts with a simple geometric
figure (typically two- or three-dimensional) such as a set of points, segments, or arcs—
that is later refined in steps where it is scaled, and smaller copies of itself are combined
after being moved, rotated, or reflected. This process normally results in a self-similar
figure. Figure 8.5 illustrates a simple example.

Reference [Hutchinson 81] is the original proposal for this type of fractals, but it
was [Barnsley 13] that help popularize it.

IFSs provide models for certain plants, leaves, and ferns, by virtue of the self-similarity
which often occurs in branching structures in nature.

—Michael Barnsley.

Some familiar IFS fractals are the Koch snowflake, Cantor sets, Haferman carpet,
Peano curve, Harter-Heighway dragon curve, T-square, Menger sponge, and the Sier-
pinski triangle, carpet, and gasket.

The definition of an IFS is simple. It consists of the initial shape (points, lines, and
other basic geometric figures), the scaling factor, and rules for combining the copies in
the construction steps. These items require only a small storage space, which begs the
question of the inverse IFS problem. Given a digital image, a set of pixels, find an IFS
(initial shape and rules) that generates this set, exactly or approximately, after several
iterations. Such an IFS is a compressed version of the original image, a fact which has
prompted researchers to develop methods for finding an IFS for a given image.

Strange attractors. Mathematics is a vast field of knowledge, encompassing a large
number of areas or disciplines. One such area is the study of dynamical systems. Such
a system is a set of mathematical points or physical objects that move in space and
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Figure 8.5: An IFS Example.

This is a file from the Wikimedia Commons, tinyurl.com/dbt9uaxy

time. Examples of dynamical systems are the movement of a mathematical point along
a curve, the apparently random motion of air or water molecules, the periodic motion
of a pendulum, and the variations of prices, interest rates, unemployment rates, and
stocks/shares in the economic world.

A dynamical system evolves, develops, and changes its state, shape, and form over
time. It may happen that at a certain point in time, the states of a system start
approaching a limit, where the system remains stationary. Such a limiting state is
referred to as an attractor or a stable state. When a system at this state is slightly
disturbed, it tends to return by itself to the attractor state.

An attractor can be a point (in space or in time), a finite set of points, or a sur-
face (an infinite set of mathematical points embedded in three-dimensional space). An
attractor can also be a complex, infinite set of points that can be considered a fractal
because it may be assigned a non-integer dimension. Such an attractor is called strange.

In practice, a strange attractor can be the limit of a nonlinear process. Two well-
known examples are a simple sequence of discrete values, and the (continuous) solutions
of a system of di⌃erential equations. Here are examples.
• An infinite mapping of the form xn+1 ✏ f(xn). Such a limit may exist for a wide range
of initial values x0, but may be very sensitive to those values. Even the slightest change
in x0 may result in a completely di⌃erent behavior of the sequence elements xi, and
may lead to di⌃erent limit. A well-known example of such mapping is the logistic map,
reference [logistic map 24]. This is the simple nonlinear mapping xn+1 ✏ r xn(1� xn),
whose behavior is very sensitive to the value of r and to the initial x0. For some values,
the sequence diverges to negative infinity, for other values it may either converge to a
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unique value (a single attractor) or it may oscillate between two values of x.
• The Lorenz attractor. The story of Edward Lorenz and his discovery of the behavior
of nonlinear processes and chaotic systems is told on Page 299.

The Lorenz system (or Lorenz attractor) is a system of ordinary di⌃erential equa-
tions first studied by Lorenz. His first system consisted of the equations

dx

dt
= ⇣(y � x),

dy

dt
= x(✏� z)� y,

dz

dt
= xy � ⇥z.

For certain parameter values and initial conditions, this system exhibits chaotic solu-
tions. Even a slight change in one of the parameters or conditions leads to a widely
di⌃erent and unpredictable solution. This behavior has resulted in the term “chaos” or
“chaotic behavior” applied to such systems.

It is perhaps useful to think of such a system as being globally stable—because it has
solutions to a wide range of parameter values and initial conditions—but also locally
unstable, because the solutions are very sensitive to the initial conditions, making it
impossible to predict the solution after even a slight change in the conditions.

L-systems. An L-system, reference [L-systems 24], is a type of formal grammar. You
start with a single symbol (the axiom) drawn from some alphabet of symbols. You then
replace that symbol with a substring of symbols according to some production rule. You
continue to replace each of the elements of the resulting substring with another substring
according to other production rules. This iterative process may result in a vast, complex
string of symbols that is meaningful because it may describe the growth of a plant or a
bacteria, it may describe the morphology (shape) and the growth pattern of a complex
plant, and it may also result in a infinitely-complex mathematical pattern that can be
considered a fractal.

L-systems grew from the ideas, in 1968, of the biologist and botanist Aristid Linden-
mayer, who used them to describe the behavior of plant cells and to model the growth
processes of plant development.

The formal definition of an L-system is a triplet G = (V,◆, P ), where V is the
alphabet of symbols. It consists of variables (symbols that can be replaced) and terminals
(constants that cannot be replaced). The initial value (or axiom) ◆ is a symbol or a
string of symbols from V . P stands for the set of production rules which describe how
to replace symbols in the string that is being constructed. A rule consists of two strings,
the predecessor (which is being replaced by the rule) and the successor (its replacement).
A symbol X which is in the alphabet but which is not the predecessor of any rule, is
called a terminal. It is never replaced.

The rules are applied simultaneously to all the symbols of the current string, as the
following example illustrates. Consider the L-system defined by V = (A,B), ◆ = A, and
P : (A ⇣ AB), (B ⇣ A). Then successive generations produce the following substrings
(where the vertical bars are for easier reading):
0: A
1: AB
2: AB|A
3: AB|A|AB
4: AB|A|AB|AB|A
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5: AB|A|AB|AB|A|AB|A|AB
6: AB|A|AB|AB|A|AB|A|AB|AB|A|AB|AB|A
7: AB|A|AB|AB|A|AB|A|AB|AB|A|AB|AB|A|AB|A|AB|AB|A|AB|A|AB

Notice that the strings produced by this system have lengths that are Fibonacci
numbers. Also the ratio of As to Bs converges to the golden ratio.

⌅ Exercise 8.1: (A joke.) Notice that these lengths start with 1, 2, 3, and 5, whereas the
Fibonacci sequence starts with 1, 1, 2, 3, and 5. Is this because of the axiom of choice?

The next example of an L-system creates a fractal binary tree. It is defined by an
alphabet of two variables 0 and 1 and two constants “[” and “]”. The axiom is 0 and
the rules are (1 ⇣ 11) and (0 ⇣ 1[0]0). Just three iterations of this rule produce the
long complex strings
1: 1[0]0
2: 11[1[0]0]1[0]0
3: 1111[11[1[0]0]1[0]0]11[1[0]0]1[0]0

In order to actually draw a fractal binary tree, we employ two concepts that are
familiar to any computer programmer. They are a LIFO (last in, first out) stack and
turtle graphics. The LIFO principle is to pop out of the stack the last item pushed
into it. Turtle graphics is a basic method for drawing digital graphics. It is based on
an imaginary turtle that can move in (two- or three-dimensional) space and has at any
time a location, an orientation, and a pen that can be up or down (other attributes,
such as color and line thickness, can also be assigned to the turtle).

A complete drawing is generated by specifying a string of triplets, each consisting
of (1) move/turn (2) how much, and (3) pen up/down. Typical examples are (forward,
10 steps, pen up), (turn left, 45⇤, pen down), (back, 5 steps, pen down).

Based the concept of turtle graphics, the tree is drawn by the following rules:
• 0: draw a line segment ending in a leaf
• 1: draw a line segment
• [: push position and angle into the stack, turn left 45⇤
• ]: pop position and angle out of the stack, turn right 45⇤
The iterations above, combined with the tree drawing rules, produce the tree shown

growing in Figure 8.6

Escape-time fractals. In this approach to fractal design, an area R in the complex
plane is chosen. A point c in R is chosen, and a nonlinear iteration is performed with
c as its seed, to generate a sequence of points (complex numbers). If the sequence
diverges, point c is ignored, but if the sequence is bounded (it converges to a point or
it oscillates within a finite region of the complex plane), point c is added to the fractal
being generated. The process is repeated for every point in R (well, for as many points
as practically possible).

The first fractal generated and researched by this approach is the Mandelbrot set,
described here, but many other escape-time fractals are known and have been researched
and described in detail, among them the Julia set, burning ship fractal, nova fractal,
and Lyapunov fractal.

The Mandelbrot set is defined by the seed z = 0 and the iteration zi+1 = z2
i + c for

an arbitrary complex number c. The iteration is performed on as many numbers c as
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Figure 8.6: Constructing a Fractal Binary Tree.

possible, and those values of c for which the iteration remains bounded are appended to
the set. The set was envisioned and (roughly) drawn by others, but it was Mandelbrot
who popularized it and thereby proved the little-known adage that an invention is often
named after the last person who invented it.

It is trivial to see that for c = 1, the iteration runs through 0, 1, 2, 5, 26, . . . and
diverges to infinity, but for c = �1, the recursive sequence 0, �1, 0, �1, 0, . . . , is
bounded, which is why �1 belongs to the Mandelbrot set. The shape of this set is not
shown here, because it is very familiar and it appears in countless places.

The burning ship fractal is similar to the Mandelbrot set, with the di⌃erence that
instead of squaring zi, each iteration squares the sum of the absolute values of the real
and imaginary parts of z, Thus

zn+1 = (|Re(zn)| + i|Im(zn)|)2 + c, z0 = 0.

The Chaos game. This fun and unexpected approach to fractal design is based
on randomness. Start with a regular n-gon and choose a point S (a seed) inside it
at random. Start a loop where a new point is computed in each iteration from its
predecessor. Starting with S, a polygon vertex v is chosen at random, and a new point
Q is generated along the segment connecting S to v. If the length of this segment is
denoted by L, then Q is placed at a distance of r · L from S, where r is often, but not
always, less than 1. The next iteration generated a point P from Q in the same way. If
a noticeable, non-random pattern emerges after many iterations, the final figure can be
“cleaned” by removing some of the initial points, which tend to be outliers.

This game is fully defined by the values of n and r. With a bit of luck, a regular
pattern starts to emerge after many iterations, but if it happens that no discernible
pattern appears, the game can be repeated with di⌃erent parameters or rules. Here are
some variations that can produce well-defined and attractive fractals.

1. The next vertex cannot be the same as the current vertex.
2. The next vertex must be one place away (anti-clockwise) from the current vertex.
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3. The next vertex cannot be a near neighbor of the current vertex if the current
vertex and its predecessor are the same.

The top row of Figure 8.7 illustrates obvious fractals that correspond to various
values of n and r. The bottom row of the figure shows how n = 4 (a square) resists the
chaos game for several values of r, although r = 0.6 promises an eventual non-random
pattern. The patterns in the figure were computed and displayed by the Mathematica
notebook ChaosGame.nb, available from reference [ChaosGameNotebk 24]. Wikipedia
article Chaos_game has more examples. The popular mathematical software Geogebra
can also be used to produce Chaos Game fractals.

n=3,       r=1/2

n=4,       r=0.5 n=4,       r=0.6 n=4,       r=0.75 n=4,        r=0.9

n=5,       r=3/8n=5,       r=1/3 n=6,        r=1/3

Figure 8.7: Fractals and Non-Fractals Generated by the Chaos Game.

8.2 Weierstrass Function

One of the central concepts in mathematics is that of a function. The formal definition
of a function is straightforward. A function f from a set X to a set Y is an assignment of
one element of Y to each element of X. The set X is called the domain of the function
and the set Y is called the codomain of the function (in the past the codomain was
referred to as the range of the function). The notation f : X ⇣ Y is used to indicate a
function and its two sets, while the familiar notation y = f(x) implies that set element
x is mapped to set element y by function f .

A continuous function is one that satisfies the following property: a small variation
of its argument induces a small variation of the value of the function. This implies
that there are no abrupt changes—discontinuities, jumps, or holes—in its value. The
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converse is also true. If we see a small change in the value of a function, we can trust
that it was caused by a small change in its argument.

A discontinuous function is a function that is not continuous. The following are
simple discontinuous functions:

The simple function y = 1/x is discontinuous at x = 0.

The Heaviside step function H(x) =
. 1 if x ↵ 0,

0 if x < 0.

The sign function, signum sgn(x) =

✓ 1 if x > 0,
0 if x = 0,
�1 if x < 0.

The function sin(1/x2) is discontinuous at x = 0. It also oscillates infinitely many
times as its argument approaches zero (either from below or from above).

A function is di⌃erentiable if its derivative exists at every point in its domain. The
graph of a di⌃erentiable function is never vertical; it does not have points where the
slope is infinite. A di⌃erentiable function has no breaks, angles, or cusps, and is smooth
in the sense that it is locally well approximated as a linear function at each interior
point.

Many functions have one or several points where they are nondi⌃erentiable; they
have a point or a cusp, but may still be continuous at those points. Examples are
y = |x| and y =

0
|x| + 1/2. The function |x2 � 1| is nondi⌃erentiable but continuous

at the two points x = ±1. A similar example is |x � 1| + |x + 1|. In contrast, the
step function y = �x� and the trigonometric function tan(x), even though generally
smooth, are nondi⌃erentiable at infinitely many points, and are also discontinuous at
those points.

⌅ Exercise 8.2: Find examples of simple functions that are nondi⌃erentiable at infinitely
many points.

In the past, mathematicians had the notion that a continuous function could be
nondi⌃erentiable on at most a set of isolated points, but this belief was shattered in
1872, when Karl Weierstrass managed to artificially construct a function, now named
after him, that is everywhere continuous but nowhere di⌃erentiable. It is as if this
function changes direction every time it proceeds from a real number to its successor,
except that real numbers don’t have successors (see Page 81). Figure 8.8 gives an idea of
the shape of the graph of this function, which obviously cannot be viewed in full detail.
Even its general shape was unknown and had to wait for the power of the modern
computer. When we try to zoom in on a small region of this function, it looks jagged
at any magnification. Any small parts of it are irregular, spiky, and serrated.

Such a function cannot be expressed simply in terms of basic arithmetic operations
and has the form of an infinite sum of cosines. It is therefore a special case of a Fourier
series (an expansion of a periodic function into a sum of trigonometric functions). The
original function presented by Weierstrass was the infinite sum

cos(3�x)
2

+
cos(32�x)

22
+

cos(33�x)
23

+ · · · ,
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a = 0.5; b = 3.5;
f[x_] := Sum[a^n Cos[b^n Pi x], {n, 0, 100}];
Plot[f[x], {x,-Pi,Pi}, Frame->True, AspectRatio->0.5, PlotStyle->{Black, Thin}]

Figure 8.8: Weierstrass function for a = 0.5 and Various b.

but the modern definition is

f(x) =
�&

n=0

an cos(bn�x), where a ⇠ (0, 1), b is a positive odd integer, and ab < 1 +
3
2
�.

Weierstrass’s contemporaries deplored his discovery. They wre shocked and o⌃ended
by it and referred to it as pathological, a monster, “lamentable scourge,” and “an outrage
against common sense.” All of which are understandable, and yet this function, as well
as similar “cousins,” discovered at about the same time, refused to go away. It took
mathematicians decades to come to terms with this monster which trampled over many
of their old, well-established theories and proofs. It took time for people to realize
that the new monster functions provide a key that opens new fields and concepts in
mathematics, and they should be acceptable as part of this branch of knowledge. Today,
we simply refer to them as examples of fractals.

I recoil with fear and loathing from that deplorable evil, continuous functions with no
derivative.

—Charles Hermite (1893), on the Weierstrass function .

Reference [Kucharski 14] tells the history of the Weierstrass function and the be-
ginning of the acceptance of fractals.

A bit of history. Already in 1861, Bernhard Riemann claimed that the function

fa(x) =
�&

k=0

sin(ka�x)
ka�

,
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is nondi⌃erentiable on a dense set of the real numbers, but he did not provide a proof.
Reference [Weisstein 24] shows that for rational arguments x = p/q, this function can
be computed as the finite sum

f

�
p

q

�
=

�

4q2

q�1&

k=1

sin
*

k2p⇤
q

+

sin2
*

k⇤
2q

+ .

8.3 Continuity

Continuity is one of the key concepts in the study and analysis of real and complex
functions.

What does it mean to say that a function is continuous or that it is continuous in
a certain interval? Here is some explanations, arranged roughly in increasing order of
complexity.

A curve is continuous if it can be drawn without lifting the pen o⌃ the paper.
It is continuous if it doesn’t have “holes” or “jumps.”
Continuity is the opposite of discreteness.
A function is continuous at an input if that output is what we intuitively expect it

to be by examining nearby outputs.
The term continuous means that the value of f(x) at a point p equals the limit of

values as the inputs approach p.
A function f(x) is continuous at point p if limx⇧p f(x) = f(p).
It is continuous if a small variation of the argument induces a small variation of the

value of f .
Alternatively, if f(x) gets closer to f(p) as x gets closer to p.
A function is continuous if arbitrarily small changes in its value can be assured by

restricting to su⌥ciently small changes of its argument.
An infinitesimal change in x necessarily produces an infinitesimal change in y

(Cauchy, 1821).
The limit of a function f(x) as x approaches p is a number L with the following

property: given any target distance from L, there is a distance from p within which the
values of f(x) remain within the target distance.

A definition based on the topological concept of a neighborhood. A function f from
a domain X to a codomain (range) Y is continuous at a point x ⇠ X if and only if for
any neighborhood V of f(x) in Y , there is a neighborhood U of x such that f(U)  V .

Finally, the formal, rigorous (,↵) definition of continuity at a point is: A function
f(x) is continuous at point p if for any real positive  there exists a real positive ↵ such
that |x� p| < ↵ implies |f(x)� f(p)| < .

Today, we believe that the definition of continuity was first introduced into math-
ematics in 1817 by Bernard Bolzano. In 1861, it was used by Karl Weierstrass and
popularized by him and others. We still use this form today, with the only di⌃erence,
introduced by Hardy in 1908, that the arrow is placed under the limit symbol instead
of following it.
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Because of the infinite number of functions and their varieties, there may be unusual,
strange cases of one-sided limits that are di⌃erent. Consider the limits limx⇧p+ f(x) and
limx⇧p� f(x). In the former, the limit is computed by starting with x > p and decreasing
x toward p. In the latter case, x starts smaller than p and is increased. We say that the
limit exists if the two limits above are equal.

Simple examples of one-sided limits are:
1. Function y(x) = |x|/x at x = 0. The limit limx⇧0 y(x) is one-sided. When zero

is approached from the right, the limit of y is 1, but when zero is approached from the
left, the limit is �1. Hence, y is discontinuous at zero.

2. Function y(x) = 1/(x + 1) at x = 0. The limit limx⇧0 y(x) is one-sided. When
zero is approached from the right, the limit of y is ⌫, and when zero is approached from
the left, the limit is �⌫. Hence, this function is also discontinuous at zero.

Earlier in this Chapter we discuss functions that are everywhere continuous but
nowhere di⌃erentiable, as well as functions that are everywhere discontinuous. In this
section we are interested in functions that are continuous at one point only or at a finite
number of points, or at an infinity of points. Such functions used to be referred to as
pathological, weird, or strange, but today we realize that they are of interest because
they provide deeper understanding of the mathematical concept of continuity.

Intuitively, a function that is everywhere discontinuous jumps up or down at every
point in its domain, but intuition, even though useful in mathematics, must always
be checked and rephrased carefully, so here is a more rigorous definition of function
discontinuity. A function f is nowhere continuous if for each point x in its domain there
is some  > 0 such that for every ⌅ > 0 we can find a point y such that |x� y| < ⌅ but
|f(x)�f(y)| ↵ . In other words, no matter how close f gets to any fixed point x, there
are points closer to x at which the function takes values that are not close to its value
at x.

We expect an everywhere-discontinuous function, like an everywhere nondi⌃eren-
tiable function, to be more complex than a polynomial, a logarithm, or a trigonometric
function, and this is generally, but not always, true. We continue with a few examples
of these functions, which are sometimes referred to as pathological.

Dirichlet function, named after Johann Dirichlet. Its definition is

f(x) =
�

1, if x ⇠ Q,
0, if x /⇠ Q.

Both the rationals and irrationals are dense sets, and each is dense in the other. There-
fore, the best that can be done graphically is to draw each case as a horizontal set of
dense dots; it is impossible to get a better drawing.

This function is discontinuous at any real point, rational or irrational, because any
rational point (where f(x) = 1) is surrounded by infinitely many irrational points (where
f(x) = 0). The function oscillates infinitely many times even at the shortest possible
distance from any point on the real number line. Consider the case f(8). At this point,
Dirichlet’s function is 1, but as we get closer to 8, either from the left or from the right,
we pass through infinitely many irrational numbers, where the function is zero; not close
to 1.
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We can find sequences of rational numbers that converge to 8, such as an = 8+1/n.
The sequence f(an) converges to 1, because it is always 1, but the sequence f(8 + �/n)
is always irrational and therefore all zeros and it converges to zero at 8.

We conclude that it is impossible to find a general limit for f(x) at any point,
because di⌃erent sequences xn that converge to 8 would converge to di⌃erent limits of
f(xn). This justifies the claim that such a limit does not exist and proves that Dirichlet’s
function is everywhere discontinuous.

The following proof that the Dirichlet function is everywhere discontinuous is quoted
from reference [WikiDirichlet 24]:

If y is rational, then f(y) = 1. To show that Dirichlet function is not continuous at
y, we need to find an  such that no matter how small we choose ↵, there will be points
z within ↵ of y such that f(z) is not within  of f(y) = 1. In fact, 1/2 is such an .
Because the irrational numbers are dense in the reals, no matter what ↵ we choose, we
can always find an irrational z within ↵ of y, and f(z) = 0 is at least 1/2 away from 1.

If y is irrational, then f(y) = 0. Again, we can take  = 1/2, and this time, because
the rational numbers are dense in the reals, we can pick z to be a rational number as
close to y as is required. Again, f(z) = 1 is more than 1/2 away from f(y) = 0.

The Dirichlet function brings us to an even more unusual function that is somewhat
similar to Dirichlet’s. It is not smooth, it is infinitely fragmented, but there is one point,
namely zero, where it is continuous. Reference [Cummings 19] refers to this strange
creature as a modified Dirichlet’s function. It is defined as

f(x) =
�

x, if x ⇠ Q,
0, if x /⇠ Q.

Thus, over the rationals, this function is a fragmented straight line with a 45⇤ slope,
while on the irrationals, it is the fragmented x-axis. The previous analysis of the original
Dirichlet function implies that the modified version is discontinuous both on the x-axis
and on the diagonal line, but what about the point x = 0?

It turns out that all sequences ai that converge to zero result in sequences f(ai)
that converge to f(0). As we move over the real numbers toward zero, the function
oscillates between zero (when the argument is irrational) and x (when the argument is
rational), but the oscillations dampen as we approach zero, and the limit of f(ai) is zero,
declaring the real number 0 a point where our modified, weird function is continuous.

The Thomae function, sometimes called the popcorn function, and named after
Carl Thomae. This is another modification of the Dirichlet function.

h(x) =

⌧
�

�

1, if x = 0,
1
q if x ⇠ Q and x = p

q , where the integer p and the natural q are coprime,

0 if x /⇠ Q.

The term coprime (or relatively prime) means that 1 is the only positive integer that
divides both p and q. The Thomae function is well defined, because every rational
number can be uniquely represented with an integer p and a natural q which are coprime.

It is easy to convince ourselves that at every rational point r, h(r) is positive, but
as we move on the number line toward point r, we go through infinitely many irrational
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numbers, where h(x) is zero. This function is therefore discontinuous at every rational
point.

Now choose an irrational number c. Given an arbitrary positive , we can always
find a real N such that 1

N < . There must therefore be a region around c where all x
values satisfy h(x) < 1

N < . This is true, because within any given distance of c there
are only a finite number of rationals which have a denominator of N or smaller. Find
the one that is nearest c, call it d, and choose ⌅ = |c� d|. Now, all the rationals in the
open interval (c⌅, c+ ⌅) have denominators that are larger than N , implying that all h()
values within this interval are smaller than 1/N .

The unusual Thomae function is therefore continuous at every irrational number
and discontinuous at every rational number

The definition of Thomae function is deceptively simple, but drawing an approxi-
mate graph of it requires some thinking. It requires a finite set of rational arguments
that satisfy the definition of the function. This set should be large to cover enough
rational numbers that would appear dense in the diagram, but would not be too close
as to merge into a single block. Figure 8.9 gives an idea of the shape of this unusual
function.

maximum denominator 20

choose graph spikes triangles

George Beck "The Modified Dirichlet Function"
http://demonstrations.wolfram.com/TheModifiedDirichletFunction/
Wolfram Demonstrations Project
Published: March 7 2011

Figure 8.9: The Thomae Function.

Bergfeldt function. This is a little known mapping, discovered by Aksel Bergfeldt
[Bergfeldt 18], that maps a real number to a real number, and is everywhere discontin-
uous. Given a real argument x, we look at its binary value and denote its bits by bi.
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The Bergfeldt function is defined by

f(x) =
�$�

k=1
(�1)bk

k , if the sum converges,
0, otherwise.

(8.1)

The sum of Equation (8.1) is a finite part (a tail) of the harmonic series, Section 5.10.1.
This series diverges, but reference [Coutteau 17] proves that any tail of it can be made
to converge to any real number by changing the signs of some of its terms.

The Bergfeldt function is everywhere discontinuous because it maps every open
interval of the real numbers onto the entire real number line (but I couldn’t find a proof
of this claim).

Conway base-13 function. This function is surjective, and it is this feature which
makes it everywhere discontinuous.

A surjective function y = f(x) maps some domain element x to every codomain
element y. No y is left behind, but an element y may be the map of several x elements.

As its name implies, this base-13 function is based on tridecimal (base-13) numbers.
The representation of such a number requires 13 digits, and the standard convention is
to choose the ten decimal digits and the letters A, B, and C. Thus, for example,
60143726310 ⇣ 977ACB4B13 and 6214.3826310 ⇣ 2aa0.4c883ac0a113.

However, in order to define his uncommon and strange function, Conway substituted
the arithmetic symbols “+,” “-,” and “.” for A, B, and C, respectively. Now, the
number 3629265 has the base-13 representation 9+0--7, but the number 54349589 has
a base-13 representation of -34.128, which resembles a normal decimal number. The
base-13 function is now defined by the following rules:

1. If from some point onwards, the tridecimal expansion of x is of the form
+x1x2 . . . xn.y1y2 . . ., then this number is the value of f(x).

2. If the tridecimal expansion of x ends with�x1x2 . . . xn.y1y2 . . ., then this negative
number is the value of f(x) and everything preceding the minus sign is ignored.

3. In any other case, f(x) = 0.
The main reference to this unusual function is [Base 13 function 24]. It shows that

this function is everywhere discontinuous, because it is unbounded on every interval
around every point. Given an interval on the real number line, the function maps
almost all the real numbers in the interval to zero.

8.4 Interpolation

Typical dictionary definitions of the term interpolation (in mathematics) are “The in-
sertion of an intermediate value or term into a series by estimating or calculating it
from surrounding known values,” and “A method of constructing (finding) new data
points based on the range of a discrete set of known data points.” This section concen-
trates on the latter definition and describes several important methods of interpolation
commonly used to construct curves that interpolate discrete sets of points and can be
smooth, pleasing to the eye, and also editable (can be reshaped and controlled by the
user interactively in real time).
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Figure 8.10, made by GeoGebra, illustrates how five points, labeled A through E,
are interpolated by (1) straight segments (black), (2) a polynomial (Lagrange, green),
(3) a spline (cubic, blue), and (4) a Bézier curve (red dashed). It is clear that the straight
segments pass through the points but may not be what a designer would have in mind
for the final curve. The Lagrange polynomial is smooth and also passes through the
points, but it oscillates wildly and escapes to infinity before it enters and after it leaves
the interval of points. Most graphics designers may agree that the blue spline curve is a
better interpolation, because it is tight. Finally, the Bézier curve starts at point A and
ends at point E, but it doesn’t pass through the interior points. Nevertheless, this type
of curve is popular and has important applications in many graphics software programs
and packages, because it interacts with the designer in an intuitive way.

Polynomial({A, B, C, D, E})
Spline({A, B, C, D, E}, 3)
A (1-t)^4 + 4B t(1-t)^3 + 6C t^2(1-t)^2 + 4D t^3(1-t) + E t^4

Figure 8.10: Four Interpolation Techniques.

See also Page 359 for bilinear interpolation.

8.5 Least Squares Interpolation

When faced with a set of N points, the challenge of interpolation involves finding a
function that smoothly connects the points, without unnecessary fluctuations, abrupt
turns, or sudden changes, allowing for accurate estimation of values within the given
range. Polynomials are frequently used for interpolation as they can achieve any desired
shape and are simple and quick to calculate.

If the degree n of the interpolating polynomial is low (if n < N), the best that
can be done is to employ the least-squares method to compute a low-degree polynomial
that would be the closest possible to all the points. If n = N , it is easy to compute an
N -degree polynomial that passes through the N points, but such a polynomial tends
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to oscillate, especially for large values of N . In such a case, a spline curve (a piecewise
polynomial, Section 8.11) is the best solution. Polynomials of degrees higher than N are
irrelevant to the problem of interpolation.

The least-squares technique deals with the problem of finding the curve that is
closest to a given set of points. The term “closest” means that the sum of distances of
the points from the curve is the minimum possible for any curve. We start with the
simplest curve, a straight line. Figure 8.11a shows a set of N = 8 points (xi, yi) and
a straight line y = ax + b that is close to many of them. The line we are looking for
is the one that minimizes the distances from itself to all the points, and it is the term
“minimize” that is the source of the word “least” in least squares.

The blue vertical arrows ei from the line to the points are not the actual distances,
which are perpendicular to the line and are computationally di⌥cult to derive, but the
much simpler vertical distances. Notice that the distances—which are also referred to as
errors, o⌃sets, or residuals—can be negative. The problem has been reduced to finding
those values of parameters a and b that minimize the sum

$N
k=1 [yk � (axk + b)] of the

(vertical) distances.

jxj

y=ax+b

x2

x2
dx
d

jxj
dx
d

e1
e2

e3 e4

e8

e6

e7

e5

(a)
(b)

(c)

Figure 8.11: A Line Close to Eight Points.

Because the distances ei are signed, the sum that we need is that of the absolute
values of the distances, but in practice we use the sum of the squares of the distances,
because of the following:

The next step is to compute the partial derivatives of the sum with respect to a and
b, but the derivative of the absolute value function y = |x| is discontinuous at x = 0,
because the function has no derivative at this point. This is illustrated in Figure 8.11b,c.

What we really need is not necessarily the sum of distances, but any quantity that
would produce the same values for a and b as those produced by the sum. The sum of
squares is such a quantity, which is why the word “square” is part of “least squares.”
The same values of a and b that minimize the sum of squares also minimize the sum
itself, and the derivative of the function y = x2 is linear and continuous (see the red line
in part (c) of the figure).

We therefore construct the sum of squares

E(a, b) =
N&

k=1

[yk � (axk + b)]2 , (8.2)
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and compute its partial derivatives

⌫

⌫a

N&

k=1

[yk � (axk + b)]2 =
N&

k=1

⌫

⌫a
[yk � (axk + b)]2

=
N&

k=1

�2xk(yk � (axk + b)) = �2
N&

k=1

xkek.

⌫

⌫b

N&

k=1

[yn � (axk + b)]2 =
N&

k=1

⌫

⌫b
[yn � (axk + b)]2

=
N&

k=1

�2(yk � (axk + b)) = �2
N&

k=1

ek.

Equating these derivatives to zero and simplifying, yields the system of two equa-
tions in the two unknowns a and b, whose matrix form is

�$N
k=1 xk N$N
k=1 x2

k

$N
k=1 xk

� �
a
b

�
=
� $N

k=1 yk$N
k=1 xkyk

�
.

These equations can also be converted to the more readable form

�

⇢⇢⇠

x1 1
x2 1
...

xN 1

⌫

��⇡

�
a
b

�
=

�

⇢⇢⇠

y1

y2
...

yN

⌫

��⇡ or
�

x1 x2 . . . xN

1 1 . . . 1

�T �
a
b

�
= [ y1 y2 . . . yN ]T ,

(8.3)
where the superscript T stands for matrix transpose.

A 4-point example

Given the four points (0, 4), (1,�1), (2, 1), and (3, 2), we apply the least-squares
method to them and compute the straight segment ax + b that is closest to all of them.

The straight segment requires the values of two unknowns a and b, but we have
four known quantities that need to be included in the computations, namely the four
points. We write the system of four equations with two unknowns

L

�
a
b

�
=

�

⇢⇠

0 1
1 1
2 1
3 1

⌫

�⇡
�

a
b

�
=

�

⇢⇠

4
�1
1
2

⌫

�⇡ ,

and solve it by first multiplying it on the left by the transpose

�
0 1 2 3
1 1 1 1

�
�

⇢⇠

0 1
1 1
2 1
3 1

⌫

�⇡
�

a
b

�
=
�

0 1 2 3
1 1 1 1

�
�

⇢⇠

4
�1
1
2

⌫

�⇡ ,
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which yields �
1
5 � 3

10
� 3

10
7
10

� �
a
b

�
=
�

7
6

�
.

This is solved by matrix inversion to produce

�
a
b

�
=
�

1
5 � 3

10
� 3

10
7
10

��1 � 7
6

�
=
�
�2/5
21/10

�
.

Figure 8.12 shows the points and the resulting line y = �2
5x + 21

10 .

0.5 1.0 1.5 2.0 2.5 3.0

- 1

1

2

3

4

pts={{0,4},{1,-1},{2,1},{3,2}};
L={{0,1},{1,1},{2,1},{3,1}};
LT=Transpose[L].L
Solve[LT.{{a},{b}}==Transpose[L] .{{4},{-1},{1},{2}},{a,b}]
p1=ListPlot[pts,PlotStyle->{PointSize[Large],Red}];
p2=Plot[-(2/5)x+(21/10),{x,-3,5}];
Show[p1,p2]

Figure 8.12: Linear Least-Squares Example.

Linear LS with higher-order polynomials

If the given set of points to be interpolated is very di⌃erent from a straight line, the
least-squares technique can still be used to fit a curve close to the points by increasing
the degree of the curve. Mathematically, this starts by extending Equation (8.2) from a
straight line (a degree-1 polynomial) to a degree-n polynomial. This produces the error
function

E(a1, a2, . . . , an) =
N&

k=1

[yk � (a1xk + a2x
2
k + · · · + anxn

k )]2. (8.4)

This is still considered linear least squares, because the coe⌥cients ai of the polynomial
appear linearly and not, for example, as a2

i or a3
i .

The n partial derivatives of Equation (8.4) with respect to the coe⌥cients ai are
then calculated and equated to zero, producing a final result that is a direct extension
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of Equation (8.3)

�

⇢⇢⇢⇢⇠

xn�1
1 xn�1

2 . . . xn�1
N

...
...

x2
1 x2

2 . . . x2
N

x1 x2 . . . xN

1 1 . . . 1

⌫

����⇡

T

�

⇢⇠

a1

a2

. . .
an

⌫

�⇡ = [ y1 y2 . . . yN ]T , (8.5)

The degree-n polynomial is then computed and plotted with the ai coe⌥cients that
are the solutions of Equation (8.5).

A degree-2 four-point example

Given the four points (0, 4), (1,�1), (2, 1), and (3, 2), we apply the least-squares
method to determine the degree-2 polynomial (a parabola) p(x) = ax2 +bx+c that best
fits them. There are now three unknowns a, b, and c, and we first construct the system
of four equations

L

�

⇠
a
b
c

⌫

⇡ =

�

⇢⇠

0 0 1
1 1 1
4 2 1
9 3 1

⌫

�⇡

�

⇠
a
b
c

⌫

⇡ =

�

⇢⇠

4
�1
1
2

⌫

�⇡ .

Notice that the first column of matrix L is the square of its second column. This is
because the leftmost parameter, a, is associated with x2, the second parameter, b, is
multiplied by x, and the third parameter, c is the coe⌥cient of 1. This system of
equations is solved by first multiplying it on the left by the transpose

�

⇠
0 1 4 9
0 1 2 3
1 1 1 1

⌫

⇡

�

⇢⇠

0 0 1
1 1 1
4 2 1
9 3 1

⌫

�⇡

�

⇠
a
b
c

⌫

⇡ =

�

⇠
0 1 4 9
0 1 2 3
1 1 1 1

⌫

⇡

�

⇢⇠

4
�1
1
2

⌫

�⇡ ,

which yields �

⇠
98 36 14
36 14 6
14 6 4

⌫

⇡

�

⇠
a
b
c

⌫

⇡ =

�

⇠
21
7
6

⌫

⇡ .

This is solved by matrix inversion to produce

�

⇠
a
b
c

⌫

⇡ =

�

⇠
98 36 14
36 14 6
14 6 4

⌫

⇡
�1 �

⇠
21
7
6

⌫

⇡ =

�

⇠
3/2

�49/10
18/5

⌫

⇡ .

Figure 8.13 shows the points and the resulting parabola y = 3
2x2 � 49

10x + 18
5 .

Figure 8.14 shows the two previous examples computed and plotted quickly in
Geogebra. The green curve is a degree-3 polynomial. Such a polynomial has four
coe⌥cients, which is why its fit is perfect. Instead of getting close to the points, the
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0.5 1.0 1.5 2.0 2.5 3.0

- 1

1

2

3

4

pts={{0,4},{1,-1},{2,1},{3,2}};
L={{0,0,1},{1,1,1},{4,2,1},{9,3,1}};
LT=Transpose[L].L
Solve[LT.{{a},{b},{c}}==Transpose[L] .{{4},{-1},{1},{2}},{a,b,c}]
p1=ListPlot[pts,PlotStyle->{PointSize[Large],Red}];
p2=Plot[(3/2)x^2-(49/10)x+18/5,{x,-3,5}];
Show[p1,p2]

Figure 8.13: A Least-Squares Parabola.

Figure 8.14: Parametric Fit in GeoGebra.

resulting system of four equations with four unknowns has a unique solution, the degree-3
polynomial which passes through the points.

The least squares method described so far is linear. This is because the coe⌥cients
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ai of the interpolating polynomial appear in Equation (8.4) linearly and not, for example,
as a2

i or a3
i . There is also a nonlinear version of least squares, and the following is a

quotation from reference [nonlinearLS 24].
Non-linear least squares is the form of least squares analysis used to fit a

set of m observations with a model that is non-linear in n unknown parameters
(m ↵ n). It is used in some forms of nonlinear regression. The basis of the
method is to approximate the model by a linear one and to refine the parameters
by successive iterations. There are many similarities to linear least squares, but
also some significant di⌃erences.

8.6 Perlin Noise

Perlin noise is an important type of a procedural texture. It is used in practice in
computer graphics to enhance realism in still images and videos.

Noise as Texture

Just like various techniques, formulas, and approaches in software development,
Perlin noise relies on utilizing random numbers. Nevertheless, because software is de-
terministic and operates based on rules, the supposedly random number sequences it
produces are not truly random. They seem haphazard and meet the criteria for ran-
domness when tested statistically, which is why they are called pseudo-random (refer
also to the conversation on Page 298).

Definitions
Random noise refers to any kind of noise that is unpredictable and has no pattern. It
is essentially a random signal that can have any frequency or amplitude.
White noise, on the other hand, is a type of random noise that contains the same
energy at any interval of frequencies. It has a flat spectrum. When played as audio,
it sounds like static or hissing.

The term “noise” has many meanings and is used in many contexts. Section 10.4
mentions noise in connection with error-control codes, but Perlin noise is an example
of noise as texture. Perlin noise is an algorithm to create texture in digital images.
Wikipedia defines image texture as “the small-scale structure perceived on an image,
based on the spatial arrangement of color or intensities.”

Texture can be included in an image by scanning a natural or artificial texture and
adding it to the image. However, researchers have developed algorithms to generate
various types of texture by software, and this kind of texture is referred to as procedural
or solid texture. Including natural texture in an image increases the image file size and
may also involve a mapping problem. A typical mapping problem is how to wrap a
two-dimensional texture around a three-dimensional complex digital object, so that the
object still looks real. Using procedural texture eliminates the mapping problem, saves
on image file size, but requires extra processing.

Noise added to an image as texture acts like spice added to bland food. It con-
tributes a certain amount of randomness and irregularity to the image that, if handled
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properly, adds interest to the image and makes it come alive. Traditional painters who
used oil paints were also aware of this feature and tried to make irregular brush strokes
that produced random paint textures on the canvas.

Mathematically, noise as texture is a mapping whose input is the coordinates of an
n-dimensional point and whose output is a real number, the noise value at the point
(color, shade of gray, or height). A one-dimensional noise is a sequence of real numbers ai

produced in points ti in time, while a two-dimensional noise is an array of real numbers,
each corresponding to a pair (x, y) of coordinates. Such noise can be viewed as a random
pattern of color or grayscale dots on a plane. It can also be interpreted as the heights
of points above a surface and thus to describe a terrain.

A three-dimensional noise is an array of real numbers, each corresponding to a
triplet (x, y, z) of coordinates. It can correspond, for example, to the colors of points
in a solid three-dimensional object or it can be used to slightly perturbe the position of
each object point in space, thereby introducing roughness to the object.

Perlin noise is the brainchild of Ken Perlin, who started developing it in the early
1980’s, published it in 1985, and used it in the Disney movie Tron. Perlin was unsatisfied
with the noise-generation methods available to him, because they produce decorrelated
noise.

Formally, Perlin noise is a gradient noise. It starts with a set of pseudo-random
gradients placed at regularly-spaced points in n-dimensional space, and then a smooth
function is computed by interpolating between the points.

Figure 8.15 illustrates this kind of noise both in one- and two dimensions. It is easy
to see how adjacent points have very di⌃erent heights (in 1D) or shades of gray (in 2D).
A point’s location or color can be very di⌃erent from its neighbors’ and is independent
of them. Perlin decided to develop correlated noise, a type of noise where the gray
intensity or color of a point is never very di⌃erent from those of its four (up, down, left,
right) or even eight nearest neighbors.

One-Dimensional Correlated Noise

We Start with an intuitive explanation of one-dimensional correlated noise. The
middle part of Figure 8.15 (three octaves of correlated random 1D noise) was prepared
by reference [Perlin 1D 24]. It shows 12 initial random points that are approximated
by a smooth curve, but are decorrelated. The height of a point may be very di⌃erent
from those of its neighbors. This pattern is then transformed by doubling its frequency
and halving its amplitude, and is placed underneath the original graph. It becomes a
new octave. This octave generation process is repeated again to create a copy with four
times the frequency of the original and one-fourth its amplitude. Finally, the original
and its two octaves are added up. The result is a curve that looks random and smooth.
It no longer approximates the 12 original points, but each real point on this curve is at
a similar height to its near neighbors.

This close relation between nearby points is the essence of correlated noise. The
number of octaves and their shrink ratios can be varied, but the process, which is termed
“sum 1/f noise,” is the same.

Note. Octaves can be generated and added until the size of the next one becomes
too small to see. This happens when its noise fluctuates faster than about once every
two pixels.



356 8. Geometry

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

Decorrelated random 1D and 2D noise

Three octaves of correlated
random 1D noise

Figure 8.15: Correlated and Decorrelated 1D and 2D Noise.

Two-Dimensional Perlin Noise

The principle of creating two-dimensional correlated noise has been described in
Perlin’s original 1985 publication, reference [Perlin 85], and has been improved, extended,
described, explained, and published in numerous scientific papers, articles, talks, and
videos in various venues.

The algorithm consists of two main parts. In the first part, described here in detail,
noise values are computed for individual pixels. The second part is optional and is
similar to the octaves described above. The array of noise values is rescaled, copied,
and added to itself in steps, where its frequency is doubled and its amplitude is halved.
This results in highly correlated noise which can also be described as fractal, because
each part of the noise is similar to the entire region of noise. When a small part of the
noise is copied and is pasted over another area, a viewer cannot perceive a change in the
overall noise pattern, which is normally not true for decorrelated noise.

It is possible to obtain beautiful, unexpected results by playing with octaves. An
octave can be reflected, scaled, perturbed slightly and randomly, or converted to absolute
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values. An “artificial” low-frequency sine wave octave can be prepared and added to the
other octaves. Attractive animations can easily be produced by combining two noises
linearly, as in Equation (8.6).

Using the absolute values of octaves produces exciting results, especially if combined
with red-orange colors. The following is a quotation from [Perlin 99]:

The application of the absolute value causes a bounce or crease in the
noise function in all the places where its value crosses zero. When these mod-
ified noise functions are then summed over many scales, the result is visual
cusps—discontinuities in gradient—at all scales and in all directions. The vi-
sual appearance is consistent with a licking flame-like e⌃ect, if it’s colored
properly. In 1984 I started calling this formulation turbulence, since it gives
an appearance of turbulent flow.
The second part of the algorithm starts with a two-dimensional rectangular region

of points and it computes a noise value—height, color, or grayscale—for each point in
the region. The main steps of the method are (1) Generating cells and gradient vectors.
(2) Computing four dot products for each pixel of a cell. (3) Interpolating the four dot
products of a point to produce the noise value at the point.

The region to be filled with Perlin (i.e., correlated) noise is first partitioned into
m⇥n square cells of pixels, and a (pseudo) random gradient vector is placed at the four
corners of each cell. Each vector is shared by four cells, except the ones on the sides and
at the corners of the region. The total number of gradient vectors is (m + 1)⇥ (n + 1)
and they remain fixed during the computations.

The term “gradient” means a gradual change from one value to another. In princi-
ple, the gradient vectors are random, but later research showed how they can be chosen
cleverly. Also, the gradient vectors can be of any length, but should all have the same
length, because this makes it possible to figure out in advance the range of the final
noise values.

Note. This description is for the two-dimensional case. In three dimensions, each
cell would be a cube with eight three-dimensional gradient vectors at its corners, and
each vector would be shared by eight cubes. In general, there would be a gradient vector
at each of the 2n corners of an n-dimensional hypercube.

Each cell is square and consists of rows and columns of pixels, where a noise value
has to be calculated for each pixel. The algorithm loops over the pixels of a cell and for
each pixel it computes a distance (or o⌃set) vector from each corner of the cell to the
pixel. The units of the distance vectors are simply the coordinates of the pixel from the
top-left of the cell.

Figure 8.16 shows a region partitioned into 5⇥ 10 cells with 6⇥ 11 gradient vectors
(in red). One cell is shown, consisting of 5⇥5 pixels, with four distance vectors (in green)
pointing to the pixel at (0.75, 0.25) in the cell. For the purpose of our calculations we
assume that the cell is a square, one unit on a side, with an origin at its top-left corner. x
values vary from 0 on the left to 1 on the right, and y values vary from 0 at the top to 1 on
the bottom. The four distance vectors are therefore a = (0.75, 0.25), b = (�0.25, 0.25),
c = (0.75,�0.75), and d = (�0.25,�0.75).

The dot products are next. See Page 367 and Equation (8.10) for more on the dot
product, and keep in mind that dot products are real numbers and can be negative.

Once all eight vectors are known, the four dot products are easy to compute and
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Figure 8.16: Gradient and distance Vectors.

they become the four gradient values for the pixel. The dot product of two vectors is
the product of their lengths times the cosine of the angle between them. The distance
vectors always point inside the cell and are at most one unit long, but the gradient
vectors can be of any length, and it is obvious that their lengths a⌃ect the dot products
and through them, the final noise value.

It is therefore preferable to have gradient vectors of the same length. Denoting
the length of the gradient vectors by l and those of the distance vectors by d, the dot
product equals l · d · cos �. The lengths d of the distance vectors vary from zero to the
diagonal of the unit cell, so they are in the interval [0,

"
2] (for n-dimensional noise, the

diagonal is
"

n). The cosine is always in the interval [�1, 1], which implies that the dot
products would be in the interval [�

"
2l,
"

2l], and this would also be the interval of the
noise values, unless they are modified by a smoothing function as discussed later. Also,
adding octaves increases the noise values.

We are now ready to see how the dot products of gradient vectors and distance
vectors create smooth blobs with white, gray, and black areas. We assume that our
gradient vectors are unit vectors and therefore contribute only their directions to the
dot products. The value of a dot product in this case is a⌃ected only by (1) the length
of the distance vector, and (2) the angle between the vectors. The greater the length
and the smaller the angle, the larger the dot product.

Figure 8.17 shows a region of 2 ⇥ 5 cells and we assume that each cell consists of
many pixels. The row of blue pixels is spread in the direction of a red gradient vector,
so for those pixels the angle is zero and the dot products are simply the lengths of
the distance vectors. As we move away along the blue pixels from the cell’s corner,
those lengths start at zero and get longer as the pixels get deeper into the cell. We
now convert the dot product values to grayscale with 0 becoming white and 1 becoming
black. This justifies the shading in the figure, which varies from dark to white along
the blue pixels. (This also justifies the name “gradient vectors.” The direction of such
a vector corresponds to the color gradient along a line of pixels.)

The situation with the yellow pixels is similar, the only di⌃erence being the 180⇤
angle between their distance vectors and the red gradient vector, which implies a zero
cosine. They should therefore be all black, but they are not because the final color of
those pixels is also a⌃ected by the other three (thick, black) gradient vectors of the cell.
The angle between the distance vectors of the green pixels and the red gradient vector
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Figure 8.17: Dot Products Converted into Grayscales.

is about 150⇤, which is why they should all be dark, but their final color is also a⌃ected
by the same three thick, black gradient vectors of the same cell. The final noise value
(color, shade of gray, or height) of a pixel is a mixture or interpolation of the noise values
produced by four dot products.

One more practical point to consider is the lengths of the distance vectors. They
can vary from zero to the diagonal of the cell, which is why an actual implementation
of Perlin noise should scale those lengths to the interval [0, 1].

This is how the dot products start the construction of the random grayscales of the
pixels. The construction is completed by the bilinear interpolation described next, but
before we turn to that topic let’s consider the important feature of Perlin noise namely,
that it is correlated. It is now clear that the noise is correlated, the grayscales of adjacent
pixels never vary much, because the dot products depend on both the distance vectors
and the angles, and these two quantities vary little between adjacent pixels.

The last major step is to interpolate the four dot products for each point. We start
with a detailed description of bilinear interpolation.

Bilinear Interpolation

We are familiar with the concept of an average. The average of the numbers a
and b is (a + b)/2, half their sum. This can be extended to more than two numbers by
considering an average a special case of the general weighted sum �a + ⇥b. An average
is the case (0.5a + 0.5b), where the two numbers are given equal weights of 0.5 each. In
the general weighted sum, the two numbers are given di⌃erent weights, but it doesn’t
take long to realize that such a weighted sum makes sense only if the weights add up
to 1, in which case the weighted sum takes the form

(1� t)a + tb. (8.6)

When t is varied in the interval [0, 1], the sum varies linearly from a (for t = 0) to b
(for t = 1). The term “linearly” is used because when Equation (8.6) is plotted as a
function of t, the result is a straight line segment and the equation is the basic parametric
equation of a straight segment.
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This connection between average and straight segments is now extended and is
used to develop the technique of bilinear interpolation. The particular form of bilinear
interpolation that we need is illustrated in Figure 8.18.

a

1p(u)

p(u,w)

2p(u)

b

c d

0

.25
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.75

0 .25 .5 .75 1

1

Figure 8.18: Bilinear Interpolation of Pixels in a Cell.

Four numbers a, b, c, and d need be averaged. They are assigned to the four corners
of a 5 ⇥ 5 cell of pixels. We want to compute a weighted average of the four numbers
for each of the 25 pixels, such that the closer a pixel is to a corner, the more weight the
corner gets in the average. The weighted average for the pixel nearest corner a would
be a itself, while the weighted average for the central pixel would assign a weight of 0.25
to each corner. This is the essence of bilinear interpolation, a process that is performed
in the following three steps:

Construct the parametric equation p1(u) = (1 � u)a + ub of the straight segment
between a and b.

Construct the parametric equation p2(u) = (1 � u)c + ud of the straight segment
between c and d.

Construct the parametric equation p(u,w) = (1�w)p1(u) + w p2(u) of the straight
segment between an arbitrary point on p1(u) and the point on p1(u) that corresponds
to the same u value. The result is

p(u,w) = (1� w)p1(u) + wp2(u) = (1� w)(a� ua + ub) + w(c� uc + ud)
= a� wa� ua + uwa + ub� uwb + wc� uwc + uwd

= a + u(b� a) + w(c� a) + uw(a� b� c + d)
= a(1� u)(1� w) + b u(1� w) + cw(1� u) + d uw. (8.7)

Equation (8.7) can now be used to compute the bilinear interpolation of the four
corner values for each of the 25 pixels in the cell, by assigning u and w the coordinates of
a pixel relative to corner a. Thus, the red pixel in Figure 8.18 has coordinates (0, 0), the
blue pixel has coordinates (0.75, 0.25) and the center pixel’s coordinates are (0.5, 0.5).
The three parametric segments are shown in green.

Figure 8.19a illustrates a typical bilinear interpolation of four dot product values.
It shows a square with four vertical (black) lines at its corners and four straight (green)
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segments connecting them. Two blue lines connect the centers of the green segments,
and the red vertical line becomes the bilinear interpolation of four vertical (black) lines.
The red line represents the height of the center of the green square above the black
square.

(a) (b)

Figure 8.19: Bilinear Interpolation of Four Dot Products.

Early experiments with the Perlin noise algorithm produced unsatisfactory noise
that was not smooth (i.e., not correlated) enough. Much improved (correlated) noise was
produced when the basic bilinear interpolation was enhanced by a smoothing function.
The first tests used the “ease” smoothing function 3t2�2t3. This function is the Hermite
blending (or weight) function F2, listed in Equation (8.19) and displayed in Figure 8.32.
It maps 0 to 0, 1 to 1, and 0.5 to 0.5, and is shaped like the letter S, which is why
it magnifies values larger than 0.5, while reducing smaller values. Figure 8.19b shows
a typical set of four S-shaped curves (in green) arranged over a square box for better
bilinear interpolation.

Even better results are achieved with the “fade” smoothing function

6t5 � 15t4 + 10t3 = t⇥ t⇥ t⇥ (t⇥ (t⇥ 6� 15) + 10).

In addition to mapping 0⇣ 0, 1⇣ 1 and 0.5⇣ 0.5, this S-shaped function is smoother
because both its first and second derivative are zero at t = 0 and t = 1.

⌅ Exercise 8.3: Derive the “ease” smoothing function 3t2 � 2t3 as a linear interpolation
of two parabolas.

Figure 8.20 shows the two smoothing functions together with typical direct and
smoothed bilinear interpolations.

Other smoothing functions are possible. For example, sin[�(t � 0.5)] + 0.5 also
maps 0, 0.5, and 1 to themselves and produces a nice S-shaped curve.

Choosing the Gradient Vectors

It turns out that the gradient vectors don’t have to be random and don’t have
to be unique. They are used to generate noise, and noise is inherently random. Two
techniques were used by Perlin for choosing these vectors.

The original method employed by Perlin was to choose two random numbers, con-
sider them the coordinates of a two-dimensional vector, and normalize them to end up
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Figure 8.20: Bilinear Interpolation: Direct (Left) and Smooth (Right).

with a unit vector. This is readily extended to n-dimensional noise. It was later real-
ized, however, that this method produces more vectors pointing along or close to the
diagonals and fewer vectors pointing along or close to the cell edges.

The reason for this unexpected behavior is similar to what happens in dice rolling.
Throwing a single die produces one of the integers 1 through 6 with equal probabilities,
but rolling two dice produces the 11 results 1 + 1 = 2 through 6 + 6 = 12 with unequal
probabilities. The value 7 is produced when rolling (1, 6), (2, 5), and (3, 4), while 2 is
produced only for (1, 1). Here are two ways to solve this problem:

1. Pick two random numbers that are normally distributed (i.e., distributed on a
bell curve) and combine them into a vector. For n-dimensional noise, choose n such
random numbers to become the coordinates of a vector.

2. (This only works for two dimensions.) Instead of choosing two random num-
bers for a vector (which results in a cubic distribution of the vectors), random angles
� ⇠ [0, 2�] should be chosen, and each used to generate one random gradient vector
(cos �, sin �). This results in a spherical distribution of the vectors.

An improved version, also developed by Perlin. Construct a fixed set of vectors.
The first time the noise algorithm requires a gradient vector at a corner, pick one up
from the set at random, use it, and remember it. When coming back to the same corner
again, choose the same gradient vector.

While constructing such a set, the vectors can be created normalized, but an al-
ternative is to generate vectors with simple components whose size would not be 1, but
whose simple components would speed up the calculations. For two-dimensional noise,
the set of vectors whose components are 1, �1, and 0 are especially useful and simplify
the computations of the dot products. This set consists of the eight vectors (�1,�1),
(�1, 0), (�1, 1), (0,�1), (0, 1), (1,�1), (1, 0), and (1, 1). Perlin proposes a similar set
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for the three-dimensional case.
The dot product is at its maximum when its two inputs are parallel. Imagine

a gradient vector that happens to be almost parallel to an edge of its cell. The dot
products of such a vector with the pixels along that edge would be large, because of the
small angles, and the opposite is true for the dot products of this gradient vector with
the pixels on the same edge but in the adjacent cell (where the angles would be close
to 180⇤). The result would be several small dot products followed by several large ones.
This implies several small noise values followed by several large values.

Now imagine that several gradient vectors in neighboring cells also happen to be
aligned in the same direction. Such a situation may cause many large blobs of bright
noise followed by dark noise to concentrate in a small area, producing a regular e⌃ect.
Therefore , instead of setting the gradient vectors to point in random directions, any
implementation should make sure that no adjacent gradient vectors point parallel to
an edge. This requires much experimentation, and Ken Perlin has come up with a
permutation table that can be used by software to distribute the gradient vectors in a
configuration that eliminates this problem.

Figure 8.21 shows why this problem exists only for gradient vectors that point close
to an edge. A gradient vector that points to the center of its cell would result in a large
dot product only for the center pixels in the cell, but this group of pixels is not adjacent
to the center pixels in adjacent cells.

Figure 8.21: Repetition in Gradient Vectors.

Value Noise and Gradient Noise

The Perlin noise described above is an improved version [Perlin 01] of Perlin’s
original 1985 algorithm, and is referred to as gradient noise. A simpler version of this
method is known as value noise. This is a faster algorithm whose output tends to look
blocky and is often deemed unsatisfactory. Figure 8.22 compares typical value noise and
gradient noise. Value noise starts by assigning random values instead of random gradient
vectors to all the corner cells. No dot products are computed, and bilinear interpolation
(or a smooth version of it) is applied to the four random values at the corners of a cell
instead of to the results of four dot products.
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Figure 8.22: Value Noise (Left) and Gradient Noise (Right).

8.7 Points and vectors

Students frequently become bewildered by points and vectors as the mathematical no-
tations for both entities are quite comparable. Euclid defined a point P = (x, y) as a
geometric entity of zero dimensions. Its only attribute is its position, represented by its
x and y coordinates. On the other hand, a vector is a mathematical entity with two
characteristics, direction and magnitude; it has no specific position in space. Therefore,
the direction of the vector v = (a, b) is established by the procedure: Begin at a random
point A and proceed a units in the x direction and b units in the y direction, arriving at
point B. The orientation of vector v indicates the path from A to B. The magnitude
of v is represented as

"
a2 + b2.

Points and vectors may exist in spaces of other dimensions, and the study of vector
spaces, of finite or infinite dimensions, is part of modern algebra. Page 93 has more to
say about the relation of points to complex numbers.

In this text, points are denoted by uppercase boldface letters and may also have
indexes. For example A, B, P, and Pi. Vectors are denoted by lowercase boldface
letters. The notation P(t) refers to a point that is a function of a real parameter t.

Mathematical objects and entities are useful and interesting because they can be
operated on. Entities without operations are static and have limited applications. This
also applies to points and vectors. We start with operations on points. The product
�P of a real number and a point is well defined and is a point on the straight, infinite
line connecting P to the origin. Its exact location on this line depends on �. (Notice
that � can also be negative.) Subtracting points is also a simple, well-defined operation,
and it produces a vector. Given points P0 = (x0, y0) and P1 = (x1, y1), their di⌃erence
P1 �P0 is the pair (x1 � x0, y1 � y0) and it is simply the vector from P0 to P1.

Example: The di⌃erences (30, 45)� (17, 60) = (13,�15) and (25, 40)� (12, 55) =
(13,�15) are the same. They specify a vector whose magnitude is

0
132 + (�15)2 and

whose direction is 15 units in the negative y direction for every 13 units in the positive
x direction.

The sum P + v of a point and a vector is well defined. It is the point P shifted in
the direction and by the magnitude of vector v. Once this is clear, it is obvious that
the expression P0 + �(P2 � P0) is the sum of a point and a vector, which makes it a
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point. We denote this point by P1 and observe that (1) the vector (P2 � P0) points
from P0 to P2, and (2) adding this vector to P0 produces a point (P1) located on the
line connecting P0 to P2. Hence, the three points P0, P1, and P2 are collinear.

The next step is to write

P1 = P0 + �(P2 �P0) = (1� �)P0 + �P2, (8.8)

which implies that (1) point P1 is a combination of P0 and P2, and (2) the combination is
linear. In general, each of three collinear points can be expressed as a linear combination
of the other two, thereby indicating that such points are not independent. Figure 8.23
illustrates how point P slides on the line that passes through A and C. For negative t
values, P is beyond C. For values t ⇠ [0, 1], point P slides from C to A, and for positive
t, point P is located beyond A.

Figure 8.23: Collinear Points.

⌅ Exercise 8.4: What can we say about four collinear points?

In contrast to the subtraction of points, adding points is in general meaningless, as
the following shows. Simply adding points (0, 1) + (6, 11), produces (6, 12). However,
when the points are shifted and then added, the new sum is not shifted by the same
amount. Shifting by 5 results in the sum (0 + 5, 1) + (6 + 5, 11) = (16, 12), which is
shifted by 10.

There is, however, an important special case where the sum of points is well defined,
the so-called barycentric sum. Given a set of points, we multiply each by a weight (a
real number). If the weights add up to 1, then the sum of the weighted points is well
defined in the sense that shifting the points rigidly (all by the same amount) would shift
the sum by the same amount. We say that a barycentric sum is a⌥nely invariant. Here
is the (simple) proof: If

$n
i=0 wi = 1, then

n&

i=0

wiPi = P0 +
n&

i=1

wiPi � (1� w0)P0



366 8. Geometry

= P0 + w1P1 + w2P2 + · · · + wnPn � (w1 + · · · + wn)P0

= P0 + w1(P1 �P0) + w2(P2 �P0) + · · · + wn(Pn �P0)

= P0 +
n&

i=1

wi(Pi �P0). (8.9)

This is the sum of the point P0 and the vector
$n

i=1 wi(Pi�P0), and we already know
that the sum of a point and a vector is a point.

Barycentric sums are common in computer graphics, especially in curve and surface
design. Many methods for curves and surfaces are based on weighted sums of points, and
they require that the sums be barycentric. When a curve consists of a non-barycentric
weighted sum of points, its shape depends on the particular coordinate system used. The
shape changes when either the curve or the coordinate axes are moved or are a⌥nely
transformed. Such a curve is ill conditioned and cannot be used in practice.

Notice that the weights � and (1� �) in Equation (8.8) are barycentric. They are
sometimes referred to as barycentric coordinates.

The term barycentric is derived from barycenter, meaning center of gravity, because
such weights are used to calculate the center of gravity of an object. Barycentric
weights have many applications in geometry in general and in curve and surface
design in particular.

Note. The sum of points is generally undefined, but the special sum of two points
P and Q can be written as the di⌃erence of points P + (�Q). Such a di⌃erence is the
vector from �Q to P (Figure 8.24), which is why the sum P + (�Q) of two points is
well defined. However, this sum tells us something about the relative positions of P and
�Q, not of P and Q. Assuming that Figure 8.24 depicts the points Q = (�5,�1) and
P = (4, 3), the sum P + Q equals (�5,�1) + (4, 3) = (�1, 2). This shows that in order
to get from point �Q to point P, we need to move one negative step in the x direction
for every two steps in the y direction.

P
P+Q

Q

-Q

x

y

Figure 8.24: Adding Two Points.

Operations on vectors. Vectors can also be operated on, they can be added and
subtracted, they can be multiplied by a real number, and there are also meaningful,
well-defined ways to multiply two vectors. However, vector division cannot be defined
in a way that makes sense or is useful or practical.
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Adding or subtracting two vectors is done simply by adding or subtracting their
individual components. Thus, for example, the sum or di⌃erence of v = (a, b) and
w = (c, d) is u = (a ± c, b ± d), which is a vector. It does not have a location in space,
but it has direction and magnitude like any other vector. The product �v is a vector in
the direction of v with magnitude �|v|.

The dot (inner or scalar) product of two vectors is denoted by P •Q and is defined
as the scalar

(Px, Py, Pz)(Qx, Qy, Qz)T = PQ
T = PxQx + PyQy + PzQz. (8.10)

This also equals |P| |Q| cos �, where � is the angle between the vectors. The dot product
of perpendicular vectors (also called orthogonal vectors) is therefore zero. The dot
product is commutative, P •Q = Q •P.

The cross product (or vector product) of two vectors is denoted by P⇥Q and is
defined as the vector

(P2Q3 � P3Q2,�P1Q3 + P3Q1, P1Q2 � P2Q1).

8.8 Representing Curves

There is an infinite variety of curves and they may di⌃er significantly in their shapes
and properties. Consider the di⌃erences between a straight line, which is smooth and
proceeds in the same direction, a circle, which is fully curved and smooth, and a triangle,
which features three sharp corners and straight segments. This is why mathematicians
have developed three main approaches—explicit, implicit, and parametric—to mathe-
matically represent curves

The explicit representation of curves is the familiar y = f(x), which can be plotted
as a curve. The advantage of this type of curve representation is its familiarity and ease of
programming and plotting. However, the explicit representation is not general, because
it is single-valued. For each value of x, only a single value of y is normally computed
by the function. This makes it impossible to compute curves that have vertical parts,
because all the points of a vertical segment have the same x coordinate and di⌃erent y
coordinates.

The implicit representation of a curve has the form F (x, y) = 0. It is general and
can represent multivalued curves (more than one y value for an x value). A common
example is the circle, whose implicit representation is x2+y2�R2 = 0. On the downside,
it may be hard to come up with the implicit expression of a given curve, and also di⌥cult
to write code for plotting it.

The explicit and implicit curve representations can be used only when the mathe-
matical shape of the curve is known. In practical applications—where complex-looking
curves such as the shape of a car or of a toaster are needed—the function is normally
unknown, which is why a di⌃erent approach is needed.
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The curve representation used in practice is parametric. A two-dimensional para-
metric curve has the form P(t) =

�
f(t), g(t)

⇥
or P(t) =

�
x(t), y(t)

⇥
. The functions f

and g become the (x, y) coordinates of points on the curve, which can be computed and
plotted when the parameter t is varied over a certain interval [a, b], normally [0, 1].

A basic example of a two-dimensional parametric curve is P(t) = (2t�1, t2). When
t is varied from 0 to 1, the curve proceeds from the initial point P(0) = (�1, 0) to the
final point P(1) = (1, 1). The x coordinate is linear in t and the y coordinate varies as
t2.

The first derivative dP(t)
dt is denoted by P

t(t), or by Ṗ, or by (P t
x(t), P t

y(t)). This
derivative is the tangent vector to the curve at any point. The derivative is a vector, not
a number or a point, because it is the limit of the di⌃erence (P(t + ⇥)�P(t))/⇥, and
the di⌃erence of points is a vector. As a vector, the tangent possesses a direction (the
direction of the curve at the point) and a magnitude (which indicates the speed of the
curve at the point). The tangent, however, is not the slope of the curve. The tangent is
a pair or a triplet of numbers, whereas the slope is a single number. The slope equals
tan �, where � is the angle between the tangent vector and the x axis. The slope of a
two-dimensional parametric curve is obtained by

dy

dx
=

dy
dt
dx
dt

=
P t

y(t)
P t

x(t)
.

Example: The curve P(t) = (x(t), y(t)) = (1 + t2/2, t2). Its tangent vector is
P

t(t) = (t, 2t) and its slope is 2t/t = 2. The slope is constant, which indicates that
the curve is a linear function, a straight line. This is also easy to see from the tangent
vector. The direction of this vector is always the same, since it can be described by
saying “for every t steps in the x direction, move 2t steps in the y direction.”

Figure 8.25 illustrates examples of implicit and parametric curves, programmed in
Geogebra.

Figure 8.25: Implicit and Parametric Curves in Geogebra.
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Note. Intuitively, the tangent line to a plane (two-dimensional) curve at a point P

is the line that just “touches” the curve at P. However, this definition is intuitive and
applies only to plane curves. A rigorous, practical definition is needed that applies to
both plane and space curves. We therefore say that the tangent vector to the parametric
curve P(t) at point t0 is the derivative with respect to t, Ṗ(t0), at point t0. Notice that
this derivative is a vector, not an infinite line, so it has a direction and magnitude which
are functions of the same parameter t.

In the two-dimensional case, the curve also has a slope. If its tangent vector is
v = (a, b), then the slope is b/a, and is undefined at points where a is zero (the tangent
vector is vertical).

Tangent vectors and slopes are undefined where the curve is non-di⌃erentiable (has
a sharp point).

Straight line—the shortest way between two points. —Euclid.
Cycloid—the fastest way between two points. —Johann Bernoulli.
Curve—the loveliest way between two points. —Mae West.

8.9 PC Curves

In late 20th century, with the proliferation of personal computers, the acronym PC stood
for “personal computer.” In this text, however, the term PC stands for parametric
cubic. This is because many of the interpolation methods described here are based on
parametric curves that are cubic polynomials. A polynomial of degree n in x is the
function

Pn(x) =
n&

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anxn,

where the ai are the n + 1 (real) coe⌥cients of the polynomial. PC curves are common
in computer graphics applications because polynomials have the following features: (1)
They are simple functions. (2) They are easy to compute, requiring only basic arithmetic
operations. (3) They are defined everywhere, no singular points. (4) They are easy to
di⌃erentiate and integrate. (5) Their coe⌥cients appear linearly, i.e., in the form of ai

and not as a2
i or

"
ai.

(A singularity is a point where the curve is undefined.)
Once we agree that parametric curves based on polynomials are useful for inter-

polation and curve design, we need to decide on the best degree for our polynomials.
A polynomial of degree 1 has the form P1(t) = At + B. It is a straight line, which is
why its use is limited. A parametric polynomial of degree 2 (quadratic) has the form
P2(t) = At2 + Bt + C, and the next paragraph shows that it is always a parabola. A
parabola is not flexible enough for general use in practice because it can only have a
limited range of shapes. In particular, it cannot have an inflection point (see below).

(A degree-2 parametric polynomial has one value for each value of the parameter t.
It therefore cannot be a circle or an ellipse. It cannot be a hyperbola, because a hyperbola
approaches ⌫ and �⌫ in di⌃erent directions, whereas a parabola approaches those two
limits either going up or going down. It is true that plane curves described by degree-2
polynomials are conic sections, but this applies only to the implicit representation.)



370 8. Geometry

⌅ Exercise 8.5: Show that a quadratic polynomial must be a plane curve.

An inflection point is a point on a curve where the curvature is zero. On a straight
line, every point is an inflection point. On a typical curve, an inflection point is created
when the curve reverses its direction of turning (for example, from a clockwise direction
to a counterclockwise direction). See Figure 8.26.

Quadratic curve (parabola)

Cubic curve with
inflection points

Cubic curve with a loop

Figure 8.26: Three Parametric Curves.

A polynomial of degree 3 (cubic) has the form P3(t) = At3 + Bt2 + Ct + D and
is the simplest curve that can have complex shapes and can also be a space curve. The
complexity of this polynomial is limited, though. It can have at most one loop and, if it
does not have a loop, it can have at most two inflection points. Polynomials of higher
degrees are sometimes needed, but they generally wiggle too much, a feature known
as Runge’s phenomenon, and are di⌥cult to control. They also have more coe⌥cients,
so they require more input data to determine the coe⌥cients. As a result, a complete
curve is often constructed from segments, each a parametric cubic polynomial (also
called a PC). The complete curve is a piecewise polynomial curve that is termed a spline
(Section 8.11).

⌅ Exercise 8.6: Why does a high-degree polynomial wiggle?

Once we have decided to construct a long, complex curve from several
short PC segments, each a cubic polynomial, we look at the mathematical
details of such a segment and what is needed to compute it in practice. A
practical way to compute the segments that combine to form the curves of
Figure 8.27 is to start with data points, points through which the final curve
would pass. Such points (red in the figure) are placed mostly at regions of
high curvature, and can be moved later, to edit and refine the shape of the curve. An
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alternative is to use control points (green in the figure). These are points that “pull”
the curve toward them, and allow the designer to edit the curve in a predictable fashion.
In addition to points, it is also possible to specify tangent vectors that determine the
direction of the curve at certain points. The types of continuity of the curve at points
where segments meet can also used to constrain the curve.

Figure 8.27: Data Points (Red), Control Points (Green), and Direction Vectors.

Regardless of the input data, a PC curve segment always has the form P(t) =
At3 + Bt2 + Ct + D. Therefore, four unknown coe⌥cients should be computed, which
requires four equations. The equations must depend on four known quantities, points
or vectors, that we denote by G1 through G4. The PC segment is expressed in compact
matrix notation as the product

P(t) = (t3, t2, t, 1)



" 

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

�

#!



" 

G1

G2

G3

G4

�

#! = T(t) ·M ·G,

where M is the basis matrix that depends on the method used and G is the geometry
vector, which consists of the four given quantities. The segment can also be written as
the weighted sum

P(t) = (t3m11 + t2m21 + tm31 + m41)G1 + (t3m12 + t2m22 + tm32 + m42)G2

+ (t3m13 + t2m23 + tm33 + m43)G3 + (t3m14 + t2m24 + tm34 + m44)G4

= B1(t)G1 + B2(t)G2 + B3(t)G3 + B4(t)G4 = B(t) ·G = T(t) ·N ·G,

where B(t) is the product T(t) · M and each Bi(t) is the weight assigned to a Gi.
The weights are also referred to as blending functions, since they blend the four given
quantities. If any of the quantities being blended are points, their weights should be
barycentric. In the case where all four quantities are points, this requirement implies
that the sum of the elements of matrix M should equal 1 (because the 16 elements of
M are also the elements of the Bi(t)’s).

A PC segment can also be written in the form

P(t) = At3 + Bt2 + Ct + D = (t3, t2, t, 1)



" 

Ax Ay Az

Bx By Bz

Cx Cy Cz

Dx Dy Dz

�

#! = T(t) ·C,
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where A = (Ax, Ay, Az) and similarly for B, C, and D. Its first derivative is

dP(t)
dt

=
dT(t)

dt
·C = (3t2, 2t, 1, 0)C

and this is the tangent vector of the curve. This vector points in the direction of the
tangent to the curve, but its magnitude is also important. It describes the speed of the
curve.

Linear Interpolation (LERP)

Given a set of points, there are two ways to interpolate them linearly. If the plot
of the points indicates that they are close to a straight line, we can employ the least-
squares technique, Section 8.5, to compute the line that is the closest to all the points.
Otherwise, we can calculate a set of straight segments (chords) connecting consecutive
points. In the latter case, the order of the points is important.

Given two points P1 and P2, the straight segment connecting them is given by
Equation (8.8), duplicated here

P1 = P0 + t(P2 �P0) = (1� t)P0 + tP2. (8.8)

This equation can also be used to blend two arbitrary quantities, not just points in
space. (A blend of two colors is a good example.) It creates a blend of t percent of P2

and (1� t) percent of P0.

A man who boasts about never changing his views is a man who’s decided always to
travel in a straight line—the kind of idiot who believes in absolutes.

—Honoré de Balzac, Père Goriot, 1834.

8.10 Polynomial Interpolation

Given a set of n + 1 ordered points, it is easy to compute a degree-n polynomial that
passes through them, but the use of this interpolation method for curve design in practice
is limited, because of the following reasons:

As Exercise 8.6 shows, high-degree polynomials tend to wiggle and oscillate.

The degree-n polynomial that passes through n+1 ordered points is unique. Such a
polynomial is computed by a set of n+1 equations that are based on the known points.
The equations yield n + 1 solutions that become the coe⌥cients of the polynomial,
and the only way the user can interact with such a method is to move the points and
recompute a new polynomial. If the points are given by a client or a boss, the curve
designer may not be able to move them. If the resulting polynomial has the wrong shape,
the designer must resort to other interpolation methods, such as splines, Section 8.11.
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Two common methods for polynomial interpolation are the Lagrange and the New-
ton polynomials, and the former is discussed here.

The Lagrange Polynomial (LP)

This interpolation algorithm starts with a given ordered set of n+1 data points P0 =
(x0, y0), P1 = (x1, y1), . . . ,Pn = (xn, yn). For each point Pi, an auxiliary polynomial
Ln

i (x) is defined that satisfies Ln
i (xi) = 1, but is zero at any other data point. Once

all the auxiliary polynomials are known, each Ln
i (x) is multiplied by yi and the sum$

yiLn
i (x) becomes the final result. It is obvious that there can be no editing by the

user; the Lagrange polynomial is unique.
To construct a polynomial P (x) that is zero at point a, b, and c, we simply include

in it a product of the form (x�a)(x�b)(x�c). Hence, the construction of Ln
i (x) should

start with the product

(x� x0)(x� x1) · · · (x� xi�1)(x� xi+1) · · · (x� xn). (8.11)

In order for Ln
i (x) to be 1 at xi, we simply divide it by the value it otherwise would

have at that point. From Equation (8.11), that value is

(xi � x0)(xi � x1) · · · (xi � xi�1)(xi � xi+1) · · · (xi � xn).

The auxiliary polynomials are therefore

Ln
i (x) =

(x� x0)(x� x1) · · · (x� xi�1)(x� xi+1) · · · (x� xn)
(xi � x0) · · · (xi � xi�1)(xi � xi+1) · · · (xi � xn)

=
n'

j=0,j  =i

(x� xj)
(xi � xj)

.

Note that (x � xi) is missing from the numerator and (xi � xi) is missing from the
denominator. The final Lagrange polynomial (LP) is LPn(x) =

$n
i=0 yiLn

i (x).

⌅ Exercise 8.7: Calculate the LP between the two points P0 = (x0, y0) and P1 = (x1, y1).
What kind of a curve is it?

The LP can also be expressed in parametric form. Given the n + 1 data points
P0, P1, . . . ,Pn, we need to construct a polynomial P(t) that passes through all of
them, such that P(t0) = P0, P(t1) = P1, . . . , P(tn) = Pn, where t0 = 0, tn = 1, and
t1 through tn�1 are certain values between 0 and 1 (the ti are called knot values). The
LP has the form P(t) =

$n
i=0 PiLn

i (t). This is a weighted sum of the individual points
where the weights (or basis functions) are given by

Ln
i (t) =

⇤n
j  =i(t� tj)

⇤n
j  =i(ti � tj)

.

Note that
$n

i=0 Ln
i (t) = 1, so these weights are barycentric. The LP is a rational

polynomial because it is a quotient of two polynomials.
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⌅ Exercise 8.8: Calculate the parametric LP for the three points P0 = (0, 0), P1 = (0, 1),
and P2 = (1, 1).

The quadratic Lagrange polynomial is especially useful and is often employed to
interpolate three points. The auxiliary polynomials in this case are

L2
0(t) =

%2
j  =0(t� tj)

%2
j  =0(t0 � tj)

=
(t� t1)(t� t2)

(t0 � t1)(t0 � t2)
,

L2
1(t) =

%2
j  =1(t� tj)

%2
j  =1(t1 � tj)

=
(t� t0)(t� t2)

(t1 � t0)(t1 � t2)
,

L2
2(t) =

%2
j  =2(t� tj)

%2
j  =2(t2 � tj)

=
(t� t0)(t� t1)

(t2 � t0)(t2 � t1)
,

(8.12)

and the polynomial P2(t) =
$2

i=0 PiL2
i (t) is easy to calculate and plot once the values of

t0, t1, and t2 have been determined. The choice t0 = 0, t1 = 1, and t2 = 2 is particularly
useful and yields the uniform quadratic Lagrange polynomial

P2u(t) =
t2 � 3t + 2

2
P0 � (t2 � 2t)P1 +

t2 � t

2
P2

= (t2, t, 1)



 
1/2 �1 1/2
�3/2 2 �1/2

1 0 0

�

!



 
P0

P1

P2

�

! .

Figure 8.28 illustrates a six-point Lagrange interpolation, lying on its side. The
wild oscillations of the degree-5 polynomial are obvious.

-
1

1
2

5

1
0

1
5

pts={{-1,4},{2,-0.7},{0,3},{1,3},{0.5,0.5},{-0.5,0.25}};
InterpolatingPolynomial[pts,x]
g1=Plot[%, {x,-1,2}];
g2=ListPlot[pts,PlotStyle->{PointSize[Large],Red}];
Show[g1,g2,AspectRatio->Automatic,Ticks->{{-1,0,1,2},{0,5,10,15}},
PlotRange->{{-1.1,2.1},{-1,15.1}}]

-0.7+(-2+x)(-1.56667+(1+x)(0.511111+(-0.5+x)(-1.86222+(-0.862222
-7.76444(-1+x))(0.5 +x))))

Figure 8.28: A Six-Point Lagrange Interpolation Example.



8.10 Polynomial Interpolation 375

The Newton Polynomial

The usefulness of the Lagrange polynomial is limited because it is unique. If the
LP determined by the given data points is not what the designer wants, there is little
that can be done to edit the interpolating curve and improve its form. The Newton
interpolating polynomial is identical in its form to the Lagrange polynomial, but its
derivation is di⌃erent. It allows for adding more points without having to move the
original data points. This o⌃ers the designer some control over the shape of the final
curve.

We start with n + 1 data points P0, P1, . . . ,Pn, and assign them knot values

t0 = 0 < t1 < · · · < tn�1 < tn = 1.

From these, we are going to design a curve that is a degree-n parametric polynomial of
the form

P(t) =
n&

i=0

Ni(t)Ai,

where the basis functions Ni(t) depend only on the knot values and not on the data
points. Only the (unknown) coe⌥cients Ai depend on the points. This definition,
originally proposed by Newton, has the advantage that each coe⌥cient Ai depends only
on the “previous” points P0 through Pi. If the user decides to add a point Pi+1, only
the coe⌥cients and basis functions that follow, namely Aj and Nj(t) for j ↵ i+1, need
be recomputed.

The definition of the basis functions is

N0(t) = 1 and Ni(t) = (t� t0)(t� t1) · · · (t� ti�1), for i = 1, . . . , n.

To calculate the unknown coe⌥cients, we start with the sequence of equations

P0 = P(t0) = A0,

P1 = P(t1) = A0 + A1(t1 � t0),
P2 = P(t2) = A0 + A1(t2 � t0) + A2(t2 � t0)(t2 � t1),

...
Pn = P(tn) = A0 + · · · .

These equations don’t have to be solved simultaneously. Each can easily be solved after
all its predecessors have been solved. The first few solutions are

A0 = P0,

A1 =
P1 �P0

t1 � t0
,

A2 =
P2 �P0 �

(P1 �P0)(t2 � t0)
t1 � t0

(t2 � t0)(t2 � t1)
=

P2 �P1

t2 � t1
� P1 �P0

t1 � t0
t2 � t0

.
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This obviously becomes very complicated very quickly, which is why in practice, the
method of divided di⌃erences [divided.di⌃ 24] is used to express the solutions in compact
notation. The divided di⌃erence of the knots titk is denoted [titk] and is defined as

[titk] def=
Pi �Pk

ti � tk
.

The solutions can now be expressed as

A0 = P0,

A1 =
P1 �P0

t1 � t0
= [t1t0],

A2 = [t2t1t0] =
[t2t1]� [t1t0]

t2 � t0
,

A3 = [t3t2t1t0] =
[t3t2t1]� [t2t1t0]

t3 � t0
,

...

An = [tn . . . t1t0] =
[tn . . . t1]� [tn�1 . . . t0]

tn � t0
.

⌅ Exercise 8.9: Given the same points and knot values as in Exercise 8.8, calculate the
Newton polynomial that passes through the points.

⌅ Exercise 8.10: The tangent vector to a curve P(t) is the derivative dP(t)
dt , which we

denote by P
t(t). Calculate the tangent vectors to the curve of Exercises 8.8 and 8.9 at

the three points. Also calculate the slopes of the curve at the points.

8.11 Spline Interpolation

Given a set of points, it is easy to compute a polynomial that passes through the points.
The Lagrange polynomial (LP) on Page 373 is an example of such a polynomial. How-
ever, as the discussion in Section 8.9 (especially Exercise 8.6) illustrates, a curve based
on a high-degree polynomial may wiggle wildly and its shape may be far from what the
user has in mind. In practical work we are often interested in a smooth, tight curve that
proceeds from point to point such that each segment between two points is a smooth
arc. The spline approach to curve design, discussed in this chapter, constructs such a
curve from individual segments, each a simple curve, generally a parametric cubic (PC).

Sections 8.15 through 8.17 illustrate spline interpolation techniques with three ex-
amples, cubic splines, cardinal splines and parabolic blending. One of the many available
references for other types of splines is [Salomon 11]. A short history of splines plus much
more information can be found in [WikiSpline 24].

Definition: A spline is a set of polynomials that are smoothly connected at certain
data points. At each data point, two polynomials connect, and their first derivatives
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(tangent vectors) have the same values. The definition also requires that all their deriva-
tives up to the (k�1)st be the same at the point, thereby providing high-order continuity.
There are exceptions to this definition. At some data points, the curve designer may
want two segments to connect at a sharp corner. In some cases, only the first deriva-
tives should have the same values (first-order continuity), or only the first and second
derivatives should have the same values (second-order continuity), thereby resulting in
a data point where two polynomial segments connect, but not very smoothly. Another
point is that the polynomials that make up a spline may have di⌃erent degrees. The
degree of a spline is therefore defined as the maximum degree of its components.

Figure 8.29 is an example of three polynomials connecting four data points. The
figure shows large parts of each polynomial, and it is clear that the spline requires only
a small part of each. Thus, splines must have a way of using just a short segment of
each of their polynomial components.

Figure 8.29: A Three-Part Cubic Spline.

As an introduction to spline techniques, the next section introduces the important
interpolation method due to Charles Hermite, which serves as the basis for several other
splines.

8.12 Hermite Interpolation

A practical curve design algorithm should be interactive. It should include user-controlled
parameters that modify the shape of the curve in a predictable, intuitive way. The Her-
mite interpolation approach—developed by Charles Hermite (1822–1901) in the 1870’s—
is a good example of such a method.

[Hermite] had a kind of positive hatred of geometry and once curiously reproached
me with having made a geometrical memoir.

—Jacques Hadamard.

Hermite interpolation is based on two points P1 and P2 and two direction vectors
P

t
1 and P

t
2. It computes a curve segment that starts at P1 going in direction P

t
1, and
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ends at P2 moving in direction P
t
2. Hence, the direction vectors specified by the user

become the tangent vectors at the ends of the Hermite curve segment. Several such
curves are shown in Figure 8.30 with their endpoints and direction vectors.

P1
P2

Pt1
Pt2

Figure 8.30: Various Hermite Curve Segments.

Figure 8.30 makes it clear that a Hermite segment can take on many di⌃erent shapes,
and can even have a cusp and develop a loop. A complete spline curve, however, normally
requires several segments connected with di⌃erent continuities. A C0 continuity is the
case where two segments are connected with a sharp corner. When two segments are
connected with a C1 continuity, their first derivatives (tangent vectors) are equal at the
connection point. In general Ck continuity is the case where the first k derivatives are
equal at the point.

8.13 Interactive Control

Hermite interpolation is interactive, which is an important advantage. If a Hermite curve
segment does not look right, the user can edit it by modifying the direction vectors.

⌅ Exercise 8.11: In the case of a four-point PC, we can change the shape of the curve
by moving the points. Why then is the four-point method considered noninteractive?

Figure 8.30 illustrates how the shape of the curve depends on the directions of
the direction vectors. Figure 8.31 shows how the curve can be edited by varying the
magnitudes of those vectors. The figure shows three curves that start in a 45⇤ direction
and end up going vertically down. The e⌃ect illustrated here is simple. As the magnitude
of the start direction vector increases, the curve continues longer in the original direction.
This behavior implies that short direction vectors produce a curve that changes its
direction early and aims straight toward the final point. Such a curve resembles a
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Figure 8.31: Varying the Direction Vector’s Magnitude.

straight segment. The conclusion is that a long direction vector results in a loose curve
and a short direction vector produces a tight curve.

The reason the magnitudes, and not just the directions, of the vectors a⌃ect the
shape of the curve is that the three-dimensional Hermite segment is a PC, and calculating
a PC involves four coe⌥cients, each a triplet, for a total of 12 unknown numbers. The two
endpoints supply six known quantities and the two vectors should supply the remaining
six. However, if we consider only the direction of a vector and not its magnitude, then
the vectors (1, 0.5, 0.3), (2, 1, 0.6), and (4, 2, 1.2) are identical. In such a case, only
two of the three vector components are independent and two vectors provide only four
independent quantities.

⌅ Exercise 8.12: Discuss this claim in detail.

A sketch tells as much in a glance as a dozen pages of print.
—Ivan Turgenev, Fathers and Sons (1862).

8.14 The Hermite Curve Segment

The Hermite curve segment is easy to derive. It is a PC curve (a degree-3 parametric
polynomial in t) with four coe⌥cients that depend on the two points and two vectors.
The basic equation of a PC curve is

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t)A. (8.13)

This is the algebraic representation of the curve, in which the four coe⌥cients are still
unknown. Once these coe⌥cients are expressed in terms of the known quantities, which
are geometric, the curve will be expressed geometrically.

The tangent vector to a curve P(t) is the derivative dP(t)/dt, which we denote by
P

t(t). The tangent vector of a PC curve is therefore

P
t(t) = 3at2 + 2bt + c. (8.14)

We denote the two given points by P1 and P2 and the two given tangents by P
t
1 and

P
t
2. The four quantities are now used to calculate the geometric representation of the

PC by writing equations that relate the four unknown coe⌥cients a, b, c, and d to
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the four known ones, P1, P2, P
t
1, and P

t
2. The equations are P(0) = P1, P(1) = P2,

P
t(0) = P

t
1, and P

t(1) = P
t
2. Their explicit forms are

a·03 + b·02 + c·0 + d = P1,

a·13 + b·12 + c·1 + d = P2,

3a·02 + 2b·0 + c = P
t
1,

3a·12 + 2b·1 + c = P
t
2.

(8.15)

They are easy to solve and the solutions are

a = 2P1� 2P2 +P
t
1 +P

t
2, b = �3P1 +3P2� 2Pt

1�P
t
2, c = P

t
1, d = P1. (8.16)

Substituting these solutions into Equation (8.13) gives

P(t) = (2P1 � 2P2 + P
t
1 + P

t
2)t

3 + (�3P1 + 3P2 � 2Pt
1 �P

t
2)t

2 + P
t
1t + P1, (8.17)

which, after rearranging, becomes

P(t) = (2t3 � 3t2 + 1)P1 + (�2t3 + 3t2)P2 + (t3 � 2t2 + t)Pt
1 + (t3 � t2)Pt

2

= F1(t)P1 + F2(t)P2 + F3(t)Pt
1 + F4(t)Pt

2

= (F1(t), F2(t), F3(t), F4(t))(P1,P2,P
t
1,P

t
2)

T

= F(t)B, (8.18)

where

F1(t) = (2t3 � 3t2 + 1), F2(t) = (�2t3 + 3t2) = 1� F1(t),
F3(t) = (t3 � 2t2 + t), F4(t) = (t3 � t2), (8.19)

B is the column (P1,P2,Pt
1,P

t
2)T , and F(t) is the row (F1(t), F2(t), F3(t), F4(t)). Equa-

tions (8.17) and (8.18) are the geometric representation of the Hermite PC segment.
Functions Fi(t) are the Hermite blending functions. They create any point on the

curve as a blend of the four given quantities. They are shown in Figure 8.32. Note that
F1(t) + F2(t) � 1. These two functions blend points, not tangent or direction vectors,
and should therefore be barycentric. We can also write F1(t) = (t3, t2, t, 1)(2,�3, 0, 1)T

and similarly for F2(t), F3(t), and F4(t). In matrix notation this becomes

F(t) = (t3, t2, t, 1)



" 

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

�

#! = T(t)H.

The curve can now be written

P(t) = F(t)B = T(t)HB = (t3, t2, t, 1)



" 

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

�

#!



" 

P1

P2

P
t
1

P
t
2

�

#! . (8.20)
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Equation (8.13) tells us that P(t) = T(t)A, which implies A = HB. Matrix H is called
the Hermite basis matrix.

The following is Mathematica code to display a single Hermite curve segment.

Clear[T,H,B]; (* Hermite Interpolation *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0},{2,1},{1,1},{1,0}};
ParametricPlot[T.H.B,{t,0,1},PlotRange->All]

⌅ Exercise 8.13: Express the midpoint P(0.5) of a Hermite segment in terms of the
two endpoints and two tangent vectors. Draw a diagram to illustrate the geometric
interpretation of the result.

8.14.1 Hermite Blending Functions

The four Hermite blending functions of Equation (8.19) are illustrated graphically in
Figure 8.32. An analysis of these functions is essential for a thorough understanding of
the Hermite interpolation method.

t

F1

F3

F4

F2

f(t)

1

1

Figure 8.32: Hermite Weight Functions

Function F1(t) is the weight assigned to the start point P1. It goes down from
its maximum F1(0) = 1 to F1(1) = 0. This shows why for small values of t the curve
is close to P1 and why P1 has little or no influence on the curve for large values of t.
The opposite is true for F2(t), the weight of the endpoint P2. Function F3(t) is a bit
trickier. It starts at zero, has a maximum at t = 1/3, then drops slowly back to zero.
This behavior is interpreted as follows:

1. For small values of t, function F3(t) has almost no e⌃ect. The curve stays close
to P1 regardless of the extreme tangents or anything else.

2. For t values around 1/3, weight F3(t) exerts some influence on the curve. For
these t values, weight F4(t) is small, and the curve is (approximately) the sum of (1)
point F1(t)P1 (large contribution), (2) point F2(t)P2 (small contribution), and (3) vector
F3(t)Pt

1. The sum of a point P = (x, y) and a vector v = (vx, vy) is a point located at
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(x + vx, y + vy), which is how weight F3(t) “pulls” the curve in the direction of tangent
(or direction) vector P

t
1.

3. For large t values, function F3(t) again has almost no e⌃ect. The curve moves
closer to P2 because weight F2(t) becomes dominant.

Function F4(t) is interpreted in a similar way. It has almost no e⌃ect for small and
for large values of t. Its maximum (actually, minimum, because it is negative) occurs at
t = 2/3, so it a⌃ects the curve only in this region. For t values close to 2/3, the curve is
the sum of point F2(t)P2 (large contribution), point F1(t)P1 (small contribution), and
vector �|F4(t)|Pt

2. Because F4(t) is negative, this sum is equivalent to (x� vx, y � vy),
which is why the curve approaches endpoint P2 while moving in direction P

t
2.

Another important feature of the Hermite weight functions is that F1(t) and F2(t)
are barycentric. They have to be, since they blend two points, and a detailed look at
the four Equations (8.15) explains why they are. The first of these equations is simply
d = P1, which reduces the second one to a+b+c+d = P2 or a+b+c = P2�P1. The
third equation solves c, and the fourth equation, combined with the second equation,
is finally used to compute a and b. All this implies that a and b have the form a =
�(P2 �P1) + · · ·, b = ⇥(P2 �P1) + · · ·. The final PC therefore has the form

P(t) = at3 + bt2 + ct + d = (�P2 � �P1 + · · ·)t3 + (⇥P2 � ⇥P1 + · · ·)t2 + (· · ·)t + P1,

where the ellipses represent parts that depend only on the direction vectors, not on the
endpoints. When this is rearranged, the result is

P(t) = (��t3 � ⇥t2 + 1)P1 + (�t3 + ⇥t2)P2 + (· · ·)Pt
1 + (· · ·)Pt

2,

which is why the coe⌥cients of P1 and P2 add up to unity.

8.14.2 Hermite Derivatives

The concept of blending can be applied to the calculation of the derivatives of a curve, not
just to the curve itself. One way to calculate P

t(t) is to di⌃erentiate T(t) = (t3, t2, t, 1).
The result is

P
t(t) = T

t(t)HB = (3t2, 2t, 1, 0)HB.

A more general method is to use the relation P(t) = F(t)B, which implies

P
t(t) = F

t(t)B =
�
F t

1(t), F t
2(t), F t

3(t), F t
4(t)
⇥
B.

The individual derivatives F t
i (t) can be obtained from Equation (8.19). The results can

be expressed as

P
t(t) = (t3, t2, t, 1)

�

⇢⇠

0 0 0 0
6 �6 3 3
�6 6 �4 �2

0 0 1 0

⌫

�⇡

�

⇢⇠

P1

P2

P
t
1

P
t
2

⌫

�⇡ = T(t)HtB. (8.21)
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Similarly, the second derivatives of the Hermite segment can be expressed as

P
tt(t) = (t3, t2, t, 1)

�

⇢⇠

0 0 0 0
0 0 0 0

12 �12 6 6
�6 6 �4 �2

⌫

�⇡

�

⇢⇠

P1

P2

P
t
1

P
t
2

⌫

�⇡ = T(t)HttB. (8.22)

These expressions make it easy to calculate the first and second derivatives at any point
on a Hermite segment. Similar expressions can be derived for any other curves that are
based on the blending of geometrical quantities.

⌅ Exercise 8.14: What is Httt?

Example: The two two-dimensional points P1 = (0, 0) and P2 = (1, 0) and the
two tangents P

t
1 = (1, 1) and P

t
2 = (0,�1) are given. The segment should therefore

start at the origin, going in a 45⇤ direction, and end at point (1, 0), going straight down.
The calculation of P(t) is straightforward:

P(t) = T(t)A = T(t)HB

= (t3, t2, t, 1)

�

⇢⇠

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

⌫

�⇡

�

⇢⇠

(0, 0)
(1, 0)
(1, 1)

(0,�1)

⌫

�⇡

= (t3, t2, t, 1)

�
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2(0, 0)� 2(1, 0) + 1(1, 1) + 1(0,�1)
�3(0, 0) + 3(1, 0)� 2(1, 1)� 1(0,�1)
0(0, 0) + 0(1, 0) + 1(1, 1) + 0(0,�1)
1(0, 0) + 0(1, 0) + 0(1, 1) + 0(0,�1)

⌫

��⇡

= (t3, t2, t, 1)

�

⇢⇢⇠

(�1, 0)
(1,�1)
(1, 1)
(0, 0)

⌫

��⇡

= (�1, 0)t3 + (1,�1)t2 + (1, 1)t. (8.23)

⌅ Exercise 8.15: Use Equation (8.23) to show that the segment really passes through
points (0, 0) and (1, 0). Calculate the tangent vectors and use them to show that the
segment really starts and ends in the right directions.

⌅ Exercise 8.16: Repeat the example above with P
t
1 = (2, 2). The new curve segment

should go through the same points, in the same directions. However, it should continue
longer in the original 45⇤ direction, since the size of the new tangent is

"
22 + 22 = 2

"
2,

twice as long as the previous one, which is
"

12 + 12 =
"

2.

⌅ Exercise 8.17: Calculate the Hermite curve for two given points P1 and P2 assuming
that the tangent vectors at the two points are zero (indeterminate). What kind of a
curve is this?
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⌅ Exercise 8.18: Use the Hermite method to calculate PC segments for the cases where
the known quantities are as follows:

1. The three tangent vectors at the start, middle, and end of the segment.
2. The two interior points P(1/3) and P(2/3), and the two extreme tangent vectors

P
t(0) and P

t(1).
3. The two extreme points P(0) and P(1), and the two interior tangent vectors

P
t(1/3) and P

t(2/3) (this is similar to case 2, so it’s easy).

Example: Given the two three-dimensional points P1 = (0, 0, 0) and P2 = (1, 1, 1),
and the two tangent vectors P

t
1 = (1, 0, 0) and P

t
2 = (0, 1, 0), the curve segment is the

simple cubic polynomial shown in Figure 8.33

P(t) = (t3, t2, t, 1)

�

⇢⇠

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

⌫

�⇡

�

⇢⇠

(0, 0, 0)
(1, 1, 1)
(1, 0, 0)
(0, 1, 0)

⌫

�⇡

= (�t3 + t2 + t,�t3 + 2t2,�2t3 + 3t2). (8.24)
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(* Hermite 3D example *)
Clear[T,H,B];
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
B={{0,0,0},{1,1,1},{1,0,0},{0,1,0}};
ParametricPlot3D[T.H.B,{t,0,1},
ViewPoint->{-0.846, -1.464, 3.997}];
(* ViewPoint->{3.119, -0.019, 0.054} alt view *)

Figure 8.33: A Hermite Curve Segment in Space.
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8.15 The Cubic Spline Curve

The cubic spline was originally introduced by James Ferguson in 1964. Given the n data
points P1 through Pn, this method computes a curve that passes through the points
and whose shape is often pleasing to the eye. There are infinitely many curves that pass
through any set of ordered points in order of their numbers (Figure 8.34a), but the eye
often tends to trace one imaginary smooth curve through the points, especially if the
points are arranged in a familiar pattern. It is therefore useful to have an algorithm
that does the same and is also interactive, thereby giving the user a chance to modify
the curve by making changes, but without moving points.

The cubic spline curve consists of n � 1 individual Hermite segments that are
smoothly connected at the n � 2 interior points and that are easy to compute and
display. In order for the segments to meet at the interior points, their tangent vectors
(first derivatives) must be the same at each interior point. An added feature of cubic
splines is that their second derivatives are also equal at the interior points. The cubic
spline method is interactive. The user can control the curve by varying the tangent
vectors at the two ends of the curve.

Given the n data points P1 through Pn, we look for n� 1 parametric cubics P1(t),
P2(t), . . ., Pn�1(t), such that Pk(t) is the polynomial segment from point Pk to point
Pk+1 (Figure 8.34b). The PCs would have to be smoothly connected at the n�2 interior
points P2 through Pn�1, which means that their first derivatives would have to match
at every interior point. The definition of a spline demands that their second derivatives
match too. This requirement (the boundary condition of the cubic spline) provides the
necessary equations and also results in a tight curve, in the sense that once the entire
curve is drawn, the eye can no longer detect the positions of the original data points.

Pk(
t)

Pk

Pk+1(t)

Pk+1
Pk+2

(b)(a)

Figure 8.34: (a) Three Di�erent Curves. (b) Two Segments.

The principle of cubic splines is to divide the set of n points into n� 1 overlapping
pairs of two points each and to fit a Hermite segment (Equations (8.17) and (8.18)) to
each pair. The pairs are (P1,P2), (P2,P3), up to (Pn�1,Pn). Recall that a Hermite
curve segment is specified by two points and two tangents. In our case, all the points
are given, by a client or a boss. They are known and cannot be moved by the curve
designer. The only unknowns are the tangent vectors. In order for segments Pk(t) and
Pk+1(t) to connect smoothly at point Pk+1, the end tangent of Pk(t) must equal the
start tangent of Pk+1(t). Thus, there is only one tangent vector per point, for a total
of n unknowns.

The unknown tangent vectors are computed as the solutions of a system of n equa-
tions. The equations are derived from the requirement that the second derivatives of the
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individual segments match at every interior point. However, there are only n�2 interior
points, so we can only have n� 2 equations, enough to solve for only n� 2 unknowns.

The key to resolving this shortage of equations is to ask the user to provide the
software with the values of two tangent vectors, normally the ones at the extreme ends
of the curve. Once this is done, the equations are solved, yielding the remaining n � 2
tangents. This seems a strange way to solve equations, but it has the advantage of being
interactive. If the resulting curve looks wrong, the user can repeat the calculation with
two new extreme tangent vectors. Before delving into the details, here is a summary of
the steps involved.

1. The n data points are input into the software.
2. The user provides values (guesses or estimates) for two tangent vectors.
3. The software sets up n� 2 equations, with the remaining n� 2 tangent vectors

as the unknowns, and solves them.
4. The software loops n� 1 times. In each iteration, it selects two adjacent points

and their tangent vectors to compute one Hermite segment.
We start with three adjacent points, Pk, Pk+1, and Pk+2, of which Pk+1 is an

interior point and the other two can be either interior or endpoints. Thus, k varies
from 1 to n � 2. The Hermite segment from Pk to Pk+1 is denoted by Pk(t), which
implies that Pk(0) = Pk and Pk(1) = Pk+1. The tangent vectors of Pk(t) at the
endpoints are still unknown and will be denoted by P

t
k and P

t
k+1. The first step is to

express segment Pk(t) geometrically, in terms of the two endpoints and the two tangents.
Applying Equation (8.17) to our segment results in

Pk(t) = Pk + P
t
kt +

⇤
3(Pk+1 �Pk)� 2Pt

k �P
t
k+1

⌅
t2

+
⇤
2(Pk �Pk+1) + P

t
k + P

t
k+1

⌅
t3.

(8.25)

When the same equation is applied to the next segment Pk+1(t) (from Pk+1 to Pk+2),
it becomes

Pk+1(t) = Pk+1 + P
t
k+1t +

⇤
3(Pk+2 �Pk+1)� 2Pt

k+1 �P
t
k+2

⌅
t2

+
⇤
2(Pk+1 �Pk+2) + P

t
k+1 + P

t
k+2

⌅
t3.

(8.26)

⌅ Exercise 8.19: Where do we use the assumption that the first derivatives of segments
Pk(t) and Pk+1(t) are equal at the interior point Pk+1?

Next, we use the requirement that the second derivatives of the two segments be
equal at the interior points. The second derivative P

tt(t) of a Hermite segment P(t) is
obtained by di⌃erentiating Equation (8.14)

P
tt(t) = 6at + 2b. (8.27)

Equality of the second derivatives at the interior point Pk+1 implies

P
tt
k (1) = P

tt
k+1(0) or 6ak⇥1 + 2bk = 6ak+1⇥0 + 2bk+1. (8.28)
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Using the values of a and b from Equations (8.25) and (8.26), we get

6
⇤
2(Pk �Pk+1) + P

t
k + P

t
k+1

⌅
+ 2
⇤
3(Pk+1 �Pk)� 2Pt

k �P
t
k+1

⌅

= 2
⇤
3(Pk+2 �Pk+1)� 2Pt

k+1 �P
t
k+2

⌅
,

(8.29)

which, after simple algebraic manipulations, becomes

P
t
k + 4Pt

k+1 + P
t
k+2 = 3(Pk+2 �Pk). (8.30)

The three quantities on the left side of Equation (8.30) are unknown. The two quantities
on the right side are known.

Equation (8.30) can be written n � 2 times for all the interior points Pk+1 =
P2, P3, . . . ,Pn�1 to obtain a system of n � 2 linear algebraic equations expressed in
matrix form as
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���
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3(P3 �P1)
3(P4 �P2)

...
3(Pn �Pn�2)

�

##!. (8.31)

Equation (8.31) is a system of n� 2 equations in the n quantities P
t
1 through P

t
n. We

assume that two of these quantities namely, the two extreme tangents P
t
1 and P

t
n, have

already been input by the user, leaving only n � 2 unknowns. Equation (8.31) is now
easily solved, yielding the values of the remaining n � 2 tangents, P

t
2 through P

t
n�1.

The n tangent vectors are now used to calculate the original coe⌥cients a, b, c, and d

of each segment by means of Equations (8.16), (8.17), or (8.20), which should be written
and solved n� 1 times, once for each segment of the spline.

The reader should notice that the coe⌥cient matrix of Equation (8.31) is tridiagonal
and therefore diagonally dominant and thus nonsingular. This guarantees that our
system of equations can always be solved and that it has a unique solution.

This approach to solving Equation (8.31) is called the clamped end condition. Its
advantage is that the user can vary the shape of the curve by entering new values for P

t
1

and P
t
n and recalculating. This allows for interactive design, where each step brings the

curve closer to the desired shape. Figure 8.34a is an example of three cubic splines that
pass through the same points and di⌃er only in P

t
1 and P

t
n. It illustrates how the shape

of the entire curve can be radically modified by varying the two extreme tangents.
It is possible to let the user specify any two tangent vectors, not just the two extreme

ones. However, varying the two extreme tangents is a natural way to edit and reshape
the curve in practical applications.

Tension control. A tension parameter can be introduced in order to control the
tension of a cubic spline. This is done by varying the magnitudes of the tangent vectors
of the individual Hermite segments that constitute the spline. The user inputs a tension
parameter s and the software multiplies every tangent vector by s. Small values of s
correspond to short vectors and thus to high tension (a tight curve, close to a straight
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line). Large s results in a loose, low-tension spline. A user-friendly algorithm should
define a parameter T in the interval [0, 1] and should multiply each tangent vector by
s = �(1 � T ) for some predetermined �. Large values of T (close to 1) correspond to
small s and therefore to high tension, while small values of T correspond to s close to �.
This makes T a natural tension parameter. Section 8.16 introduces the similar relation
T = 1� 2s, which makes more sense for cardinal splines.

The downside of the cubic spline is the following:
1. There is no local control. Modifying the extreme tangent vectors changes Equa-

tion (8.31) and results in a di⌃erent set of n tangent vectors. The entire curve is modified!
2. Equation (8.31) is a system of n equations that, for large values of n, may be

too slow to solve.
Picnic Blues (anagram of Cubic Spline).

8.15.1 Example

Given the four points P1 = (0, 0), P2 = (1, 0), P3 = (2, 0), and P4 = (3, 0), we are
looking for three Hermite segments P1(t), P2(t), and P3(t) that will connect smoothly
at the two interior points P2 and P3 and will constitute the spline. We further select
an initial direction P

t
1 = (1,�1) and a final direction P

t
4 = (�1,�1).

We first write Equation (8.31) for our special case (n = 4)

⌦
1 4 1 0
0 1 4 1

↵
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t
2

P
t
3

(�1,�1)

�

#! =
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3[(2, 0)� (0, 0)]
3[(3, 0)� (1, 0)]

↵
.

This is a system of two equations in two unknowns. It is easy to solve and the solutions
are P

t
2 = (13

15 , 1
5 ) and P

t
3 = (23

15 , 1
5 ).

We now write Equation (8.20) three times, for the three spline segments. For the
first segment, Equation (8.20) becomes

P1(t) = (t3, t2, t, 1)
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The second segment is calculated in a similar way:

P2(t) = (t3, t2, t, 1)
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Finally, we write, for the third segment,

P3(t) = (t3, t2, t, 1)
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which completes the example. Figure 8.35 shows the points, the two extreme tangent
vectors, and the resulting curve.

0.5 1.0 1.5 2.0 2.5 3.0

- 0.15

- 0.10

- 0.05

0.05

0.10

0.15

ClearAll[p1,p2,p3,p4,pt1,pt2,pt3,pt4];
p1={0,0}; p2={1,0}; p3={2,0}; p4={3,0};
mt={{1,4,1,0},{0,1,4,1}};
c={{{{1,-1}}},{{{a11,a12}}},{{{a21,a22}}},{{{-1,-1}}}};
r={{3({p3}-{p1})},{3({p4}-{p2})}};
Solve[mt.c==r, {a11,a12,a21,a22}]
pt1={1,-1};pt2={13/15,1/5};
pt3={23/15,1/5};pt4={-1,-1};
tr={t^3,t^2,t,1};
m4={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
po1[t_]:=tr.m4.{{{p1}},{{p2}},{{pt1}},{{pt2}}};
po2[t_]:=tr.m4.{{{p2}},{{p3}},{{pt2}},{{pt3}}};
po3[t_]:=tr.m4.{{{p3}},{{p4}},{{pt3}},{{pt4}}};
g1=ParametricPlot[{po1[t],po2[t],po3[t]},{t,0,1}];
g2=ListPlot[{p1,p2,p3,p4},PlotStyle->{PointSize[Medium],Red}];
Show[g1,g2,AspectRatio->.5]

{{a11->13/15,a12->1/5,a21->23/15,a22->1/5}}

Figure 8.35: A Cubic Spline Example.

⌅ Exercise 8.20: Redo the example of this section with an indefinite initial direction
P

t
1 = (0, 0). What does it mean for a curve to start going in an indefinite direction?

Reference [Salomon 11] has much more information on the following special types
of cubic splines: Relaxed, cyclic, periodic, closed, nonuniform, and fair.
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8.16 Cardinal Splines

The cardinal spline is an example of how Hermite interpolation can be applied to con-
struct a spline. The cardinal spline o⌃ers local control as well as a natural way to control
the tension of the curve by modifying the magnitudes of certain direction vectors. The
price for all this is the loss of second-order continuity. At a data point where two poly-
nomial segments meet, their first derivatives are equal, but their second derivatives are
not.

Figure 8.36a illustrates the principle of this method. The figure shows seven points
and a seemingly continuous curve that consists of four segments and depends on certain
(green dashed) vectors. There are no segments connecting the first and last points.
In general, a cardinal spline starts with n points. It uses n � 2 direction vectors, each
pointing from a data point Pi to point Pi+2. The spline also consists of n�3 polynomial
segments. The first segment, from P2 to P3, starts in the direction from P1 to P3 and
ends going in the direction from P2 to P4. The last segment, from P5 to P6, starts in
the direction from P4 to P6 and ends going in the direction from P5 to P7.

(b)

P3{
P1 P

4{P
2

P1 P4

P3
P2

P1
P2

P3

P4 P5

P6

P7

(a)

Figure 8.36: Direction Vectors in a Cardinal Spline.

Each polynomial segment of a cardinal spline depends on four points, which is
why there are only n � 3 segments for the n data points. Similarly, each data point
participates in at most four curve segments, so moving one point a⌃ects only those
segments and not the entire spline. This is why the cardinal spline method features local
control. The individual segments connect smoothly, and their first derivatives are equal
at the connection points (the curve features first-order continuity). However, the second
derivatives of the segments are generally di⌃erent at the connection points.

The first step in constructing the complete curve is to organize the points into n�3
highly-overlapping groups of four consecutive points each. The groups are

[P1,P2,P3,P4], [P2,P3,P4,P5], [P3,P4,P5,P6], . . . , [Pn�3,Pn�2,Pn�1,Pn].

Hermite interpolation is then applied to construct a curve segment P(t) for each group.
Denoting the four points of a group by P1, P2, P3, and P4, the two interior points P2

and P3 become the start and end points of the segment and the two direction vectors
become s(P3 �P1) and s(P4 �P2), where s, discussed below, is a real number related
to the tension of the curve. Thus, segment P(t) goes from P2 to P3 and its two extreme
direction vectors are proportional to the vectors P3 �P1 and P4 �P2 (Figure 8.36b).
The proportionality constant s is related to the tension parameter T . Note how there
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are no segments from P1 to P2 and from Pn�1 to Pn. The two extreme points are used
to edit the curve, because the first segment, from P1 to P2, starts going in the direction
from P0 to P2, and similarly for the last segment.

The particular choice of the direction vectors guarantees that the individual seg-
ments of the cardinal spline connect smoothly. The end direction s(P4 � P2) of the
segment for group [P1,P2,P3,P4] is identical to the start direction of the next group,
[P2,P3,P4,P5].

Segment P(t) is therefore defined by

P(0) = P2, P(1) = P3,

P
t(0) = s(P3 �P1), P

t(1) = s(P4 �P2)
(8.32)

and is easily calculated by applying Hermite interpolation (Equation (8.20)) to the four
quantities of Equation (8.32)

P(t) = (t3, t2, t, 1)
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#! . (8.33)

Tension in the cardinal spline can now be controlled by varying the lengths of the
direction vectors by means of parameter s. A long direction vector (obtained by a large
s) causes the curve to continue longer in the direction of the vector. A short direction
vector has the opposite e⌃ect; the curve moves a short distance in the direction of the
vector, then quickly changes direction and moves toward the end point. A zero-length
vector (corresponding to s = 0) produces a straight line between the endpoints (infinite
tension). In principle, the parameter s can be varied from 0 to ⌫. In practice, we use
only values in the range [0, 1]. However, since s = 0 produces maximum tension, we
cannot intuitively think of s as the tension parameter and another parameter, T , needs
to be defined, which is inversely related to s.

The tension parameter T is defined as s = (1 � T )/2, which implies T = 1 � 2s.
The value T = 0 results in s = 1/2. The curve is defined as having tension zero in this
case and is called the Catmull-Rom spline [Catmull and Rom 74]. Section 8.17 includes
a detailed derivation of this type of spline as a blend of two parabolas. Increasing T
from 0 to 1 decreases s from 1/2 to 0, thereby reducing the magnitude of the direction
vectors down to 0. This produces curves with more tension. We know that when the
direction vectors have magnitude zero, the Hermite curve segment is a straight line, so
the entire cardinal spline curve becomes a set of straight segments, a polyline, the curve
with maximum tension. Decreasing T from 0 to �1 increases s from 1/2 to 1. The result
is a curve with more slack at the data points.

To illustrate this behavior mathematically, we rewrite Equation (8.33) explicitly to
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show its dependence on s:

P(t) = s(�t3 + 2t2 � t)P1 + s(�t3 + t2)P2 + (2t3 � 3t2 + 1)P2

+ s(t3 � 2t2 + t)P3 + (�2t3 + 3t2)P3 + s(t3 � t2)P4.
(8.34)

For s = 0, Equation (8.34) becomes (2t3 � 3t2 + 1)P2 + (�2t3 + 3t2)P3, which can be
simplified to (3t2 � 2t3)(P3 � P2) + P2. Substituting u = 3t2 � 2t3 reduces this to
u(P3 �P2) + P2, which is the straight line from P2 to P3.

For large s, we use Equation (8.34) to calculate the mid-curve value P(0.5):

P(0.5) =
s

8
[(P3 �P1) + (P2 �P4)] + 0.5(P2 + P3)

=
s

8
⇤
P

t(0)�P
t(1)
⌅
+ 0.5(P2 + P3).

This is an extension of Equation (Ans.6). The first term is the di⌃erence of the two
direction vectors, multiplied by s/8. As s grows, this term grows without limit. The
second term is the midpoint of P2 and P3. Adding the two terms (a vector and a point)
produces a point that may be located far away (for large s) from the midpoint, showing
that the curve moves a long distance away from the start point P2 before changing
direction and proceeding toward the end point P3. Large values of s therefore feature a
loose curve (low tension).

Thus, the tension of the curve can be increased by setting s close to 0 (or, equiv-
alently, setting T close to 1); it can be decreased by increasing s (or, equivalently,
decreasing T toward 0).

⌅ Exercise 8.21: What happens when T > 1?

Setting T = 0 results in s = 0.5. Equation (8.33) reduces in this case to

P(t) = (t3, t2, t, 1)



" 

�0.5 1.5 �1.5 0.5
1 �2.5 2 �0.5

�0.5 0 0.5 0
0 1 0 0

�

#!



" 

P1

P2

P3

P4

�

#! , (8.35)

a curve known as the Catmull-Rom spline. Its basis matrix is termed the parabolic
blending matrix.

Example: Given the four points (1, 0), (3, 1), (6, 2), and (2, 3), we apply Equa-
tion (8.33) to calculate the cardinal spline segment from (3, 1) to (6, 2):

P(t) = (t3, t2, t, 1)

�

⇢⇠

�s 2� s s� 2 s
2s s� 3 3� 2s �s
�s 0 s 0
0 1 0 0

⌫

�⇡

�

⇢⇠

(1, 0)
(3, 1)
(6, 2)
(2, 3)

⌫

�⇡

= t3(4s� 6, 4s� 2) + t2(�9s + 9,�6s + 3) + t(5s, 2s) + (3, 1).

For high tension (i.e., T = 1 or s = 0), this reduces to the straight line

P(t) = (�6,�2)t3 + (9, 3)t2 + (3, 1) = (3, 1)(�2t3 + 3t2) + (3, 1) = (3, 1)u + (3, 1).
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For T = 0 (or s = 1/2), this cardinal spline reduces to the Catmull-Rom curve

P(t) = (�4, 0)t3 + (4.5, 0)t2 + (2.5, 1)t + (3, 1). (8.36)

Figure 8.37 shows an example of a similar cardinal spline (the points are di⌃erent)
with four values 0, 1/6, 2/6, and 3/6 of the tension parameter.

1.5 2 2.5 3

0.5

1

1.5

2

2.5

3 P1

P2

P3

P4

(* Cardinal spline example *)
T={t^3,t^2,t,1};
H[s_]:={{-s,2-s,s-2,s},{2s,s-3,3-2s,-s},{-s,0,s,0},{0,1,0,0}};
B={{1,3},{2,0},{3,2},{2,3}};
s=3/6; (* T=0 *)
g1=ParametricPlot[T.H[s].B,{t,0,1}];
s=2/6; (* T=1/3 *)
g2=ParametricPlot[T.H[s].B,{t,0,1}];
s=1/6; (* T=2/3 *)
g3=ParametricPlot[T.H[s].B,{t,0,1}];
s=0; (* T=1 *)
g4=ParametricPlot[T.H[s].B,{t,0,1}];
g5=Graphics[{AbsolutePointSize[4], Table[Point[B[[i]]],{i,1,4}] }];
Show[g1,g2,g3,g4,g5, PlotRange->All]

Figure 8.37: A Cardinal Spline Example.

8.17 Parabolic Blending: Catmull-Rom Curves

The Catmull-Rom curve (or the Catmull-Rom spline) is the special case of a cardinal
spline with tension T = 0. This short section describes an approach to the Catmull-Rom
spline where each spline segment is derived as the blend of two parabolas. This approach
to the Catmull-Rom curve proceeds in the following steps:

1. Organize the points in overlapping groups of three consecutive points each. The
groups are

[P1,P2,P3], [P2,P3,P4], [P3,P4,P5], · · · [Pn�2,Pn�1,Pn].
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2. Fit two parabolas, one through the first three points, P1, P2, and P3, and the
other through the overlapping group, P2, P3, and P4.

3. Calculate the first curve segment from P2 to P3 as a linear blend of the two
parabolas, using the two barycentric weights 1� t and t.

4. Fit a third parabola, through points P3, P4, and P5 and compute the second
curve segment, from P3 to P4, as a linear blend of the second and third parabolas.

5. Repeat until the last segment, from Pn�2 to Pn�1, is calculated as a linear blend
of the (n� 3)rd and the (n� 2)nd parabolas.

Each parabola is defined by three points (which, of course, are on the same plane)
and is therefore flat. However, the two parabolas that make up the segment are not
generally on the same plane, so their blend is not necessarily flat and can twist in space.

The two original parabolas are denoted by Q(u) = (u2, u, 1)H123 and R(w) =
(w2, w, 1)H234, where H123 and H234 are column vectors, each depending on the three
points involved. They will have to be calculated. The expression for the blended segment
is P(t) = (1�t)Q(u)+tR(w). Since this expression depends on t only, we have to express
parameters u and w in terms of t. We try the linear expressions u = at + b, w = ct + d.

To calculate a, b, c, and d, we write the end conditions for the two parabolas and
for the curve segment (Figure 8.38a):

Q(0) = P1, Q(0.5) = P2, Q(1) = P3,

R(0) = P2, R(0.5) = P3, R(1) = P4,

P(0) = P2, P(1) = P3.

0
.5

1 F2

10F4 10F1

F3

(a)

(b)

P1 P2

P3 P4

Figure 8.38: Parabolic Blending: (a) Two Parabolas. (b)
The Blend Functions.
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For point P2, we get (1) u = 0.5 and t = 0, implying b = 0.5, and (2) w = 0 and
t = 0, implying d = 0. For point P3, we similarly get (1) u = 1 and t = 1, implying
a + b = 1  a = 0.5, and (2) w = 0.5 and t = 1, implying c = 0.5. This results in
u = (1 + t)/2 and w = t/2.

Therefore, for the first parabola, we get

Q(0) = P1 = (0, 0, 1)H123,

Q(0.5) = P2 = (1/4, 1/2, 1)H123,

Q(1) = P3 = (1, 1, 1)H123.

=



 
P1

P2

P3

�

! =



 
0 0 1

1/4 1/2 1
1 1 1

�

!H123 = MH123,

This can be solved for H123
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So the first parabola is

Q(u) = (u2, u, 1)M�1



 
P1

P2

P3

�

! .

The second parabola is obtained similarly:

R(w) = (w2, w, 1)M�1



 
P2

P3

P4

�

! .

The first curve segment is therefore

P(t) = (1� t)Q(u) + tR(w)

= (1� t)(u2, u, 1)M�1
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P2

P3

�

!+ t(w2, w, 1)M�1
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P3

P4

�

!

= (1� t)(2u2 � 3u + 1,�4u2 + 4u, 2u2 � u)
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P2

P3

�

!

+ t(2w2 � 3w + 1,�4w2 + 4w, 2w2 � w)



 
P2

P3

P4

�

!

= (�0.5t3 + t2 � 0.5t)P1 + (1.5t3 � 2.5t2 + 1)P2

+ (�1.5t3 + 2t2 + 0.5t)P3 + (0.5t3 � 0.5t2)P4 (8.37)

= (t3, t2, t, 1)
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= (t3, t2, t, 1)BP, (8.38)
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where B is the parabolic blending matrix.
The other segments are calculated similarly. Note that in practice, there is no need

to calculate the parabolas. The program simply executes a loop where in each iteration,
it uses Equation (8.37) with the next group of points to calculate the next segment.

The Catmull-Rom curve starts at point P2 and ends at Pn�1. To make it pass
through all n points P1, . . . ,Pn, we add two more points P0 and Pn+1. In practice,
we normally select them as P0 = P1 and Pn+1 = Pn. The first group of points is
now P0, . . . ,P3, and the last one is Pn�2, . . . ,Pn+1. This also makes the method more
interactive, since two more points can be repositioned to edit the shape of the curve.
The curve can also be closed, if the first and last points are set to identical values.

Equation (8.37) gives the representation of the Catmull-Rom curve in terms of the
four blending functions

F1(t) = (�0.5t3 + t2 � 0.5t), F2(t) = (1.5t3 � 2.5t2 + 1),

F3(t) = (�1.5t3 + 2t2 + 0.5t), F4(t) = (0.5t3 � 0.5t2).

Note how F1 and F4 are negative (Figure 8.38b), how F2 and F3 are symmetric, and
how the four functions are barycentric.

⌅ Exercise 8.22: Prove the first-order continuity of the parabolic curve.

Example: Given the five points (1, 0), (3, 1), (6, 2), (2, 3), and (1, 4), we calculate
the Catmull-Rom curve from (1, 0) to (1, 4). The first step is to add two more points,
one on each end. We simply duplicate each of the two endpoints, ending up with seven
points. The first segment is (from Equation (8.37))

P1(t) = (�0.5t3 + t2 � 0.5t)(1, 0) + (1.5t3 � 2.5t2 + 1)(1, 0)

+ (�1.5t3 + 2t2 + 0.5t)(3, 1) + (0.5t3 � 0.5t2)(6, 2)

= (�0.5t3 + 1.5t2 + t + 1,�0.5t3 + t2 + 0.5t).

This segment goes from point (1, 0) (for t = 0) to point (3, 1) (for t = 1). The next
segment, from (3, 1) to (6, 2), is similarly

P2(t) = (�0.5t3 + t2 � 0.5t)(1, 0) + (1.5t3 � 2.5t2 + 1)(3, 1)

+ (�1.5t3 + 2t2 + 0.5t)(6, 2) + (0.5t3 � 0.5t2)(2, 3)

= (�4, 0)t3 + (4.5, 0)t2 + (2.5, 1)t + (3, 1).

This is identical to Equation (8.36). The curves are displayed in Figure 8.39. Calculating
the other two segments is left as an exercise.
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2 3 4 5 6

0.5

1.0

1.5

2.0

p1[t_]:={-0.5t^3+1.5t^2+t+1 , -0.5t^3+t^2+0.5t};
p2[t_]:={-4,0}t^3+{4.5,0}t^2+{2.5,1}t+{3,1};
g1=ParametricPlot[{p1[t],p2[t]},{t,0,1}];
g2=ListPlot[{{1,0},{3,1},{6,2}},PlotStyle->{PointSize[Medium],Red}];
Show[g1,g2,AspectRatio->.25]

Figure 8.39: A Catmull-Rom Spline Example.

8.18 Bézier Approximation

The previous exploration of polynomial and spline interpolations assumes that a set of
data points is given and a curve should be designed that passes through the points and
is also pleasing to the eye, satisfying both the curve designer and any boss/client. This
section is devoted to the Bézier approximation, a di⌃erent approach to curve design,
where the input is a set of control points, not data points. A Bézier curve segment
starts at the first point, ends at the last point, but does not pass through the interior
points. Instead, these points pull the segment toward them one by one, and act as
sources of attraction. The segment is attracted to each of those points in turn, as it
proceeds from the first to the last point. A complete curve consists of several Bézier
connected segments that form a continuous curve.

Those familiar with spline methods will easily recognize the main advantage of the
Bézier approach. This approach is highly interactive, because the curve designer is free
to move the control points until the perfect curve is achieved. This is why the title of
this section is Bézier approximation and not Bézier interpolation.

Because of their popularity, much research has been done on Bézier methods, and
there currently is a vast amount of literature and software that helps understand the
principles. This section concentrates on the basics and covers only the original approach
taken by Bézier himself, which is based on the Bernstein polynomials.

Pierre Etienne Bézier (pronounced “Bez-yea” or “bez-ee-ay”) was an applied math-
ematician with the French car manufacturer Renault. In the early 1960s, encouraged
by his employer, he began searching for ways to automate the process of designing cars.
His methods have been the basis of the modern field of computer aided geometric design
(CAGD), a field with practical applications in many areas.

Perhaps the best first reference, for those interested in Bézier methods, is [Bezier
methods 24], which includes an extensive bibliography. Reference [pomax 20) is an
intriguing, interactive, free web book by Mike Kamermans. For personal information
about Bézier, see [Bezier 24].
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8.19 The Bézier Curve

The Bézier curve is a parametric curve P(t) that is a polynomial function of the param-
eter t. The degree of the polynomial depends on the number of points used to define
the curve. The method employs control points and produces an approximating curve.
The curve does not pass through the interior points but is attracted by them (however,
see Exercise 8.28 for an exception). It is as if the points exert a pull on the curve. Each
point influences the direction of the curve by pulling it toward itself, and that influence
is strongest when the curve gets nearest the point. Figure 8.40 shows some examples of
cubic Bézier curve segments, where the green lines indicate the control polygon of each
segment. Such a segment is defined by four points and is a cubic polynomial. Notice
that one segment has a cusp and another one has a loop. The fact that a Bézier segment
does not pass through the points implies that the points are not “set in stone” and can
be moved. This makes it easy to edit, modify and reshape the curve, which is one reason
for its popularity. The curve can also be edited by adding new points or deleting existing
points.

P0

P0P0
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P1
P1

P2

P2P2
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P3
P3 P0

P2
P1

P3

x

y

z

Figure 8.40: Cubic Bézier Curves and Their Control Points and Polygons.

The control polygon of the Bézier curve is the polygon obtained when the control
points are connected, in their natural order, with straight segments.

How does one go about deriving such a curve? The approach shown here is based
on a weighted sum, but another, equivalent approach to the same curve, based on linear
interpolation, is discussed in many references.
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8.19.1 Pascal Triangle and the Binomial Theorem

The Pascal triangle and the binomial theorem are related because both employ the
same numbers. The Pascal triangle is an infinite triangular matrix of numbers that is
constructed from the edges inside

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . . . . . . . .

We first fill the left and right edges with 1’s, then compute each interior element
as the sum of the two elements directly above it. As can be expected, it is not hard
to obtain an explicit expression for the general element of the Pascal triangle. We first
number the rows from 0 starting at the top, and the columns from 0 starting on the
left. A general element is denoted by

�i
j

⇥
. We then observe that the top two rows

(corresponding to i = 0, 1) consist of 1’s and that every other row can be obtained as
the sum of its predecessor and a shifted version of its predecessor. For example,

1 3 3 1
+ 1 3 3 1

1 4 6 4 1

This shows that the elements of the triangle satisfy
⌦

i

0

↵
=
⌦

i

i

↵
= 1, i = 0, 1, . . . ,

⌦
i

j

↵
=
⌦

i� 1
j � 1

↵
+
⌦

i� 1
j

↵
, i = 2, 3, . . . , j = 1, 2, . . . , (i� 1).

From this it is easy to derive the explicit expression
⌦

i

j

↵
=
⌦

i� 1
j � 1

↵
+
⌦

i� 1
j

↵

=
(i� 1)!

(j � 1)!(i� j)!
+

(i� 1)!
j!(i� 1� j)!

=
j(i� 1)!
j!(i� j)!

+
(i� j)(i� 1)!

j!(i� j)!

=
i!

j!(i� j)!
.

Thus, the general element of the Pascal triangle is the well-known binomial coe�cient
⌦

i

j

↵
=

i!
j!(i� j)!

.
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The binomial coe⌥cient is one of Newton’s many contributions to mathematics.
His binomial theorem states that

(a + b)n =
n&

i=0

⌦
n

i

↵
aibn�i. (8.39)

This equation can be written in a symmetric way by denoting j = n� i. The result is

(a + b)n =
i+j=n&

i,j⌅0

(i + j)!
i!j!

aibj , (8.40)

from which we can easily guess the trinomial theorem (which is used in the triangular
Bézier surfaces)

(a + b + c)n =
i+j+k=n&

i,j,k⌅0

(i + j + k)!
i!j!k!

aibjck. (8.41)

Bezier invented some curves
That he used to approximate swerves
If you use them just right
They’ll fit very tight
And save wear and tear on your nerves

—Darel Hardy.

8.20 The Bernstein Form of the Bézier Curve

The original approach to the Bézier curve expresses it as a weighted sum of the points.
Each control point is multiplied by a weight and the products are added. We denote
the control points by P0 through Pn (the number of points is therefore n + 1) and the
weights by Bi. The weighted sum that makes up a Bézier segment is

P(t) =
n&

i=0

PiBi, 0 ⌦ t ⌦ 1.

The result, P(t), depends on the parameter t. Since the points are given by the user,
they are independent of t, so it is the weights that must depend on t. We therefore
denote them by Bi(t). How should Bi(t) behave as a function of t?

We first examine B0(t), the weight associated with the first point P0. We want
that point to a⌃ect the curve mostly at the beginning, i.e., when t is close to 0. Thus,
as t grows toward 1 (i.e., as the curve moves away from P0), B0(t) should drop down
to 0. When B0(t) = 0, the first point no longer influences the shape of the curve.

Next, we turn to B1(t). This weight function should start small, should have a max-
imum when the curve approaches the second point P1, and should then start dropping
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until it reaches zero. A natural question is: When (for what value of t) does the curve
reach its closest approach to the second point? A little thinking shows that it depends
on the number of points. For three points (n = 2), the Bézier curve passes closest to the
second point (the interior point) when t = 0.5. For four points, the curve is nearest the
second point when t = 1/3. It is now clear that the weight functions must also depend
on n and we therefore denote them by Bn,i(t). Hence, B3,1(t) should start at 0, have
a maximum at t = 1/3, and go down to 0 from there. Figure 8.41 shows the desired
behavior of Bn,i(t) for n = 2, 3, and 4. The five di⌃erent weights B4,i(t) have their
maxima at t = 0, 1/4, 1/2, 3/4, and 1.

1 1 1

B20(t) B22(t) B30(t) B33(t) B40(t) B44(t)

B43(t)B41(t)
B42(t)

B31(t) B32(t)
B21(t)

t t t

(* Just the base functions bern. Note how "pwr" handles 0^0 *)
Clear[pwr,bern];
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i x (1-t)^(n-i) *)
Plot[Evaluate[Table[bern[5,i,t], {i,0,5}]], {t,0,1}];

Figure 8.41: The Bernstein Polynomials for n = 2, 3, 4.

The functions chosen by Bézier were originally derived by Sergĕı Natanovich Bern-
shtĕın in 1912, as part of his work on approximation theory. They are known as the
Bernstein polynomials and are defined by

Bn,i(t) =
�n

i

⇥
ti(1� t)n�i, where

�n

i

 
=

n!
i!(n� i)!

(8.42)

are the binomial coe⌥cients. These polynomials feature the desired behavior and have a
few more useful properties that are discussed here. (In calculating the curve, we assume
that the quantity 00, which is normally undefined, equals 1.)

The Bézier segment is now defined as

P(t) =
n&

i=0

PiBn,i(t), where Bn,i(t) =
�n

i

⇥
ti(1� t)n�i and 0 ⌦ t ⌦ 1. (8.43)

Each control point (a pair or a triplet of coordinates) is multiplied by its weight, which
is in the range [0, 1]. The weights act as blending functions that blend the contributions
of the di⌃erent points.
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Here is Mathematica code to compute and plot the Bernstein polynomials and the
Bézier curve:

(*Just the base functions bern.Note how "pwr" handles 0^0*)

Clear[pwr,bern,n,i,t]

pwr[x_,y_]:=If[x==0&&y==0,1,x^y];

bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]

(*t^i*(1-t)^(n-i)*)

Plot[Evaluate[Table[bern[5,i,t],{i,0,5}]],{t,0,1}]

Clear[i,t,pnts,pwr,bern,bzCurve,g1,g2];

(*Cubic Bezier curve

either read points from file

pnts=ReadList["DataPoints",{Number,Number}];*)

or enter them explicitly*)

pnts={{0,0},{.7,1},{.3,1},{1,0}};

(*4 points for a cubic curve*)

pwr[x_,y_]:=If[x==0&&y==0,1,x^y];

bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]

bzCurve[t_]:=Sum[pnts[[i+1]]bern[3,i,t],{i,0,3}]

g1=Graphics[{Red, AbsolutePointSize[6],

Table[Point[pnts[[i]]],{i,1,4}]}];

g2=ParametricPlot[bzCurve[t],{t,0,1}];

Show[g1,g2,PlotRange->All]

Next is similar code for a three-dimensional Bézier curve. It was used to draw the
space curve of Figure 8.40.

Clear[pnts,pwr,bern,bzCurve,g1,g2,g3];
(*General 3D Bezier curve*)
pnts={{1,0,0},{0,-3,0.5},{-3,0,0.75},{0,3,1},
{3,0,1.5},{0,-3,1.75},{-1,0,2}};
n=Length[pnts]-1;
pwr[x_,y_]:=If[x==0&&y==0,1,x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
(*t^i x (1-t)^(n-i)*)
bzCurve[t_]:=Sum[pnts[[i+1]]bern[n,i,t],{i,0,n}];
g1=ParametricPlot3D[bzCurve[t],{t,0,1},DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2],Map[Point,pnts]}];
g3=Graphics3D[{AbsoluteThickness[2],
(*control polygon*)
Table[Line[{pnts[[j]],pnts[[j+1]]}],{j,1,n}]}];
g4=Graphics3D[{AbsoluteThickness[1.5],
(*the coordinate axes*)
Line[{{0,0,3},{0,0,0},{3,0,0},{0,0,0},{0,3,0}}]}];
Show[g1,g2,g3,g4,AspectRatio->Automatic,PlotRange->All,Boxed->False]

⌅ Exercise 8.23: Design a heart-shaped Bézier curve based on nine control points.

When Bézier started searching for such functions in the early 1960s, he set the
following requirements [Bézier 86]:

1. The functions should be such that the curve passes through the first and last
control points.

2. The tangent to the curve at the start point should be P1 � P0, i.e., the curve
should start at point P0 moving toward P1. A similar property should hold at the last
point.
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3. The same requirement is generalized for higher derivatives of the curve at the
two extreme endpoints. Hence, P

tt(0) should depend only on the first point P0 and
its two neighbors P1 and P2. In general, P

(k)(0) should only depend on P0 and its k
neighbors P1 through Pk. This feature provides complete control over the continuity at
the joints between separate Bézier curve segments.

4. The weight functions should be symmetric with respect to t and (1 � t). This
means that a reversal of the sequence of control points would not a⌃ect the shape of the
curve.

5. The weights should be barycentric, to guarantee that the shape of the curve is
independent of the coordinate system.

6. The entire curve lies within the convex hull of the set of control points.
The definition listed in Equation (8.43), using Bernstein polynomials as the weights,

satisfies all these requirements. In particular, requirement 5 is proved when Equa-
tion (8.39) is written in the form [t+(1�t)]n = · · ·. Following are the explicit expressions
of these polynomials for n = 2, 3, and 4.

Example: For n = 2 (three control points), the weights are

B2,0(t) = (2
0 )t0(1� t)2�0 = (1� t)2,

B2,1(t) = (2
1 )t1(1� t)2�1 = 2t(1� t),

B2,2(t) = (2
2 )t2(1� t)2�2 = t2,

and the curve is

P(t) = (1� t)2P0 + 2t(1� t)P1 + t2P2

=
�
(1� t)2, 2t(1� t), t2

⇥
(P0,P1,P2)

T

= (t2, t, 1)



 
1 �2 1
�2 2 0

1 0 0

�

!



 
P0

P1

P2

�

! . (8.44)

This is the quadratic Bézier curve.

⌅ Exercise 8.24: Given three points P1, P2, and P3, calculate the parabola that goes
from P1 to P3 and whose start and end tangent vectors point in directions P2�P1 and
P3 �P2, respectively.

In the special case n = 3, the four weight functions are

B3,0(t) = (3
0 )t0(1� t)3�0 = (1� t)3,

B3,1(t) = (3
1 )t1(1� t)3�1 = 3t(1� t)2,

B3,2(t) = (3
2 )t2(1� t)3�2 = 3t2(1� t),

B3,3(t) = (3
3 )t3(1� t)3�3 = t3,

and the curve is

P(t) = (1� t)3P0 + 3t(1� t)2P1 + 3t2(1� t)P2 + t3P3 (8.45)
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=
⇤
(1� t)3, 3t(1� t)2, 3t2(1� t), t3

⌅ ⇤
P0,P1,P2,P3

⌅T

=
⇤
(1� 3t + 3t2 � t3), (3t� 6t2 + 3t3), (3t2 � 3t3), t3

⌅ ⇤
P0,P1,P2,P3

⌅T

= (t3, t2, t, 1)



" 

�1 3 �3 1
3 �6 3 0
�3 3 0 0

1 0 0 0

�

#!



" 
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�
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It is clear that P(t) is a cubic polynomial in t. It is the cubic Bézier curve. In general,
the Bézier curve for points P0, P1,. . . , Pn is a polynomial of degree n.

⌅ Exercise 8.25: Given the curve P(t) = (1 + t + t2, t3), find its control points.

⌅ Exercise 8.26: The cubic curve of Equation (8.46) is drawn when the parameter t
varies in the interval [0, 1]. Show how to substitute t with a new parameter u such that
the curve will be drawn when �1 ⌦ u ⌦ +1.

⌅ Exercise 8.27: Calculate the Bernstein polynomials for n = 4.

⌅ Exercise 8.28: Generally, the Bézier curve passes through the first and last control
points, but not through the intermediate points. Consider the case of three points P0,
P1, and P2 on a straight line. Intuitively, it seems that the curve will be a straight line
and would therefore pass through the interior point P1. Is that so?

Equations are just the boring part of mathematics. I attempt to see things in terms
of geometry.

—Stephen Hawking.

8.21 Linear Perspective

Today, the term “perspective” is commonly used. It has several meanings and is used
in several contexts. A typical dictionary definition of this term has the following parts:

Perspective is a technique for drawing a three-dimensional scene on a two-dimensional
surface such that when viewed from a particular point, the viewer gets the right impres-
sion of their height, width, depth, and relative positions.

Perspective is also a point of view or an attitude toward something.
The type of perspective covered here is referred to as linear. Linear perspective

is a well-defined concept and is easy to treat mathematically. In contrast, the term
nonlinear perspective is ill-defined and may refer to di⌃erent approaches, techniques,
and variations of linear perspective. Some examples are: (1) An image drawn on the
surface of a sphere or a cylinder. (2) An image stretched or sheared in complex ways.
(3) A very wide scene with overlapping regions, each with its own vanishing points. (4)
Instead of straight lines converging to a point, have curves that converge to the same
vanishing point (5) Fisheye perspective, where the central part of the image is blown
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more than the rest. (6) Mercator Perspective, where the rules of Mercator Mapping are
applied to an image.

In his 2001 book, Secret Knowledge: Rediscovering the Lost Techniques of the Old
Masters, as well as in the accompanying 2002 BBC documentary David Hockney: Se-
cret Knowledge, Hockney mentions perspective only in passing. He is interested in the
progress made in accuracy and realism in Western art by artists using optical devices
such as a curved mirror, camera obscura, camera lucida, and lenses.

Hockney describes an experiment he and his helpers did in support of his theory.
They copied hundreds of paintings and drawings and arranged them on a long wall
chronologically (Figure 8.42). The works were arranged from the oldest (around 1300) on
the left, to the newest (around 1750) to the right. They were also arranged geographically
from Southern Europe on the bottom to Northern Europe on top. It was then easy to
notice that a revolution has occurred in art around 1420, and that it started in Italy.
Artworks before 1420 were all flat, while works after 1420 show how linear perspective
entered into European art, and gradually propagated from south (Italy, Spain, and
France) to north (Flanders, Holland, and Germany).

Figure 8.42: Hockney’s Great Wall.

Hockney refers to paintings and drawings made after 1420 as “correct” and “almost
like a photograph,” but when we look at those works, we don’t immediately see the
e⌃ects of lenses and mirrors. Instead, we feel that they look real because they use
correct perspective. Groups of lines that we know are parallel are seen to converge to
vanishing points. Distant objects look small; they are foreshortened.

At time 34:30 in part 1 of his documentary, Hockney mentions perspective. He
defines it as “perspective is an abstraction. A device for putting what we see in three-
dimensions onto a two-dimensional surface. It gives us an illusion of space.”

A quick Internet search verifies that many readers of Hockney’s book, as well as
viewers of the BBC documentary contested his theory of the use of optical devices in
art. See, for example, reference [Kreutz 01]. The critics presented many claims and
arguments, but since this text is about perspective, not mirrors and lenses, I would like
to limit it to just one interesting hint on how to recognize pictures drawn or painted
with the use of a camera obscura. The hint is, look for an abundance of left hands.
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It is generally agreed that only 10% of the population is left handed, and not much
is known about left-handedness in monkeys. (See also Exercise 7.11.) Figure 8.43 shows
the little-known painting The licentious kitchen maid (c. 1665) by Pieter van Roestraten,
which depicts such a scene and thereby suggests that the painter started by tracing a
camera obscura image of the scene. The other painting is the 1628 Laughing Boy with
a Wine-Glass, by Frans Hals.

Figure 8.43: Paintings Containing Dominant Left Hands.

8.21.1 Pioneers of Perspective

Regardless of Hockney’s claim about optical aids, his great wall full of historical artworks
should be enough to convince anyone that the use of linear perspective started around
1420, which raises the question of precedence. Who invented (discovered, originated)
linear perspective? It is generally agreed that this person was Filippo Brunelleschi, and
that he already had a clear picture of perspective in his mind as early as 1413.

Brunelleschi was an Italian architect, designer, goldsmith and
sculptor; one of many contemporary renaissance men. Among his
many other achievements, he is considered a founding father of Re-
naissance architecture, and is recognized as the first modern engi-
neer, planner, and sole construction supervisor. Adding to all this
is the fact that in 1421 Brunelleschi became the first person in the
Western world to receive a patent. His greatest achievement is de-
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signing the dome of the Florence Cathedral and supervising its construction, a mammoth
project that took 17 years.

We continue with the contributions made to the understanding of perspective by
three Renaissance figures, Brunelleschi, Masaccio, and Alberti.

Brunelleschi

Filippo Brunelleschi, known to his contemporaries as “Pippo,” was born in Florence in
1377. His father, Ser Brunellesco di Lippo Lapi, was a prosperous notary, but young
Filippo showed an interest in machines and in solving mechanical problems. (The term
“ser” was a title of respect, while “di Lippo Lapi” indicates that Brunelleschi’s grandfa-
ther was named Lippo and was from the Lapi family.) Filippo was therefore apprenticed,
at age 15, to a local goldsmith. For the next six years he learned to cast metals, work
with enamel, engrave and emboss silver, and use precious metals to decorate manuscripts
with gold leaf and to make jewels and religious artifacts.

After completing his apprenticeship in 1398 at age 21, Brunelleschi was sworn as
a master goldsmith and became a well-known goldsmith in Florence and other cities.
From 1401 to 1416 or 1417, he seems to have spent most of his time in Rome (although
this is uncertain), working as a goldsmith, making clocks, and surveying the many ruins
of the eternal city. Returning to Florence after 13 years of absence, Brunelleschi, then
40, became involved in the competition for the great dome of the Santa Maria del Fiore
Cathedral. This was to be both the largest dome ever attempted, with a diameter of
more than 143 feet, and the tallest one, starting at a height of about 170 feet o⌃ the
ground and reaching about 280 feet. (The lantern on top of it adds more than 70 feet
to that.)

Even though known as a goldsmith, not an architect, Brunelleschi won the 1418
competition because of his original approach to the problem. The novel aspect of his plan
for the dome was to build it without any sca⌃olding. (The term “centering” was then
used.) This idea, and the 1:12 model of the dome that he built in brick to demonstrate
his method, helped convince the committee of judges to give him the commission. He
then spent the years from 1420 to 1436 supervising the construction while also designing
and building ingenious machines to haul heavy loads to the top.

Brunelleschi, a true Renaissance man both because of his interests and achievements
and because of his time period, died in 1446. Like Donatello, Masaccio, da Vinci, and
Michelangelo, he never married. For more information on Brunelleschi, his work, and
his times, see [King 00], [Saalman 70], and [Walker 02].

A biography of Brunelleschi [Manetti 88] was written in the 1480s, four decades after
the death of its subject, by his pupil Antonio Manetti, which brings us to Brunelleschi’s
contribution to perspective. In this biography, Manetti describes Brunelleschi’s panel
drawing, a trompe l’oeil that was then used by Brunelleschi in an experiment that fuses
nature and art, similar to an optical trick. This historically-important painting has since
been lost, but it, and the experiment, are described in detail by Manetti.

Trompe l’oeil (French for “deceiving the eye,” pronounced “tromp loy”).
1. A style of painting that gives an illusion of photographic reality.
2. A painting or e⌃ect created in this style.

The peepshow experiment. Brunelleschi placed himself at a point three braccia
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(about six feet) inside the doorway of the not yet completed cathedral of Santa Maria
del Fiore. His idea was to specify a precise viewing point at which a viewer could
compare a real scene with a perspective painting of the same scene. Looking outside
across the Piazza del Duomo, he clearly saw, about 115 feet away, the Baptistery of San
Giovanni, one of Florence’s most familiar landmarks. This structure was a good choice
for the study of perspective because it is shaped like an octagon, so someone standing in
front of it sees its three front walls in two-point perspective. (It also features left–right
symmetry, so reflecting it horizontally does not change its shape.)

Brunelleschi then painted what he saw through the doorframe—the Baptistery and
some of the surrounding streets—in perspective on a small panel about 12 inches wide,
and with a burnished silver strip at its top. Finally, he drilled a small hole in the
panel at the center of the Baptistery’s eastern doors (the ones facing the cathedral,
Figure 8.44a) because this point of the Baptistery would be directly opposite the eye of
a viewer standing at the specified viewing point.

The world having so long been without artists of lofty soul or inspired talent, heaven
ordained that it should receive from the hand of Filippo the greatest, the tallest, and
the finest edifice of ancient and modern times, demonstrating that Tuscan genius,
although moribund, was not yet dead.

—Giorgio Vasari, The Lives of the Artists (1567).
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Figure 8.45: Plan of the Piazza del Duomo, Florence (After [Sgrilli 33]).

Brunelleschi then rotated the panel 180⇤ and looked through the hole at the Bap-
tistery. He then inserted a mirror (a rare and expensive item in Italy at that time)
and held it at arm’s length as shown in Figure 8.44bc and looked at his painting re-
flected in the mirror (where the silver top reflected the sky and clouds). This became
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Figure 8.44: Brunelleschi’s Experiment in Perspective.

Brunelleschi’s celebrated peepshow experiment, which demonstrated the lifelike qualities
of linear perspective.

In his biography, Manetti claims to have held this painting in his hands and to
have repeated the experiment. He was unable to tell the di⌃erence between the image
reflected in the mirror and the real scene, observed without the mirror. (However,
modern travelers to Florence recommend the use of a pair of heavy-duty tripods to hold
the image and the mirror at their precise locations.)

[Brunelleschi] had made a hole in the panel on which there was this painting;
. . .which hole was as small as a lentil on the painting side of the panel, and on the
back it opened pyramidally, like a woman’s straw hat, to the size of a ducat or a little
more. And he wished the eye to be placed at the back, where it was large, by whoever
had it to see, with the one hand bringing it close to the eye, and with the other holding a
mirror opposite, so that there the painting came to be reflected back . . .which on being
seen, . . . it seemed as if the real thing was seen: I have had the painting in my hand and
have seen it many times in these days, so I can give testimony.

—Antonio Manetti, The Life of Brunelleschi (1480s).
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Manetti must have seen this panel many times, and it was also listed among the
personal e⌃ects of Lorenzo the Magnificent after his death in 1492. After that point, all
traces of it have disappeared.

Manetti mentions another interesting fact. The painting was about 12 inches wide
and Brunelleschi recommended watching it from a distance of six inches, so the reflection
seen in the mirror appears to be at a distance of 12 inches from the viewer. We know
that tan 26.6⇤ = 0.5, which implies that the apex angle of an isosceles triangle whose
height equals its base is 2⇥26.6 � 53⇤. This trigonometric fact suggests that, as seen
from the viewing point specified by Brunelleschi, the Baptistery spans a viewing angle
of about 53⇤, and this is verified by Figure 8.45, which follows the site plan given by
[Sgrilli 33]. Finally, Manetti mentions that the diameter of the hole on the painted side
of the panel was about the thickness of a bean (6–7 mm). Figure 8.44d illustrates how
the same angle of 53⇤ is obtained if the eye of the viewer is glued to the back of the panel
(where according to Manetti the hole was bigger, about the size of a ducat, 20 mm) and
the thickness of the panel is the same 6–7 mm.

While this experiment of Brunelleschi’s is well-known and is mentioned and dis-
cussed in many places (including youtube), Manetti mentions a second experiment—this
time with two-point perspective, illustrated in Figure 8.46—that was simpler and did
not include a mirror. Here is a quotation, from [Edgerton 75]:

North West

Figure 8.46: Brunelleschi’s Second Experiment.

He made in perspective the piazza of the palace of the Signori of Florence,
with everything on it and round about it, as much as can be seen, standing
outside the piazza or really on a level with it, along the facade of the Church
of Santo Romolo, past the corner of Calimala Francesca, which rises on the
aforesaid piazza, a few braccia towards Orto Santo Michele, whence is seen the
palace of the Signori, in such a way that two faces are seen completely, that
which is turned towards the West and that which is turned toward the North:
so that it is a wonderful thing to see what appears, together with all the things
that the view includes in that place.
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Afterwards Paolo Uccello and other painters did it, who wished to coun-
terfeit and imitate it; of which I have seen more than one, and it was not as
well done as that. Here it might be said: why did he not make this picture,
being of perspective, with that hole for the eye, like the little panel from the
Duomo towards Santo Giovanni? This arose, because the panel of so great a
piazza needed to be so big to put in it so many di⌃erent things, that it could
not, like the Santo Giovanni, be held up to the face with one hand, nor the
mirror with the other; for the arm of a man is not of su⌥cient length that with
the mirror in his hand he could hold it at its distance opposite the point, nor
so strong, that he could support it.

He left it to the direction of the onlooker as happens in all other paintings
of all other painters, although the onlooker may not always be discerning. And
in the place where he put the burnished silver in that of Santo Giovanni, here
he left a void, which he made from the buildings up: and betook himself with
it to look at it in a place where the natural air showed itself from the buildings
upwards.
This little-known, interesting, but not very readable text is found on page 128 of

[Edgerton 75], who adds the following useful information:
This translation has been adapted from John White, Birth and Rebirth of

Pictorial Space (London, 1968), pp. 114, 116, 117. For a more readable if less
literal translation, see Saalman, The Life of Brunelleschi, pp. 42–46.
Today, after hundreds of years of research into Brunelleschi and his work, Manetti

is not the only source. On page 125 of [Edgerton 75] I found the following surprise:
Antonio Averlino, called Filarete, in his own treatise on architecture writ-

ten during the early 1460’s:
“And so I believe that Pippo di Ser Brunellescho the Florentine found

the way to make this plan [linear perspective] which truly was a subtle and
beautiful thing, which he discovered through considering what a mirror shows
to you.”

Masaccio

After his 1413 historical experiments with perspective, nothing more is heard about
Brunelleschi and perspective. It took more than a decade for his techniques to propagate
to other parts of Italy, and another decade to appear, in the early 1430’s, in Northern
European art.

Art historians believe that the first great Renaissance painter to use Brunelleschi’s
ideas and techniques in serious works of art was Tommaso di ser Giovanni di Mone
(or Tommaso di ser Giovanni cassai), known to us as Masaccio, a nickname that can
be translated as Big Thomas, Rough Thomas, Clumsy Thomas, Sloppy Thomas, Bad
Thomas, or even Messy Thomas. He died in 1428, at age 27, and in his last two years he
painted two important pictures (1) A 1425 fresco, today titled Trinity (or Holy Trinity),
in the Church of Santa Maria Novella in Florence, and (2) The Tribute Money, a fresco
in the Brancacci chapel, also in Florence (Santa Maria del Carmine). The accurate
execution of one-point perspective in the former creates the illusion of a sculpture placed
in a cavity in the wall, although the picture is flat. Figure 8.47 shows how the painter
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placed the vanishing point exactly five feet nine inches above the floor, to have it at the
viewing height of an average person. Hence, a visitor to Santa Maria Novella is in the
same position as Brunelleschi was when he peered across the Piazza del Duomo at a
point in the center of the Baptistery western doors.

This large picture (approximately 6.7⇥ 3.2 m, or 21 ft 10.5 in by 10 ft 5 in) has a
sad history of incompetent restoration and a 19th century attempt to cut it o⌃ the wall
and move it to another wall in the same Church.

The architectural setting of this fresco [the Trinity] is so accurate in its perspective
and so Brunelleschian in style that some scholars have suggested Brunelleschi drew
the sinopia, or cartoon, on the wall for Masaccio to paint. This is certainly possible,
but it is also quite possible that Masaccio—a master draftsman as well as an inspired
painter—could have done the whole work himself. Perhaps it doesn’t matter. The
important fact for the future of Western art is that Masaccio met Brunelleschi and
gained such a deep knowledge of perspective that he set a standard for every painter
to follow.

—Paul Robert Walker, The Feud that Sparked the Renaissance (2002).

The Tribute Money, painted by Masaccio with the help of Masolino around 1427,
illustrates more of Brunelleschi’s ideas. The two painters knew about the importance
of the horizon line and the rule of horizon line isocephaly. They, perhaps for the first
time in the history of Western art, placed the central group of figures with their heads
aligned on that line, regardless of their distance from the viewer. In addition to their
use of linear perspective, the painters applied the following techniques to add depth and
realism to the painting:

Horizon line isocephaly. When a group of objects is located roughly along a hori-
zontal line, align their heads along that line. Distant objects should appear smaller and
with their lowest points raised. Figure 8.48 (Delivery of the Keys, by Pietro Perugino)
is a clear example of this rule. Notice especially the man marked by the green arrow,
who is positioned slightly behind his neighbor.

Use the minimum needed to create the illusion of depth. Masaccio has only one,
minor structure on the right of the picture, providing only a few short lines to locate
the vanishing point and create the desired depth e⌃ect. By minimizing the importance
of this structure, the painter has made the group of people at the center of the painting
the dominant feature of the scene.

Continuous narrative. This is the idea of combining multiple spatial scenes (or
several moments in time) in a single picture. The painting tells the story of Christ and
Peter in three temporal scenes, placed (1) at the center, (2) on the left, and (3) on the
right side of the painting.

Naturalism. The idea is that an image appears natural if any idealization or styl-
ization is omitted. In this picture, naturalism is expressed in the lifelike expressions of
the figures and in their period clothing.

Atmospheric (or aerial) perspective. The illusion of depth is created by making
distant objects appear misty, murky, lighter, and more ambiguous and undefined than
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Figure 8.47: Masaccio’s Holy Trinity and The Tribute Money.
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Figure 8.48: Perugino’s Delivery of the Keys.

nearby objects. This creates a sense of distance between the figures in the foreground
and the mountains in the background.

Atmospheric perspective was also used by Leonardo da Vinci. It is based on the
perception that contrasts of color and shade appear greater in nearby objects than in
distant objects, and that warm colors (such as red, orange, and yellow) appear to bring
objects closer to the viewer, while cool colors (blue, violet, and green) appear to do
the opposite. Aerial perspective is also used in East Asian art, where zones of mist are
sometimes used to separate nearby and distant parts of the scene.

Alberti

Debates over who should have priority in science can be very worrisome and unpleasant
for everyone involved. An instance of this would be the uncovering of gravity. Historians,
educators, and textbooks have focused solely on Isaac Newton for 400 years, but recent
discoveries indicate that Robert Hooke had a similar idea a few months earlier. Who was
the one to uncover gravity, Newton or Hooke? Even if Hooke originated the idea, Newton
is credited with precisely explaining gravity in mathematical terms, demonstrating its
impact on falling apples and celestial bodies, and transforming it into a reputable and
practical scientific discipline.

(There are reasons to believe that important historical figures such as da Vinci,
Brahmagupta, and Bhaskar Acharya also came up with the basic idea of gravity long
before Hooke, but similarly lacked the mathematical tools needed to place their ideas
on a firm and rigorous basis.)

A similar controversy surrounds Brunelleschi and Leon Battista Alberti, concerning
the discovery (or perhaps rediscovery) of perspective. The former was the genius who
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first came up with the main concept and the essential rules of perspective, while the
latter put those rules into mathematical language and, even more important, put them
on paper. In this way Alberti influenced future artists and showed how to incorporate
perspective in artworks. We can therefore claim that Alberti, though not the first to
understand perspective, was the person who truly transformed Italian art, and later
European art, from the flat style used for millennia to the modern form. Instead of
considering him the discoverer, we can safely say that he was the chief figure in the
development of the fundamental technique of perspective.

A word about their backgrounds. Brunelleschi’s father was a notary who could
provide his son with only elementary education. The basic abacco education at his time
stressed practical subjects and lacked advanced applications of mathematics as well as
the classics (Greek and Latin). Brunelleschi was also secretive. He worried about his
competitors stealing his ideas, which is perhaps why he left no writings.

Alberti, on the other hand, came from a rich, patrician family, and had an excellent
education. He studied the classics at the university of Padua, followed by law, mathe-
matics, and perhaps also optics, at the university of Bologna. As a clerk, a secretary, and
a confidante to the papal curia, he spent years traveling in Italy, visiting the powerful
courts in places such as Ferrara, Mantua, and Urbino. In 1387 his family was banished
from Florence by the Albizzi ruling family. In 1428, when the Albizzis fell from power,
the Alberti family could return, and Leon Battista was finally able, in 1434, to visit the
city of his ancestors. He was quick to develop relations with the Medici, to absorb the
new approaches to art, and to see the Duomo, the Baptistery, the Palazzo della Signoria,
the Ponte Vecchio, and other major locations.

It was at this time, in 1435–1436, while under the e⌃ects of the bold architecture
and revolutionary art and ideas that he absorbed in Florence, that Alberti wrote and
published (in the vernacular Italian) his great book Il Trattato della Pittura e I Cinque
Ordini Archittonici (On Painting). The Latin version of this book, titled De Pictura,
was perhaps also written by him. In this book he describes a simple geometric method
for constructing a correct one-point perspective of a horizontal grid on a vertical picture
plane. This method was later simplified by Piero della Francesca in his 1478 mathemat-
ical treatise De prospectiva pingendi (On perspective painting).

Alberti’s approach to perspective drawing, as described in his book, is based on
the concept of a window and it consists of two main steps, the vanishing point and the
distance point. The first step starts by drawing a rectangle, the window through which
the final scene would be viewed. Next, the painter decides how tall the main figures
(plants, animals, or humans) should be. In Figure 8.49 this is denoted by H, and the
artist (1) partitions the bottom of the window into equal-size parts, each about H/3
units wide, (2) draws the horizon line in the window at height H, and (3) establishes
a vanishing point at the center of the horizon line and draws the orthogonals from the
bottom to the vanishing point.

A modern artist or designer places the horizon wherever he wants the eye level of
the viewer to be. To Alberti, the horizon line separates the window into two parts. The
lower part contains those objects and figures that are not higher than the eye of the
viewer. The upper part is the place for the large objects (often the sky, mountains,
or tall buildings) that are farther away. Distant figures are drawn with their top at
the horizon line, which creates the illusion of depth. The modern term for this rule is
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Figure 8.49: Alberti’s Window.

horizon line isocephaly.

The canvas is an open window through which I see what I want to paint.
—Leon Battista Alberti.

The second step in Alberti’s perspective construction, the distance point, is illus-
trated in Figure 8.50.

The left part of the figure shows a side view where the picture plane is intercepted
by a family of visual rays that emanate from the viewer’s eye. Each ray connects the
eye to one of the equally-spaced grid points on the ground. The point where the ray
intercepts the picture plane is then transferred to the front view (on the right part of the
figure) to indicate where to place the particular transversal in the picture. It is easy to
see how the transversals, which in reality are equally spaced, get closer and closer in the
perspective view. The last step is to draw a diagonal line in the front view to check for
the accuracy of this geometric construction. This diagonal should intersect the corners
of the squares it traverses.

The middle part of the figure illustrates the e⌃ects of the viewer getting near the
picture plane. The transversals in this case are being spread out, indicating a large per-
spective e⌃ect (significant di⌃erences between nearby and distant objects). The bottom
part of the figure shows what happens when the painter chooses a low horizon. The
transversals are brought closer, the bottom part of the figure become less dominant, and
there is room for more objects above the horizon. This makes sense for pictures that
depict stars, flying objects (identified or not), or clouds.

Figures 8.51 and 8.52 demonstrate these concepts with photographs.
In his book, Alberti also shows how a floor, accurately drawn in perspective, can

serve to determine the correct dimensions (both horizontal and vertical) of objects posi-
tioned on the floor and elsewhere in the picture. Figure 8.53 (top) illustrates how a grid
on a floor is used to determine the height of a large, box-like object placed on the floor.
Alberti used the braccio (plural braccia), a length unit that equals approximately 58 cm
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Horizon

Low horizon

Viewer very close

c

Grid on ground

Viewer to picture

Picture plane

Front view

Check line

Transversals

Visual rays

Side view

c

Figure 8.50: Alberti’s Method of Traversals in One-Point Perspective.



418 8. Geometry

Photo by Adrian Botica on unsplash

Photo by Saj Shafique on unsplash

Photo by Tom Barrett on unsplash

Photo by Massimo Virgilio on unsplash

Figure 8.51: One-Point Perspective Demonstrated.
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Photo by Dave Lowe on unsplash

Photo by Edoardo Busti on unsplash

Photo by Massimo Virgilio on unsplash

Photo by Daniel Norris on unsplash

Figure 8.52: One-Point Perspective Demonstrated.
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(or 23 in, roughly the length of a man’s arm), and a length of four braccia, measured on
the floor, is employed to determine the heights of the box at its front and back.

Four braccia

Four braccia

Figure 8.53: Determining Vertical Dimensions from the Floor.

The bottom part of the figure shows how the system of traversals can also be applied
to the ceiling, resulting in two grids of lines converging to the same vanishing point.

It is such precisely described methods and techniques that distinguish Alberti from
his predecessors and justify his title as a “pioneer” or “originator” of perspective.
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⌅ Exercise 8.29: Given the simple two-point perspective of Figure 8.54, show how the
equally-spaced red vertical lines were constructed.

Figure 8.54: Two-Point Perspective with Equally-Spaced Lines.

Alberti “was a man of rare brilliance, acute judgement, and extensive learning. . .Surely
there was no field of knowledge, however remote, no discipline, however arcane, that
escaped his attention.”

—Angelo Poliziano.

The great German painter Albrecht Dürer showed how to extend Alberti’s approach
to three-dimensional objects (Figure 8.55). Lay the object (a lute in the figure) on a
table behind a frame and attach a string with a pulley and a weight to the wall in front
of the frame. A wooden leaf is attached to the frame with hinges, and a sheet of blank
paper is mounted on the leaf. Now move the free end of the string to an arbitrary point
on the object and determine the point where the string intercepts the frame. (This
is done by two moveable wires or threads, as shown in the upper part of the figure.)
Remove the string temporarily, close the hinged leaf, and mark the intersection point
of the wires on the paper. This is repeated for many points on the object, which later
permits the artist to interpolate the points and complete the drawing.

In contrast with renaissance and classical artists, who mostly tried to create works
true to nature, many impressionist and modern artists consider the use of color and
technique more important than accurate perspective. Figures 8.56 and 8.57 show exam-
ples of this approach. Figure 8.56 shows: (1) The van Gogh chair, (2) A 13th century
Madonna with Child in the Italo-Byzantine style, and (3) Altarpiece of the Sienese
Cathedral by Maesta. The yellow chair was painted by Vincent van Gogh several times
during his short stay in Arles. Even a quick glance may convince the viewer that some-
thing is wrong. However, van Gogh fans claim that his mastery of color, combined with
his technique and style, resulted in paintings full of appeal and charm, in spite of the
crude perspective (or even because of it). Many of the chairs of David Hockney are also
examples of what is often referred to as divergent or inverse perspective, reverspective.
Such e⌃ects can also be achieved with a hypercentric camera, whose lens makes distant
objects appear larger than closer ones.

Figure 8.57 shows: (a) Fresco from the grotto of Touen Houang, China, Tang dy-
nasty (618–906). (b) Pseudo Jacopino di Francesco, Mary Magdalene Washing Christ’s
Feet. (c) Andrei Rublev. (c. 1360–1430) The Trinity, late 1400’s, early 1500’s, State
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Wooden frame
Hinged leaf

Paper

Moveable wires

Figure 8.55: Dürer’s Method of Perspective Drawing.
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(1) (2)

(3)

Figure 8.56: Examples of Divergent Perspective.
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(b)

(d)

(a)

(c)

Figure 8.57: Examples of Divergent Perspective.

Tretyakov Gallery, Moscow. (d) Refectory of Abbazia di Pomposa (Pomposa abbey),
Miracle of the Abbot Guido Strambiati, Giotto frescoes in Rimini from 1316–1320.

8.22 Perspective: Basic Concepts

The basic ideas and rules of perspective are derived from the well-known observation that
distant objects seem small. This observation, coupled with Figure 8.58, illustrates the
main idea behind perspective, the concept of converging lines and vanishing points. The
figure also serves to understand the main rule of vanishing points: Any group of parallel
lines on an object converges to a vanishing point, except if the lines are perpendicular
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to the line of sight (the groups of gray lines in the figure). See Figure 8.59 for examples
of several vanishing points.

Another important aspect of perspective has to do with distances. When an object
is moved away from the viewer, it appears smaller, but its perspective also diminishes.
The amount of perspective seen by the viewer depends on the relation between the depth
of the viewed object and its distance from the viewer. This is illustrated in Figure 8.60.
Part (a) of the figure shows a cube of 10 cm on a side that is viewed from a distance
of 10 cm. The cube’s back face is therefore 20 cm from the viewer, twice the distance
of the front face. The back face therefore seems to the viewer much smaller than the
front face, and the object is seen with considerable perspective. In part (b), the cube
is moved 90 cm away from the viewer. Its front face ends up at 100 cm while its back
face is at 110 cm from the viewer. The di⌃erence between front and back is now much
smaller compared with the distance from the viewer, causing the back face to appear
only a shade smaller than the front, with the result that the object appears to have a
lesser perspective (Figure 8.60b).

Front

Back

Front

Back

(a) (b)

Figure 8.60: (a) More and (b) Less Perspective.

⌅ Exercise 8.30: In addition to featuring less perspective, a distant object also looks
small. Can we bring such an object closer without increasing its perspective?

The horizon line. The placement of the horizon line is one of the first decisions
made when planning a picture in perspective. In principle, the artist/designer can place
this line anywhere in the window, but the following discussion explains how the position
of the horizon a⌃ects the overall impression that the final picture creates in the mind of
the viewer.

The viewer always assumes that the horizon line is at his height (see the top part
of figure 8.47), which is why placing the horizon in the middle of the picture puts the
viewer in a 1:1 relationship with the subjects at its center, while also creating the feeling
that higher and lower objects have secondary importance. The artist should consider
the viewer a floating eye that can be placed anywhere in the picture window, and whose
placement will determine the e⌃ect the rest of the image has on the viewer.

When the horizon line is placed high in the picture (Figure 8.61), the viewer feels
that he is observing from a high position, perhaps standing on a hill or on a high bridge,
parachuting, or flying. Such a picture shows more of the top of the objects below and less
of their sides. Clouds, stars, and the bottom parts of high-flying airplanes may appear
at the top of the picture. An example is a picture of a gigantic airship surrounded by
small aircraft, all flying over a city with skyscrapers.
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Figure 8.58: Parallel Lines Converging.

Spiral
staircase

Raphael
The school of Athens

Figure 8.59: Several Vanishing Points.
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Horizon line at
Person's height

High horizon

Low horizon

Figure 8.61: High and Low Horizons.
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Figure 8.62: Low Horizon Examples.
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A high horizon also creates the feeling of big ground and small sky. This is the right
choice when there are many objects on the ground and the painter wants them to appear
less imposing, while stressing certain objects located high, near the painter himself. One
example is a view from the Ei⌃el Tower, showing some of the steel structures near the
painter/photographer in much detail, while the many buildings, people, and bridges
on the ground are minor details. An extreme example is the 1935 woodcut Inside St.
Peter’s, by M. C. Escher.

High horizon

Low horizon

Low horizon
2-point vertical
perspective

Figure 8.63: High and Low Horizons.

Figure 8.63 illustrates a few examples of low and high horizon. Especially interesting
is the right-hand side of the figure, which is an example of a 2-point vertical perspective,
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where the two vanishing points are along a vertical line. A similar example appears in
Figure 8.64, which also has images featuring high horizons.

A low horizon, such as in Figure 8.62, creates in the viewer the feeling that he is
sitting, squatting, or perhaps standing low, in a hole in the ground. The sky is big and
the ground is small. The viewer sees details of nearby low-lying objects, but more of
the front and bottom parts of higher objects. Even nearby objects on the ground may
be obscured by closer objects, which creates the feeling of limited perspective. Such a
placement makes sense for a picture where the bottom parts of objects are dominant.

In a hole in the ground there lived a hobbit.
—J. R. R. Tolkien, The Hobbit, 1937.

Another dramatic e⌃ect is achieved when the main objects in
such a picture dominate the viewer because he is so much below
them. The object may then seem heroic and larger than life. An
example is a knight in armor riding a huge horse, as seen by someone
sitting low. Two extreme examples of a low horizon are the 1952
woodcut Puddle and the 1955 lithograph Three Worlds, both by
Escher.

Speaking of Escher, his intriguing 1947 painting High and Low has a low horizon
in the lower half of the picture and a high horizon in its top half.

8.23 The Mathematics of Perspective

The term “projection” has meanings in a wide variety of fields including physics, chem-
istry, biology, linguistics, and art. In mathematics, this term is used, among others,
in connection with set theory, measure theory, and relational algebra. In this text,
our interest is in perspective projection, a method of transforming three-dimensional
objects to a two-dimensional plane, where they satisfy the rules of perspective. For
comparison, consider the much simpler parallel projection. The parallel projection of
the three-dimensional point (x, y, z) on the xy plane is simply the two-dimensional point
(x, y), but the perspective projection of (x, y, z) has to take into account the location
and orientation of the viewer. The perspective projection seen by a distant viewer is not
only small, but also features shallow perspective. This is discussed at the beginning of
Section 8.22 and is illustrated in Figure 8.60.

The mathematics of perspective projection is easy to derive and to apply to various
situations. The mathematical problem involves three entities, a three-dimensional object
to be projected, a projection plane, and a viewer watching the projection on this plane.
The object and the viewer are located on di⌃erent sides of the projection plane, and
the problem is to determine what the viewer will see on the plane. It is like having a
transparent plane and looking through it at an object. Specifically, given an arbitrary
point P = (x, y, z) on the object, we want to compute the coordinates (x⇥, y⇥) of its
projection P

⇥ on the projection plane. Once all the points of the object are projected
and drawn on the projection plane, the object appears on the plane in perspective.
Thus, the problem is to find a transformation T that will transform P to P

⇥. We use
the notation P

⇥ = PT, where T, Equation (8.50), is the yet-unknown 4⇥ 4 perspective
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High horizon
2-point vertical
perspective

Figure 8.64: High Horizons.
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transformation matrix whose elements are to be determined. This matrix is 4 ⇥ 4 and
not 3⇥ 3 as expected, because of the use of homogeneous coordinates.

Often, there is no need to compute the projections of every object point. If P1 and
P2 are the two endpoints of a straight segment on the object, only their projections P

⇥
1

and P
⇥
2 need be computed and a straight segment drawn between them on the plane.

In the case of a curve, it is enough to compute the projections of several points on the
curve and either interpolate them on the projection plane or simply connect them with
short, straight segments.

It is obvious that what the viewer will see on the projection plane depends on the
position and orientation of the viewer. The viewer and the object have to be located on
di⌃erent sides of the plane, and the viewer should look at the plane. If the viewer moves,
turns, or tilts his head, he will see something else on the projection plane or may not
even see this plane at all. Similarly, if the object is moved or if the projection plane is
moved or is rotated, the projection would change. Thus, the mathematical expressions
for perspective must depend on the location and orientation of both the viewer and the
projection plane, as well as on the location of each point P of the object.

We start with the special case, the standard position, where the viewer is positioned
at a special location, looking in a special direction at a specially-placed projection plane.
There is no need to consider the orientation of the object because each point P on the
object is projected individually. In reference [Salomon 11] this treatment is generalized
and it is shown how to project an object on any projection plane and with the viewer
located anywhere and looking in an arbitrary direction.

The earlier discussion of the rules of perspective and of converging lines implies that
the transformation matrix T should satisfy the following conditions:

1. As the object is moved away from the projection plane, its projection shrinks.
This is in accordance with the well-known fact that distant objects appear small.

2. The projection of a distant object features shallow perspective, as illustrated by
Figure 8.60. The reader may claim that the projection of a distant object is too small
to be seen, so the loss of perspective may not matter, but the point is that we can look
at a distant object through a telescope. This instrument brings the object closer, so it
looks big, but still features shallow perspective.

3. Any group of straight parallel lines on the object seems to converge to a vanishing
point, except if the lines are perpendicular to the line of sight of the viewer.

The remainder of this section derives this special case of perspective projection in
four steps as follows:

1. We describe the special case and state the rule of projection.
2. The mathematical expressions are derived using only similar triangles.
3. We show that this rule satisfies the three requirements above.
4. The general three-dimensional transformation matrix is derived from this rule.

Because of the use of homogeneous coordinates this is a 4⇥4 matrix that can both
transform the points of an object and project them on a plane.

Step 1. The special case discussed in this section places the viewer at point
(0, 0,�k), where k, a positive real number, is a parameter chosen by the user. The
viewer looks in the positive z axis, so the line of sight is the vector (0, 0, 1). Finally, the
projection plane is the xy plane. In order for the projection to make sense, we state
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again that the viewer and the object must be located on di⌃erent sides of the projection
plane, and this implies that all the points of the object must have nonnegative z coor-
dinates. (The points will normally have positive z coordinates, but they may also be of
the form (x, y, 0); i.e., located on the projection plane itself.)

The special case discussed here is referred to as the standard position and is il-
lustrated in Figure 8.65a. In addition to being commonly used in practice, this case
simplifies the mathematical derivation. To locate the perspective projection of point
P we compute the line segment that connects P to the viewer at point (0, 0,�k) and
place the projected point P

⇥ where this segment intercepts the xy plane. (The segment
always intercepts the xy plane because the object and the viewer are located on opposite
sides of the plane.) Because the projection plane is the xy plane, the coordinates of the
projected point are (x⇥, y⇥, 0), indicating that it is essentially two-dimensional.

x

y

z

(a) (b)

x
y

z

k

k

Figure 8.65: (a) Standard and (b) Nonstandard Positions.

It is important to realize that the viewer and the projection plane constitute a single
unit and should be moved and rotated together. This is illustrated in Figure 8.65b
and especially in Figure 8.66a, which shows the viewer-plane unit moving around the
object and the viewer looking at the object from di⌃erent directions, examining various
projections of it on the plane. It is pointless to move the viewer around the object while
the projection plane stays at the same location (Figure 8.66b) because such a viewer
will generally not even be looking at the projection plane. Thus, the projection plane
must move with the viewer and must remain perpendicular to the line of sight of the
viewer and at a distance of k units from him (although k may be varied by the user).

(a) (b)

kk

k

k

Figure 8.66: Moving the Viewer and the Projection Plane.
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Step 2. The two similar triangles of Figure 8.67 yield the simple relations

x⇥

k
=

x

z + k
and

y⇥

k
=

y

z + k
,

from which we obtain

x⇥ =
x

(z/k) + 1
and y⇥ =

y

(z/k) + 1
. (8.47)

(Some authors assign the x coordinate a negative sign. This is a result of the di⌃erence
between left-handed and right-handed coordinate systems.) The +1 in the denominator
of Equation (8.47) is important. It guarantees that the denominator will never be zero.
The denominator can be zero only if z/k = �1, but k is positive and z is nonnegative.

x or y

P*

P

k z

yy*

z

Figure 8.67: Perspective by Similar Triangles.

Step 3. Equation (8.47) can be employed to show that the projection rule of
Step 1 results in a projection that satisfies the three conditions above and can therefore
be called perspective. Condition 1 says that a distant object should appear small. The
object can become distant in three ways:

1. increasing the z coordinates of its points;
2. increasing the x or y coordinates;
3. increasing the value of k.
For large values of z, Equation (8.47) yields small values for x⇥ and y⇥. Specifically

lim
z⇧�

x⇥ = 0 and lim
z⇧�

y⇥ = 0.

For large values of x or y, imagine two points, P1 = (x1, y1, z1) and P2 = (x2, y1, z1), on
the object that di⌃er only in their x coordinates. They are projected to the two points
P
⇥
1 = (x⇥1, y⇥1) and P

⇥
2 = (x⇥2, y⇥1), which have identical y coordinates, and the ratio of

their x coordinates is

x⇥1
x⇥2

=
x1

(z1/k) + 1

◆ x2

(z1/k) + 1
=

x1

x2
. (8.48)

Thus, when both x1 and x2 grow, the ratio x⇥1/x⇥2 approaches 1, which implies that the
two projected points P

⇥
1 and P

⇥
2 get closer. Since P1 and P2 are arbitrary points with

the same y and z coordinates, this implies that all the points with the same y and z
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Figure 8.68: (a) Large x Dimensions. (b) Large Values of k.

coordinates produce projections that are very close. The entire object seems to have
shrunk in the x dimension (Figure 8.68a).

The case where k increases (i.e., the viewer moves away from the projection plane)
is di⌃erent. Figure 8.68b shows how the projection of the object becomes bigger and
bigger in this case until, at the limit, when the viewer is at infinity, the projection reaches
the actual size of the object. The perspective projection is reduced in this limit to a
parallel projection. However, even though the projection itself gets bigger, the viewer
sees a small projected object because the projection plane and everything on it look
small to a distant viewer.

Condition 2 demands that a distant object feature less perspective. We already
know that an object can become distant in three ways each of which is individually
treated here.

1. The z coordinates are increased. We select two object points P1 = (x1, y1, z1)
and P2 = (x1, y1, z2) with the same x and y coordinates and di⌃erent z coordinates. We
denote their projected points by P

⇥
1 = (x⇥1, y⇥1) and P

⇥
2 = (x⇥2, y⇥2) and compute the ratio

x⇥1/x⇥2:

x⇥1
x⇥2

=
x1

(z1/k) + 1

◆ x1

(z2/k) + 1
=

z2 + k

z1 + k
. (8.49)

When the z coordinates are increased, this ratio approaches 1, thereby showing that the
distance between the projected points is decreased, resulting in less perspective.

2. The x or y coordinates are increased. Equation (8.48) shows that the projected
points get closer in this case, too.

3. The value of k is increased. In this case, Equation (8.49) shows that the projected
points get closer, again implying less perspective.

Condition 3 is also easy to verify, at least in the case of lines parallel to the z
axis. Figure 8.69 shows how a group of lines parallel to the z axis are projected to line
segments that converge at the origin.

Step 4. The projection expressed by Equation (8.47) can be included in the general
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x

z

Figure 8.69: Lines Parallel to the z Axis.

4⇥4 transformation matrix in three dimensions. The result is

Tp =



" 

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

�

#! . (8.50)

A simple test verifies that the product (x, y, z, 1)Tp yields (x, y, 0, rz + 1) or, after
dividing by the fourth coordinate, (x/(rz + 1), y/(rz + 1), 0, 1). This agrees with Equa-
tion (8.47) if we assume that r = 1/k. (Recall that k is strictly positive and is never
zero because the viewer never presses his eyes to the projection plane.)

It is now clear that there are two more special cases that are geometrically equivalent
to our standard position. These are the cases where the viewer is positioned on the
negative side of the x axis (or the y axis) at a certain distance from the origin, and the
projection plane is the yz (or xz) plane. The object is located on the positive side of
the x (or y) axis. These cases correspond to the transformation matrices

Tx =



" 

0 0 0 p
0 1 0 0
0 0 1 0
0 0 0 1

�

#! and Ty =



" 

1 0 0 0
0 0 0 q
0 0 1 0
0 0 0 1

�

#! ,

where both 1/p and 1/q are the distances of the viewer from the origin.
Note. The general case, where the viewer can be positioned anywhere and looking

in any direction, is covered in [Salomon 11].
We end this discussion of the mathematics of perspective projection with several

examples of points projected in the standard position.

Linear example. We arbitrarily select the two points P1 = (2, 3, 1) and P2 =
(3,�1, 2) and the distance k = 1. Notice that the z coordinates of these points are
nonnegative. The points are projected to

P
⇥
1 =

�
2

(1/1) + 1
,

3
(1/1) + 1

�
= (1, 3/2) and P

⇥
2 =

�
3

(2/1) + 1
,

�1
(2/1) + 1

�
= (1,�1/3).

We now select the midpoint Pm = (P1 + P2)/2 = (5/2, 1, 3/2) and project it to

P
⇥
m =

⇣
5/2

3/2
1 + 1

,
1

3/2
1 + 1

⌘
= (1, 2/5).
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Point Pm is located on the straight segment connecting P1 to P2 (it is the midpoint
of the segment) and P

⇥
m is on the segment connecting P

⇥
1 to P

⇥
2 (although it isn’t

the midpoint, because it is easy to see that P
⇥
m = 0.4P⇥

1 + 0.6P⇥
2). The perspective

projection of a straight segment is a straight segment, which is why it is done in practice
by projecting the two endpoints and connecting them on the projection plane with a
straight segment.

Converging lines. We choose an arbitrary point P3 = (0, 2, 3) and compute a new
point P4 = (1,�2, 4) from the relation P4�P3 = P2�P1. The di⌃erence of two points
is a vector, so this relation guarantees that the vector from P3 to P4 equals the vector
from P1 to P2, or, equivalently, that the two line segments P1P2 and P3P4 are parallel.
The two new points are projected to yield

P
⇥
3 =

�
0,

2
(3/1) + 1

�
= (0, 1/2) and P

⇥
4 =

�
1

(4/1) + 1
,

�2
(4/1) + 1

�
= (1/5,�2/5).

The parametric equation of the straight segment connecting P
⇥
3 to P

⇥
4 is

L2(w) = w(P⇥
4 �P

⇥
3) + P

⇥
3 = w(1/5,�9/10) + (0, 1/2), for 0 ⌦ w ⌦ 1,

and the parametric equation of the straight segment connecting P
⇥
1 to P

⇥
2 is

L1(u) = u(P⇥
2 �P

⇥
1) + P

⇥
1 = u(0,�4/3) + (1, 3/2), for 0 ⌦ u ⌦ 1,

the point is that although the original segments P1P2 and P3P4 are parallel, the two
projected segments are not parallel. They meet at point L1(33/8) = L2(5) = (1,�4).

Another way to prove that the two projected line segments converge is to show that
they are not parallel by computing and comparing their directions (or slopes). It’s easy
to see that P

⇥
2�P

⇥
1 = (0,�4/3) but P

⇥
4�P

⇥
3 = (1/5,�9/10). Line segment L1 proceeds

straight down, whereas L2 has a slope of (�9/10)/(1/5) = �4.5.

⌅ Exercise 8.31: Select two line segments that are perpendicular to the line of sight of
the viewer, and show that their projections on the xy plane are parallel.

Projecting entire curves. We select the three points P1 = (�1, 0, 1), P2 = (0, 1, 2),
and P3 = (1, 1, 3) and compute the Bézier curve P(t) (Section 8.19) defined by them

P(t) = (1� t)2(�1, 0, 1) + 2t(1� t)(0, 1, 2) + t2(1, 1, 3).

The midpoint of this curve is

P(0.5) = (�1/4, 0, 1/4) + (0, 1/2, 1) + (1/4, 1/4, 3/4) = (0, 3/4, 2).

We now project the three original points and obtain

P
⇥
1 =

�
�1

(1/1) + 1
, 0
�

= (�1/2, 0), P
⇥
2 =

�
0,

1
(2/1) + 1

�
= (0, 1/3),

P
⇥
3 =

�
1

(3/1) + 1
,

1
(3/1) + 1

�
= (1/4, 1/4).
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The Bézier curve defined by these points is

P
⇥(t) = (1� t)2(�1/2, 0) + 2t(1� t)(0, 1/3) + t2(1/4, 1/4).

The point of this example is that the projection of P(0.5), which is (0, 1/4), is not
located on P

⇥(t). This illustrates the nonlinear nature of the Bézier curve (as well as
most other curves).

⌅ Exercise 8.32: Show why point (0, 1/4) is not located on P
⇥(t).

Transforming and projecting. This example illustrates the advantage of the pro-
jection matrix Tp of Equation (8.50). Given an object, we might want to transform it
before we project its points. In such a case, all we have to do is prepare the individual
4 ⇥ 4 transformation matrices, multiply them together in the order of the transforma-
tions, and multiply the result by Tp. Assume that we want to apply the following
transformations to our object: (1) Rotate it about the x axis by 90⇤ from the direction
of positive y to the direction of positive z (Figure 8.70a). (2) Translate it by 3 units in
the positive z direction. (3) Scale it by a factor of 1/2 (i.e., shrink it to half its size) in
the y dimension. The three transformation matrices are

TR =

�

⇢⇠

1 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 1

⌫

�⇡ , TT =

�

⇢⇠

1 0 0 0
0 1 0 0
0 0 1 0
0 0 3 1

⌫

�⇡ , TS =

�

⇢⇠

1 0 0 0
0 1/2 0 0
0 0 1 0
0 0 0 1

⌫

�⇡

and their product with Tp (we assume k = 1, so r = 1) produces

T = TRTT TS

�

⇢⇠

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1

⌫

�⇡ =

�

⇢⇠

1 0 0 0
0 0 0 1
0 �1/2 0 0
0 0 0 4

⌫

�⇡ . (8.51)

x x

y y

z z

(a) (b)

Figure 8.70: Rotation about the x Axis.
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We can now pick any point on the object, write it as a 4-tuple in homogeneous
coordinates, and multiply it by T to both transform it and obtain its projection. Notice
that a point cannot be scaled, but the e⌃ect of scaling is to move points such that the
entire scaled object would shrink to half its size in the y dimension. As an example,
multiplying point (0, 1,�4, 1) by T results in (0, 2, 0, 5), which, after dividing by the
fourth coordinate, produces the two-dimensional point (0, 2/5).

⌅ Exercise 8.33: Multiply point (0, 1,�4, 1) by the product TRTT TS and explain the
result.

⌅ Exercise 8.34: The previous paragraph mentions scaling, so let’s consider another
subtle e⌃ect of this simple transformation. The transformation matrix for scaling is



" 

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 1

�

#! .

When combined with perspective projection, it yields



" 

T1 0 0 0
0 T2 0 0
0 0 T3 0
0 0 0 1

�

#!



" 

1 0 0 0
0 1 0 0
0 0 0 r
0 0 0 1

�

#! =



" 

T1 0 0 0
0 T2 0 0
0 0 0 T3r
0 0 0 1

�

#! .

Hence, a point (x, y, z, 1) is transformed to (T1x, T2y, 0, T3rz + 1), which implies

x⇥ =
T1x

T3rz + 1
, y⇥ =

T2y

T3rz + 1
.

In the special case of uniform scaling, T1 = T2 = T3 = T , we get x⇥ = x/(rz + 1/T ),
y⇥ = y/(rz + 1/T ). The problem is that when T gets large (large magnification), 1/T
becomes small, resulting in

x⇥ � x

rz
=

xk

z
, y⇥ � y

rz
=

yk

z
.

We don’t seem to get the expected magnification. What is the explanation?

The rightmost column of matrix T of Equation (8.51) is important and is crucial in
any discussion of the general perspective projection (as e.g., in reference [Salomon 11]).
The three top elements of this column are 0, 1, and 0. In the general transformation
matrix, these elements are denoted by p, q, and r. Thus, element q of matrix T is
nonzero. It has already been mentioned that element r of matrix Tp is nonzero because
the viewer is positioned on the z axis. The reason that element q of matrix T is nonzero
is the rotation about the x axis. We can interpret this rotation either as a rotation of
the point or as a rotation of the coordinate system. In the latter case, this rotation has
changed the projection plane from the xy plane to the xz plane and has also moved
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the viewer (because the viewer and the projection plane should be considered a single
rigid unit) from his standard position on the z axis to a new location on the y axis
(Figure 8.70b). The fact that q is nonzero implies that the y axis now intercepts the
projection plane.

⌅ Exercise 8.35: Compute the coordinates of the object point P that happens to be
projected to the origin after the three transformations.

Negative z coordinates. It has already been mentioned several times that the viewer
and the object have to be located on di⌃erent sides of the projection plane. In the stan-
dard position, this means that all the object points must have nonnegative z coordinates.
This example shows what happens when object points have invalid coordinates. Fig-
ure 8.71a shows the two points P1 = (0, 1,�1) and P2 = (0, 1, 1) and a viewer located
at (0, 0,�3). When Equation (8.47) is used to project the two points, the results are

P
⇥
1 =

�
0,

1
(�1/3) + 1

, 0
�

= (0, 3/2, 0) and P
⇥
2 =

�
0,

1
(1/3) + 1

, 0
�

= (0, 3/4, 0).

The result seems to make sense, but Figure 8.71b shows that when P1 is moved to the
left (i.e., toward larger negative z values), its projection climbs up the y axis quickly and
without limit, thereby creating a distorted projection of the entire object. When P1 is
located right over the viewer [when it is moved to (0, 1,�3)], its projection is undefined,
and when it is moved farther to the left, its projection becomes negative. In such a case,
those parts of the object that are in front of the viewer are projected right-side up but
distorted, and those parts that are behind the viewer are projected upside down.

x

y

z

(a) (b)

3

P1

P2
y

z-1

La
rg

e 
po

sit
iv
e 
pr

oj
ec

tio
n

Negative projection
1-3

U
n
d
e
fi
n
e
d

-5

P1 P2
x

x

Figure 8.71: Perspective Projection with Negative z Coordinates.
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8.24 Slanted Squares with Integer Corners

Geometry leads to number theory. Given the dotted array of Figure 8.72 where
the dots have integer coordinates, it is easy to see that we can draw many squares
on it whose sizes are integers and whose areas are the square numbers n2 for integer n
values. However, in addition to the obvious, “straight” squares, it is also possible to draw
slanted squares whose corners are located on the dots, and the topic of this discussion
is to find a general expression for the areas of all the possible squares on such a grid,
and to determine what areas are impossible for slanted squares. This geometry problem
is solved by results from number theory, further demonstrating the tight relationship
between seemingly remote areas of mathematics.

a

b

c

Square [            a,b]

Figure 8.72: Slanted Squares on a Grid.

The gray square of Figure 8.72 Illustrates the problem. We start at a dot, move a
steps down and b steps to the right, arriving at another dot. Slanted segment c becomes
one side of a square that we can refer to as an [a, b] square (in the figure, a [4, 2] square
that is embedded in a larger 6⇥ 6 square). The area of the [4, 2] square is therefore the
area 6⇥ 6 of the large square, minus the areas of the four triangles, which are (4⇥ 2)/2
each.

It is trivial to extend this example to the general case of a slanted [a, b] square.
Such a square is embedded in a larger (a + b)(a + b) square, surrounded by four right
triangles of sides a and b each. The total area of the triangles is 4ab/2 = 2ab, which
gives the slanted [a, b] an area (a + b)(a + b)� 2ab = a2 + b2. One special case is when
either a or b are zero, where the square turns out to be straight. Another special case is
a = b = 0, where the square is reduced to a single point and its area is zero.

As an aside, Figure 8.72 also Illustrates the relation c2 = a2 + b2, thereby providing
a (geometrical) proof of Pythagoras theorem.

It is simple to check manually which integers are not of the form a2 + b2, and
Figure 8.73 lists a few. However, a general rule is needed, and the rule that is mentioned
in reference [ImpossibleSquares 20] is a known result from number theory. It states that
if an integer n has a prime factor of the form (4k + 3)p for an odd p, then n is not of
the form a2 + b2 for integers a and b.

For example, the prime factors of 21 are 7 · 3, and since 7 equals (4 · 1 + 3)1, we
conclude that 21 is not of the form a2 + b2 and is in fact on the list of Figure 8.73. On
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l={};
Do[c=0;
Do[ If[a^2+b^2==n,c=1],{a,0,n-1},{b,0,n-1}];
If[c==0,AppendTo[l,n]]
,{n,1,25}]
l

{1,3,6,7,11,12,14,15,19,21,22,23,24}

Figure 8.73: Integers Not of the Form a2 + b2
.

the other hand, the prime 13 is of the form 22 + 32, which is why a slanted square of
area 13 exists.

8.25 Area of regular polygons

Figure 8.74 shows that in a regular polygon tan�/n = (l/2)/a = l/(2a), which is why
the apothem a equals l/(2 tan(�/n)). (An irregular polygon does not have an apothem.)
The area of the gray triangle is (a · (l/2))/2 = l2/(8 tan(�/n)), so the area of the entire
polygon, which consists of 2n such triangles, is

n · l2
4 tan(�/n)

.

Notice that as the number of sides n grows, the polygon approaches a circle. Figure 8.74
also shows that in a circle, the radius R equals the apothem a. The area of a circle is
�R2, so we divide the area of a polygon by a2 to obtain

n · l2
4 tan(�/n)

/a2 = n tan(�/n),

and use mathematical software to verify that this expression approaches � for large n.

a£l/2

a

2¼/n

¼/n

l
R

Figure 8.74: A Regular Polygon.
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8.26 The Fourth Side of a Triangle?

A triangle has many centers. Its orthocenter is the point where the three altitudes (the
straight segments that are perpendicular to the sides of the triangle) intersect. These
three points, together with the three vertices of the triangle and the three midpoints
of its edges, are located on the circumference of a circle, the so-called 9-point triangle
circle.

Now imagine the 9-point circle, the incircle (which is inscribed in the triangle), and
the outer, or circumcircle (that circumscribes the triangle). Each side of the triangle
has its endpoints on the circumcircle, its midpoint on the 9-point circle, and is tangent
to the incircle (Figure 8.75a).

1

2

3

p

(a)

(b)

Figure 8.75: (a) Sherman Fourth Line. (b) Simson Triangle.

The surprise is that there is a fourth line that satisfies the three conditions above.
This line segment, red in the Figure, was discovered by B. F. Sherman in 1993 (references
[Sherman 93] and [Yiu 12]). It is termed the pedal line of the triangle, but can, with
some justification, be called the fourth side of the triangle.

In part (b) of the figure a point p is chosen on its circumcircle. We notice that
points 1, 2, and 3, which are located on the sides of the triangle and are closest to p,
are collinear (the red line in the figure). This is the Simson line of the triangle.

I think I still like science and art better, but
geometry is a big improvement over algebra.

—Laurie Hernandez.



9
Puzzles

Every culture has its own myths, but it is known that certain mythological elements and
motifs recur in many cultures; they are universal. The modern theory of universal myth
was founded and developed by many researchers, but its most well-known proponent is
Joseph Campbell [Campbell, Joseph 08].

Mr. Casaubon, as might be expected, spent a great deal of his time at the Grange
in these weeks, and the hindrance which courtship occasioned to the progress of his
great work—the Key to all Mythologies—naturally made him look forward the more
eagerly to the happy termination of courtship.

—George Eliot, Middlemarch (1871–72).

Among the universal myths are stories of the creation of the world, flood, drought,
and famine, seasonal death and rebirth, the origin of fire, the relations between the
dead and the living, and of special interest to us, puzzles. Puzzles are found in the
stories and legends of many cultures throughout history. It seems that the human
brain is attracted to puzzles, riddles whose solutions require much thinking and deep
concentration, but that can nevertheless be solved by anyone with average intelligence
and with no specialized knowledge.

9.1 Examples of Puzzles

Today, the English word puzzle often refers to jigsaw puzzles, but there are many other
types of puzzles, such as picture puzzles, logic puzzles, chess problems, trivia, anagrams,
and riddles. This chapter is concerned with mathematical puzzles, of which currently
the most popular is Sudoku.
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9.1.1 Dissecting a square

It is easy to partition or dissect a square in many ways. Figure 9.1a shows how a square
can be cut into distinct rectangles. Part (b) of the figure shows how easy it is to partition
a square into smaller squares many of which are identical. What about a dissection that
partitions a square into several distinct squares?

2x+y x+y

3x+y

x

y

(a) (b) (c)

Figure 9.1: Dissecting a Square.

This is the kind of problem that fires the imagination of mathematicians. The first
step in solving it is to define rigorous terms. A dissection that cuts a square into distinct
squares is called perfect. If no subset of the squares forms a rectangle, the dissection is
also referred to as simple. How can we find a prefect simple dissection of the square?
Figure 9.1c illustrates an approach, and also shows why this is not a trivial problem.

We tentatively try to create a simple perfect 5-square dissection. We place a square
of side y at the bottom-right corner and another square, of side x, to its left. This
implies that the square at the top-right corner has a side of x + y units, the square at
the top-left has a side of 2x + y units, and the last square, on the bottom-left corner,
has a side of 3x + y. Everything seems fine until we try to draw the entire square. It
is easy to see that the top and bottom of the large square are each 3x + 2y units long.
The left edge, however, is 5x + 2y and the right edge is x + 2y units. The only solution
of the equation 5x + 2y = x + 2y is x = 0. Thus, such a square cannot be constructed.

The problem is not trivial, but many solutions were found after years of patient
search. The smallest one starts with a 112⇥112 square which is dissected into 21 distinct
squares (Figure 9.2, where the numbers are the sides of the squares). This solution is
due to [Duijvestijn 78] and it seems to be the smallest one possible. Bigger squares can
yield simple perfect dissections in several ways. The number of such dissections for 21,
22,. . .dissections is 1, 8, 12, 26, 160, 441,. . . (this is sequence A006983 in [Sloane 08]).

The square of Figure 9.2 features complex structure and looks strange and asym-
metric in spite of its title as simple and perfect. However, there is a simple notation
for describing the structure of such a nested square. We look for a group of adjacent
squares that are aligned at the tops and write their sides in square brackets. Thus, [50,
35, 27], [8, 19], [15, 17, 11], [29, 25, 9], [7, 18], [16], [42], [4, 37], and [33]. Notice how
the groups are arranged from top to bottom, starting with [50, 35, 27] and ending with
[33]. If two groups are at the same height, they are arranged left to right.
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50
35
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Figure 9.2: Minimal Simple Perfect Dissection.

9.1.2 The 15 Puzzle

The image shows the 14-15 puzzle, Sam Lloyd’s version of the well-
known 15-puzzle. Fifteen square tiles, numbered 1 to 15, are arranged
in a 4⇥ 4 frame that has room for 16 tiles. Thus, there is a hole left
into which a tile can be slid. The tiles are arranged by numbers top to
bottom the left to right, except that 14 and 15 are swapped. The goal
of this puzzle is to slide tiles until all 15 tiles are in perfect sequence, or
equivalently, to somehow swap 14 and 15. This problem is unsolvable,
which is proved by considering permutations and their parities. An equivalent version
is to start with a perfectly arranged tile and ask if there is a way to swap 14 and 15. A
more general question is whether it is possible to get every possible pattern of tiles from
the original pattern.

Sam Lloyd himself o⌃ered $1000 to anyone who could solve his version, but it had
been known even before his time (by Johnson and Story, in 1879, see [Johnson.Story 79])
that this is impossible.

To understand the problem, we think of the empty space as occupied by an imagi-
nary tile, and then realize that any tile movement, in any direction, amounts to swapping
the imaginary tile with one of its neighbors. Imagine a number of such swaps where the
imaginary tile ends up in its original place at the bottom-right corner. A little thinking
should convince the reader that such a process requires an even number of swaps. This is
because each swap that moves the imaginary tile to the left, must have a corresponding
swap that moves it to the right, and the same is true for vertical swaps.

However, it can be proved, using permutations, that any pattern that can be
achieved with an even number of swaps can only be achieved with an even number
of swaps, and similarly, any pattern that can be achieved with an odd number of swaps
can only be achieved with an odd number of swaps. This partitions the space of possible
patterns into two parity classes, even patterns and odd ones. The 15 puzzle is limited
to even number of swaps, and swapping 14 and 15 is one by a single swap, which cannot
be performed in the 4⇥ 4 frame of the puzzle.

9.1.3 The 16-room puzzle

Figure 9.3 shows a simple 4 ⇥ 4 plan with 16 squares or rooms, numbered and fully
connected with passages. The goal of the puzzle is to figure how the occupant of room 1
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can move from room to room, visiting every other occupant exactly once, and finally
leaving the maze through room 16.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) (b)

Figure 9.3: The 16 Room Maze.

This is a simple puzzle that illustrates the meaning of the phrase “thinking outside
the box. The point is that when solving a puzzle that is based on a diagram, we tend to
find solutions that are confined to the diagram, whereas many solutions require moving
outside the area occupied the diagram.

The simple solution of this puzzle is shown in part (b) of the figure. The occupant
of room 1 should move to room 5 (or, alternatively, to room 2), then come back to his
own room, go to room 2 (or room 5), and proceed as in the figure.

9.1.4 Vanishing Area Puzzle

Figure 9.4 shows an 8⇥ 8 square dissected into four pieces that are then assembled into
a 5 ⇥ 13 rectangle. This simple puzzle, due to Sam Lloyd, seems magical because the
area of the original square is 64 units while the rectangle’s area is 65 units. The figure
also shows an alternative way to assemble the four pieces into a 5⇥ 6 + 3 + 5⇥ 6 figure
whose area is 63.

It turns out that this is only an optical illusion. The assembled pieces do not fit
precisely together, a fact which is concealed by the thick lines that are noticeable in the
figure.

This puzzle becomes much more “palatable” when demonstrated by squares of
chocolate.

⌅ Exercise 9.1: Figure 9.5(left) is a triangle consisting of six geometric objects and two
holes, for a total of 60 chocolate squares. The right part of the figure suggests that the
six objects, which previously covered 58 of the 60 squares, can now cover the entire area
of 60 squares. Explain this puzzle.

⌅ Exercise 9.2: This is a traditional coin puzzle which can easily be solved by “thinking
outside the box.” Given seven coins arranged as in the figure, move two coins to end up
with two rows of five coins each, one vertical and the other horizontal, crossing at their
centers.

⌃
⌃⌃⌃⌃⌃

⌃
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Figure 9.4: Sam LLoyd Dissection.

Courtesy of Wikipedia user Yoni Toker

https://en.wikipedia.org/wiki/File:Loyd64-65-dis_b.svg

Figure 9.5: 60 Chocolate Squares.

9.1.5 The Euler Trail puzzle

Given the 16-segment boxlike structure of Figure 9.6(a), draw a continuous curve that
passes through each of the 16 boundary segments exactly once, without lifting the pen.
The green curve shows a wrong solution. What is your solution? This is similar to the
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1

?

(a) (b)

2

4 5

3

Figure 9.6: Euler Trail Diagram.

Königsberg bridge problem, solved by Euler in 1735.
The solution is simple; there is no solution. Figure 9.6(b) shows all the possible

ways to connect the 16 segments (in red) that pass through the 16 boundaries. The
connecting segments meet at five points (red circles) and the important fact is that three
of those points have an odd number (five) of red segments. As an example, following
red segment 1 as it enter the structure, we arrive at a circle where red segments 2, 3, 4,
and 5 meet.

If a solution exists, it must satisfy the following: When a red segment enters a circle,
it must leave it, and it must do so through another “fresh” red segment, one that hasn’t
yet been traversed. Therefore, the number of red segments that meet at any red circle
must be even. The only exceptions are the red circle that is the start of the traversing
curve and the last circle in the traversal. There can only be two such circles, but our
structure has three, which proves that there is no solution to this simple problem.

Note. When a teacher showed us this puzzle in elementary school, she claimed that
Einstein was the only known person to solve it on his first try. Even the great Euler
had to spend some time on it. Now that you know how simple the solution is, you may
doubt this claim.

Do not worry about your di⌥culties in Mathematics. I can assure you mine are still
greater.

—Albert Einstein.

9.1.6 Where is the father?

A mother M is 21 years older than her child C. Six years from now, her age will be five
times her child’s age. The question is Where is the father F right now?

This is a weird puzzle. There seems to be no relation between the ages of M and
C and the current location of F , but let’s start with what data we have. It’s easy to set
and solve the two age-related equations M = C + 21 and M + 6 = 5 ⇥ (C + 6). The
solutions are M = 79/4 and C = �3/4, and what should immediately catch our eye is
the negative age of the child. A negative value means that the child hasn’t been born
yet, and the precise value is 3/4 of a year, or nine months. The surprising, unexpected
conclusion is that the child is being conceived right now, which means that the father F
must be with the mother M . Puzzle solved and let’s give them the privacy they deserve.
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9.1.7 She plays the violin?

It is the height of summer, and Violetta, a night receptionist at the Imperial hotel
in Sacramento, is happy to meet Rodolfo, a new hotel guest. His name implies that
he is Italian, like Violetta’s parents, and he is quick to confirm this. During their
conversazione, they find out that each has three children. “My figli (sons) are 5, 7, and
9,” says Rodolfo. “How old are yours?” But Violetta, a mathematician during the day,
answers with a riddle. “The product of my figlie (daughters’) ages is 36, and their sum
equals your room number.”

“I know my room number,” says Rodolfo, “so give me a minute.” However, after
half an hour, he comes back to the reception desk, puzzled. “The information you gave
me isn’t enough,” he says. “How about another hint?” “With pleasure. The hint is:
My oldest daughter plays the violin.” “Great,” says Rodolfo. “Now I know their ages,
and I can sleep well tonight. Does the air conditioning work?”

The natural questions are: (1) What are their ages, and (2) how did the hint help
Rodolfo?

The violin hint is puzzling (would a trombone make a di⌃erence?) but let’s start
with what we have. Table 9.7 lists all the ways that three positive integers can produce
36 when multiplied? Their sums S are also listed.

P S P S
1 1 36 38 2 2 9 13
1 2 18 21 2 3 6 11
1 3 12 16 3 3 4 10
1 4 9 14 1 6 6 13

Table 9.7: Products and Sums of Three Ages.

The next hint is the room number. The table shows that the possible room numbers
are 10, 11, 13, 14, 16, 21, and 38. We don’t know Rodolfo’s room number, but why can’t
he solve the problem even though he knows the number? How does the violin hint help
him?

By now, some anxious readers may have seen the solution. The room number is 13,
but this number corresponds to two possible sets of ages, 2, 2, 9, and 1, 6, 6, which is
why Rodolfo needed more information. The keyword in the hint was not “violin,” but
“oldest.” In English, the word “oldest” refers to one out of three or more subjects. The
set 1, 6, 6 of ages has two oldest daughters, so the only choice is 2, 2, 9. Clever!

The following puzzles were mostly from references:
Friedland, Aaron J. (1970) Puzzles in Math & Logic, Dover publications.
Brecher, Erwin (1996) Puzzles, Mathematical Diversions and Brainteasers St. Mar-

tin Gri⌥n, New York.
King, Lloyd (1996) Puzzles for the High IQ, Sterling, NY.

Rope around the equator. Imagine a thin string placed tightly around the
equator, at a height of one meter. This requires strong, high-precision supports. The
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supports are now removed and the string is stretched and placed on the ground around
the equator. How much loose string is left in the end?

Solution. Assuming that the radius of the earth is R meters, the length of the
original string is 2�(R+1), while its final length is the circumference of the earth, 2�R.
The di⌃erence is 2� � 6.28 meters. Notice that this result is independent of R. It is
true for strings placed around the sun, the solar system, and even around a single atom.
A surprising result obtained by elementary mathematics.

Black or white?. Which cells in the fifth block should be black?

Solution. Once we concatenate the six blocks, it becomes clear that the white cells
are supposed to represent the digits 1 through 6. The fifth block is slightly separated
below to show its content.

Trisecting an angle. Rodolfo, a student, claims to his professor, “I’ve just con-
structed these two angles � and ⇥ and I have a proof that ⇥ is exactly 1/3 of �. Moreover,
I did this with just a ruler and compass, and angle � is arbitrary.” The professor smiles
and says, “you should know better. Already in 1837, Pierre Wantzel proved that angle
trisection with just a ruler and compass is possible for only certain angles and not in
general.” “But I did it,” repeats Rodolfo.

Solution. How did Rodolfo do it? Easy. He started with an arbitrary angle ⇥ and
tripled it to get �.

Sum of primes. Alfredo has recently confessed to me that on his first date with
Violetta he talked to her about his cousins. “You may not believe it,” he said to her,
“but my age and the ages of my three cousins are all prime numbers and add up to 50.”
To his surprise, instead of slapping him and running away, she immediately countered
with “I know your age and I know about prime numbers, so I have easily figured out
their ages. Now let’s talk about our future together.” Alfredo was surprised by her
quick and intelligent response, but I have commented that she could have figured out
their ages even without knowing his age. How is this possible?

Solution. We assume that the ages are integers and none is 1 year. The relevant
primes (all under 50) are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47. The
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only possible combination is for Alfredo to be 43 and for his cousins to be 2, 2, and 3
years old. Any other prime value of Alfredo’s age would be associated with several sets
of his cousins’ ages. For example, if Alfredo’s age is 11, then his cousins could be either
3, 5, and 31 or 3, 7, and 29.

Capitals. In what 6-letter country can the following capitals be found? Paris,
Oslo, Lima, Ankara, Nairobi, Dublin?

Solution. In Poland. The capitals in the puzzle refer to capital letters, not capital
cities.

Guilty and free. A man is accused of first-degree murder and the judge, after
hearing and seeing the evidence against the accused, agrees. “There is no doubt,” he
says, “that this is one of the worst murders in our country’s history.” “In addition,
there are no mitigating circumstances, so I am forced to impose the maximum sentence.
However, there is a reason, unrelated to the murder, because of which I have to let the
accused go free, although not acquitted.” What was the reason?

Solution. The accused was half of a Siamese twins.

Cutting circles. Show how to cut the five circles of Figure 9.8a into two equal-area
parts with one line. Do the same for part (b) of the figure (this is easy).

(a) (b)

Figure 9.8: Partition Circles.

Solution. Add a sixth circle as in Figure 9.9, and draw a line through the centers
of circles 1 and 6. This partitions the six circles into two equal parts. Notice that this
line also cuts circle 6 in two equal parts, so just remove it. The solution for part (b) is
trivial.

1

6

Figure 9.9: Partition Circles.
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The seventh. What is the missing digits in the sequence 014285?14?

Solution. The digit is 7, because 1/7 = 0.14285714 . . ..

Perfect generosity. At the recent campaign for the eradication of boils, The well-
known philanthropist Philo Trope announced that he would match the total of all the
other contributions. Upon hearing this, his friend Archie Nemy has fainted. Why?

Solution. Mr. Nemy had made the same pledge. Now, when someone else donates
any amount, however small, both Trope and Nemy would have to donate their entire
fortunes, each trying to match the other’s donation.

Perfect weather. Reporter: What were the noon temperatures in the last five
days?

Meteorologist: You reporters ask too many questions, so let me tell you this. The
temperatures were di⌃erent, they were whole numbers, and their product was 12. Your
task (you are not a reporter, are you?) is to figure out the individual temperatures.

Solution. This is confusing, since the product of even the five smallest, distinct
integers is greater than 12. Thus, out-of-the-box thinking is required, which should give
the solver the idea that temperatures can be negative. Once this is grasped, we can
easily come up with -2, -1, 1, 2, and 3 as the solution. In fact, any positive integer that
can be expressed as a product of five distinct integers can be a candidate instead of 12.
Even a number such as 18 = 2 · 3 · 3 can be chosen, with temperatures �1, 1, 2, 3, and
3.

They live where?. Erica lives in Washington and Tina lives in Buenos Aires.
Where does Mark live?

Solution. He lives in Copenhagen. Each of the names above is the tail-end of the
name of the country in whose capital city they live.

A mystery sequence. Each digit in the sequence 123 451 46733 8197 80?3
corresponds to a letter. Which letter should be at the “?”

Solution. The sequence of letters and their corresponding digits is shown here:
ONE TWO THREE FOUR FIVE
123 451 46733 8197 80?3

Hence, the missing letter is the V of FIVE.

Elevator or stairs? A man lives on the 40th floor of a high-rise building that has
elevators as well as stairs. Over time, his neighbors start noticing a bizarre habit of his,
involving rides in the elevators. Entering the building from the street, he goes into the
first available elevator. If there are others in the elevator, he stays there until reaching
his floor, but if the elevator is otherwise empty, he always leaves the elevator at the
15th floor and climbs the stairs the rest of the way. When finally confronted about this
strange behavior, he admits it, but gives a simple, reasonable explanation. What is it?

Solution. He is very short, only 4 feet 6 inches, so he can only reach the elevator
buttons up to the 15th floor. When there are others in the elevators, they help him, but
being by himself, he must quit the elevator on the 15th floor and climb the stairs all the
way to the 40th floor.
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Missing number. What is the missing number in the following

5 + 1 + 6 = 7
5 + 1 + 642 = 70

4 + 6 =?

Solution. 5 = s, + = e, 6 = n, which should be enough data for you to guess that
4 = t, implying that 4 + 6 = 10.

There is no free lunch. This true story took place long, long ago, when lunch
prices were much more reasonable. On one of their many dates, Alfredo took Violetta
to lunch and proposed that they flip a coin to decide who should pay (one of his many
faux pas). However, Violetta proposed that she would pay the entire tab if Alfredo’s
part came to exactly $1.15, and that he pays everything in all other cases. To make this
short story more interesting, Alfredo tried really hard to adjust his order to $1.15, but
failed, even though the menu was clear and accurate, and the tax was clearly specified.
He reluctantly paid the substantial check, admitting that he was outwitted by Violetta’s
superior mathematical skills. It took him a while to propose another lunch date.

Solution. In their state of Missitucky, sales tax was then four cents on anything
between $0.76 and $1.10, and five cents on higher purchases, making it impossible to
have a tab of $1.15.

A question mark. On the second evening after Christmas, a snow ball containing
a rock shattered a front window at Ebenezer Scrooge’s house. Rushing to the broken
window, Scrooge managed to see three kids whom he immediately identified as the rascal
Pecksni⌃ trio, Max, Mark, and Matthew. The following morning, a handwritten, torn
and dirty message was found stuck to his front door:

? Pecksniff and you’ll find who did it

Scrooge never understood this message, but you should have no problem. Just try.

Solution. Just replace the “?” with “question Mark.”

Curious cube. The three views of the cube of Figure 9.10(a) look familiar and
innocent, but this cube is non-standard. What is on the face opposite the six?

(a)

6

6
1

1

6

4

4

3 3

3

2

2
2 2

2

(b)

Figure 9.10: A Curious Cube.
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Solution. The confusing point is that two faces have two dots each. Another hint
is to try to imagine the two faces with 2 and 3 dots side by side. The complete cube is
shown in Figure 9.10(b).

Agatha, but not Christie. At 1:23 PM, Agatha, who has no idea of the time,
checks her digital clock. It shows 1:24. “Oh shucks,” she says, “the clock is again bad.”
How did she know that? Hint, the “PM” is significant.

Solution. The clock is not bad. It is simply set to 24-hour time.

Done by a mirror. While reading Lewis Carroll’s Through the Looking Glass,
Alice, the book’s main character, started on her math homework. The first problem
involved the product 50 ⇥ 1415.58 which, as we know, is 70779. However, when she
looked at her calculator screen she saw to her horror the word error. What’s the
explanation?

Solution. She was still inside the book, where the 7-segment mirror image of 70779
is the word error.

Opposite of day tour. Steve had to wait years to get from the telephone company
the particular telephone number that he wanted. This 9-digit number has all distinct
digits and starts with 061834. Consulting the left side of Table 9.11, which shows a
standard telephone keypad, what are the remaining three digits?

1 2 3
4 5 6
7 8 9
⇤ 0 #

13 28 35

46 5 62

79 84 97

⇤ 01 #

Table 9.11: A Telephone Keypad.

Solution. The last three digits are 927. The right side of Table 9.11 shows that
his nine digits are arranged on the keypad in a knight tour.

Time traveler?. Right after dinner, on the summer solstice, a time traveler in
Iceland pushed a button on his time machine console. A display flashed, indicating
eighteen fifty-eight. A while later it indicated eighteen fifty-nine, followed by nineteen
hundred. What did the display show next?

Solution. It showed 19:01. The display was simply a 24 hour digital clock.

Lucky Lindy. The Spirit of St. Louis, the airplane that took Charles Lindbergh
from New York to Paris in 1927, had a single engine. The flight took more than 30
hours, and the engine worked flawlessly. Working non-stop for 30 hours was quite a feat
for 1927 engines, and this puzzle deals with the question of whether it would have been
safer for Lindbergh to have a two-engine plane.

We assume two identical engines, from the same maker, and in the same condition.
An important assumption is that the airplane depends on both engines and is doomed
if one of them fails.
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Under such assumptions, would Lindbergh have been safer if he had two engines?

Solution. Stripped to its essentials, the question is, if each engine has a 10%
chance of quitting during 30 hours of continuous operation, what is the chance that
one engine or the other would quit during this time period? Equation (7.2) deals with
ORing probabilities, and applying it to our case produces the result P (0.1 or 0.1) =
1� (1� 0.1)(1� 0.1) = 1� 0.81 = 0.19, or close to 20%. Lindbergh would be less safe
in this situation.

This is why airplane manufacturers always make sure that a multi-engine plane can
still fly even if several engines fail. If we assume that a two-engine plane can still fly on
one engine, then the probability that both would fail is the small 0.1⇥0.1 = 0.01 or 1%,
very safe.

V for victory?. What letter, apart from V, can be substituted for the ? in order to
complete the natural sequence of letters in V?XYZ ?

Solution. The letter V, because the string “VV” may resemble a W in certain fonts.
Thus VVXYZ.

Rows of rose. Given 16 rose bushes, it is easy to plant them in a 4 ⇥ 4 array to
end up with four rows, four columns, and two diagonals, a total of ten rows. Show how
to plant those bushes so as to end up with fifteen rows.

Solution. Figure 9.12 shows how 16 red dots are distributed on 15 line segments
which are arranged in three groups of five segments each.

Figure 9.12: A Curious Cube.

A message. Agatha Christie has just received this message from miss Marple:

Meet me outside your Favorite pub tonight at

What time is this mysterious meeting?

Solution. Nine on the dot.

A perfect ten power. A fast, clever algorithm is needed to find a 10-digit pandig-
ital integer that would also be a tenth power of another integer.

A pandigital number is an integer that in a given base has, among its significant
digits, each digit used in the base at least once. See Page 124.
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Solution. A clever approach is to first compute some numbers of the form a10

for small integers a, in order to find the 10-digit numbers that are tenth powers. For
small integers a, such as 1, 2, and 3, it is easy to verify that a10 consists of fewer than
10 digits. Even 710 = 282,475,249 has only nine digits, but 810 = 1,073,741,824 and
910 = 3,486,784,401 are 10-digits-long each, while 1010 = 10,000,000,000 is 11 digits
long. Hence, there is no such pandigital number.

How to win a lottery. Lottie, a young lottery enthusiast, asks: “Dad, what is
this week’s winning lottery number?”

Her dad’s surprising answer: “Look at Table 9.13a with the six 5-digit recent win-
ning numbers. Incredibly, and contrary to all the known rules of probability, the five
digits of the current winner appear in the five columns of this table, and in their correct
positions.”

“Wow, how unbelievable,” says Lottie, “but I still cannot figure out the number.”

0 9 9 0 6
0 6 9
8 9 6 8 9
0 9 6 0 9

9 6 8 9
8 6 8 8 9

6 8 8 9 8
6 8 9 6
6 0 9 6 0
6 8 9 6 8

6 9 0
9 0 6 6 0

(a) (b)

Table 9.13: Six 5-digit Winning Numbers.

Saying this, Lottie turns around to show the table to her mother, who examines it
and, surprise surprise, declares “dad is right, I also see the same five digits, each it its
correct column. I cannot believe my eyes. Here is the number . . . ”

“Don’t,” says Lottie, “I can see it now. It’s so obvious.”
Is it obvious to you too?

Solution. By turning around, Lottie showed her mother the table turned upside-
down, as in Table 9.13b. Comparing the two tables showed Lottie that the winning
number was 16891. Unfortunately, it is too late for her to benefit from this knowledge.

Multiplying by rotating. Here are two problems involving multiplication that
is also a rotation. (1) Find the five digits a, b, c, d, and e that satisfy the relation
abcde7 ⇥ 5 = 7abcde. (2) Similarly, solve for 1abcde ⇥ 3 = abcde1, for the same five
digits!

Solution. For part (1), we figure digit by digit from right (least-significant) to left
(most-significant). The relation 5⇥ 7 = 35 tells us that e = 5 with 3 to carry. This also
implies that 5e + 3 = 5⇥ 5 + 3 = 28, which makes it clear that d = 8, with 2 to carry.
Continuing three more steps in this way, we easily discover that c = 2, b = 4, and a = 1.
The solution is 142, 857⇥ 5 = 714, 285.

Part (2) is solved di⌃erently, but as easily. We denote by x the five-digit number
abcde. This reduces the problem to the simple equation (100, 000 + x) ⇥ 3 = 10x + 1
whose solution is x = 42, 857. Thus, 142, 857⇥ 3 = 428, 571. A lucky number indeed.
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One plus one. We generally agree that one plus one equals two and that one plus
four equals five, but these facts remain true if you substitute digits for the letters in the
following examples. What are the digits?

ONE ONE
+ ONE + FOUR

TWO FIVE

Solution. There are no special tricks here, just some thinking and several tries
should produce the following:

286 286
+ 286 + 3210

572 3496

A colored cube. Figure 9.14 shows three views of the same cube, with its sides
colored. What color is the bottom face of view 1?

1 2 3

E

D

A

A

CB

E

A B

Figure 9.14: A Riddle Cube.

Solution. A thorough analysis of the three views should convince the reader that
the bottom face of view 1 is A, same as the top face.

A clock problem. Grandpa Spock had a clock that he often forgot to wind.
Yesterday evening, as he left the house on his way to his favorite pub, he noticed that
his clock had stopped. He wound it, started it, and left. Coming back from the pub real
late, he immediately set the clock accurately, without looking or checking anything. I
still cannot figure out how he did that. Can you?

Solution. Ignoring the forgetful Spock, we strip the problem to its essentials. We
denote by X the time the clock showed when Spock left the house; by A and D, the
times he arrived at and departed the pub, respectively; and by Y , the time the clock
showed when he returned home. We assume that he took time t to walk to the pub and
the same time walking back (thankfully, no drunk).

Spock was therefore away for time period (Y �X), of which he spent time (D�K)
at the pub. His total walking time of 2t must therefore equal the di⌃erence (Y �X)�
(D � K). This is enough data to compute t, and once t is known, his time of arrival
home was D + t.

200 trillion. Find the only integer between 2 and 2 · 1014 that is a (nontrivial)
square, cube, and fifth power. That’s your entire task.

Solution. A number that is both a square and a cube must also be a sixth power
as is, for example, 64. It equals both 82 and 43, which makes it also 26. Since 2 ⇥
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3 ⇥ 5 = 30, our mystery number must be of the form x30 and must be ⌦ 2 · 1014. We
start checking integers from 2 (because 1 is a trivial choice). The first candidate is
230 = 1,073,741,824. It is close to the limit and it is the winner, because the second
choice, 330 = 2.0589113209464900000 · 1014 is too big. No need to check trillions of
numbers.

Seven plus eight. Operating on numbers in base-13, it is true that 7 + 8 = 12,
but what about the following sum

SEVEN
EIGHT

TWELVE

Solution. The following solutions may not be the only ones
69298
90431

159729

or 85254
50671

135925

or 63732
39841

103573.

Macalester Problem #1321. Since 1993, Stan Wagon has been in charge of the
Macalester College Problem of the Week. His problem #1321 has to do with powers
of 2. Given a set of n unique integers, it is possible to choose two out of them in

�n
2

⇥

ways. The Mathematica statement Table[Binomial[n,2],{n,10}] prints the first 10
values of

�n
2

⇥
{0,1,3,6,10,15,21,28,36,45} for positive integers n.

Given a value for n, the problem is to choose a set of n unique, unordered, signed
integers such that the sum of every pair of them will be a positive power of 2. For
n = 2 this trivial. The pairs (0,2), (1,3), and (2,4), are only some of the many choices.
For n = 3, the triplet (�1, 3, 5) produces the three sums �1 + 3 = 2, �2 + 5 = 3, and
3 + 5 = 8, which satisfy the requirement. Your task is to try your hand with n = 4.

Solution. No perfect solution has ever been found. Nor is it currently known
whether there is such a solution. The best that is known today is a set such as
(�3,�1, 3, 5) where four out of the possible six pairs sum to a positive power of 2.
This is one of many examples of problems in number theory that are easy to state and
understand, but resist repeated attempts at a solution or a counter example.

I do the ’New York Times’ crossword puzzle every
morning to keep the old grey matter ticking.

—Carol Burnett.
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A Poem about Puzzles

In numbers pure, where logic reigns,
Mathematical puzzles spark our brains,
With elegance, they twist and weave,
Revealing truths that we perceive.

The primes, they whisper secrets old,
In patterns hidden, stories told,
A dance of digits, sharp and clear,
In every theorem, they appear.

Fibonacci’s spiral flows,
In nature’s way, the sequence grows,
From flowers blooming, stars aligned,
In puzzles vast, their paths we find.

Magic squares with sums divine,
In every row, the numbers shine,
A balance struck in every grid,
Where logic’s light can never be hid.

Pythagorean paths unfold,
In triangles, the truth is told,
A squared plus B squared, simple, true,
In every right, the proof comes through.

Sudoku’s grids, a numbered field,
Where strategy and skill are wield,
Each row and column, box defined,
A symphony of the ordered mind.

The mysteries of pi, unbound,
In endless digits, truths are found,
A circle’s story, never done,
In puzzles, endless as the sun.

Mathematical puzzles, bright,
Illuminate the mind’s great light,
In every problem, beauty’s seen,
A quest for knowledge, pure and keen.

A jigsaw spreads its colored wings,
Each fragment part of wondrous things,
A landscape bright, a sea so vast,
A journey through the pieces cast.

For in these challenges, we find,
A deeper joy, a sharper mind,
In numbers vast, our thoughts set free,
To solve, to wonder, endlessly.

By chatGPT 4o, June 2024.
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10.1 The Gamma Function

Factorials grow very quickly, but mathematicians, being both curious and devious, have
found ways to define super factorial functions that often produce very large outputs for
very small inputs. See reference [SuperFactorial 21] for funny examples.

⌅ Exercise 10.1: Try to come up with a practical example of a very large factorial.

The gamma function. The factorial function is defined for positive integers, which is
why it is natural to try to extend it to any real or complex numbers. When considering
the question what is the factorial of 1.5, an immediate idea that may come to mind is
to interpolate and locate the point midway between 1! and 2!. This can be done by
computing the smooth curve that passes through the points (k, k!) for k values from
1 to a certain n, as shown in Figure 10.1. However, the figure makes it clear that
such naive interpolation, which is done with the Lagrange polynomial, while smooth,
oscillates widely and does not provide the correct values.

An alternative is to compute a complete interpolation of n factorial points for any
n by means of individual segments, each a simple polynomial interpolating between
two points (k, k!) and (k + 1, (k + 1)!), and connecting the segments smoothly, such
that the entire interpolation looks like a single smooth curve. Several such spline-based
interpolation methods are described in detail in chapters 8–14 of [Salomon 11].

That said, it is clear that the correct approach to extending the factorial is to
preserve its important “spirit” which is its recursive definition. The value n! is the
product of its predecessor (n � 1)! and n. Thus, when trying to extend the definition
of factorial to nonintegers, to negative numbers, and even to complex numbers, it is
essential to preserve this property, so as to have z! equal z(z � 1)!. This problem was
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ListLinePlot[Evaluate[Table[k!, {k, 1, 7}]], InterpolationOrder -> 6,
PlotMarkers -> {Automatic}, PlotStyle -> Directive[Red],
PlotRange -> {{0, 6.1}, {-60, 1100}}]

Figure 10.1: Smooth Interpolation of Factorials.

initially solved in the 1720’s by Daniel Bernoulli who came up with the horribly-looking
and hard-to-compute expression

x! = lim
n⇧�

�
n + 1 +

x

2

 x�1
⇤n

k=1
k + 1
k + x

.

In 1729, this impractical expression was superseded by our friend Leonhard Euler,
who proposed the much simpler integral

n! =
( 1

0
(� ln s)n ds,

which was later named the gamma (�) function and was modified by the change of
variable t = � ln s to

�(z) =
( �

0

tz�1

et
dt or equivalently �(z + 1) =

( �

0

tz

et
dt.

This function passes through the points (n, n!) that correspond to familiar factorials of
the positive integers. It is never zero, and is undefined for the negative integers, but
not in between them. There are other ways to extend the basic factorial (reference
[gamma.history 24]), but the Gamma function has become the standard.

As Figure 10.2 makes clear, if we adopt Gamma as the extension of factorial, then
z! for any complex number z is simply �(z + 1). For example �! = �(� + 1) = 7.18808,
(1/2)! = �(1 + 1/2) =

"
�/2 = 0.886227, and (�1/2)! = �(1� 1/2) =

"
� = 1.77245.
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L1 = Plot[Gamma[x + 1], {x, -5, 5}, Frame -> True,
PlotRange -> {{-5, 5}, {-20, 30}}];

L2 = ListPlot[Gamma[Range[4] + 1], PlotRange -> {{-5, 5}, {-20, 30}},
Axes -> False, PlotStyle -> Directive[Red]];

Show[{L1, L2}]

Figure 10.2: Euler Gamma � Function.

10.2 Magic Squares

A magic square is an n⇥n array of the distinct integers 1, 2, . . . , n2 arranged such that
the sum of the n numbers in any horizontal, vertical, or main diagonal line is the same.

One of the best known magic squares is included in Melencolia I, a large engraving
by the German Renaissance artist Albrecht Dürer. Its date, 1514, is part of the square
and can be seen in the two middle cells of the bottom row of Figure 10.3. The square
sums to 34, i.e., each of its rows, columns, diagonals, corners, and quadrants adds to
34. Even more. Any of its entries added to its symmetric opposite yields 17 (e.g., 15+2,
9+8). Magical indeed!

Figure 10.3: The Dürer Melancholia Magic square.
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Perhaps the most important structure (and certainly the most important tourist
attraction) in Barcelona is the Sagrada Familia (sacred family) cathedral, Antoni Gaudi’s
monumental project. It was started in 1883 and should be completed in 2026. Our
interest in this unique structure is an inconspicuous 4 ⇥ 4 magic square (Figure 10.4),
located on the Passion facade. Each of its rows, columns, diagonals, and 2⇥2 subsquares
adds to 33. This isn’t a perfect magic square because it doesn’t include all the integers
from 1 to 16 and because each of 14 and 10 appears twice.

Figure 10.4: Sagrada Familia Magic Square.

Figure 10.5 illustrates a 4⇥4 Magic square that sums to 264. Every row and column,
the two diagonals, and every 2 ⇥ 2 grid in this square adds to 264. Amazingly, it can
also be turned upside down, and even reflected to its mirror image, while retaining its
magic. This feature becomes more noticeable when a 7-segment font is used to print the
numbers.

Figure 10.5: A Magical Square with Sum 264.

The following is not strictly a magic square because some of its entries may not be
unique, but it serves as a nice mathematical game. For any integer n, the following 4⇥4
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square appears to be magic, with a sum of n.

n� 20 1 12 7
11 8 n� 21 2
5 10 3 n� 18
4 n� 19 6 9

At a party, it is best to use it with small sums. The magician may say, for example,
state your age, and then quickly construct a square that sums to that age. Otherwise,
someone may wonder how a magic square with a sum of, say, 1000 contains mostly small
numbers. A careful examination immediately reveals the secret of this square. Each row,
column, diagonal, and 2⇥ 2 region sums up to n. Clever!

Mathematics is rigorous, but mathematicians are human and many like to stretch
the strict limits of their profession in order to have a good time. The following square
does not follow the original definition but in some sense it is doubly magical, because
each entry is a triple (Figure 10.6). The bottom component b of a triplet is part of
a magic square, the middle part m is an alphabetic string of length b, and the top
components t is the integer described by m, as well as part of another magic square. The
triple (t,m, b) = (12, twelve, 6) is an example. Several such squares are demonstrated in
reference [magic.square.tri 23] by Matt Parker, of youtube channel Stand-up Maths.

Figure 10.6: A Double Magic Square.

Reference [magic.square3 23] shows why there is only one 3⇥ 3 magic square, and
how to construct it. Similarly, reference [magic.square9 23] describes the Lo-Shu method
of constructing a 9⇥ 9 magic square.

Table 10.7 is a 3⇥3 magic square which is also bimagic. The squares of its elements
form their own magic square.
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9 2 7
4 6 8
5 10 3

92 22 72

42 62 82

52 102 32

Table 10.7: A Bimagic Square.

One of the pieces of the game of chess is a knight (also known as a horse in
some languages). It moves two squares vertically and one square horizontally,
or two squares horizontally and one square vertically, jumping over other pieces
as needed. Mathematicians, being curious, have pondered the following problem since
the 9th century a.d. Is it possible for a chess knight to move 64 times, covering the
entire chess board and visiting each square exactly once? This has become known as
the knight tour problem.

In 1991 it was proved that for any m⇥ n board with m ⌦ n, a closed knight’s tour
is always possible unless one or more of these three conditions are met:

m and n are both odd

m = 1, 2, or 4

m = 3 and n = 4, 6, or 8.

A knight’s tour is considered closed if it ends on a square that is one knight’s move
from the beginning square (so that the knight could tour the board again immediately,
following the same path). Otherwise, the tour is termed open.

Table 10.8(left) is an 8⇥ 8 knight’s tour that is also a magic square where each row
and column sum to 260. The sums of the diagonals, however, are di⌃erent, which turns
this into an example of a semimagic square. The right side of the table is an interesting
10⇥10 knight’s tour where only 99 squares are covered. This tour, which is not a magic
square, was discovered by Georges Perec and used by him to arrange the 99 chapters of
his novel Life: A User’s Manual (1978).

1 48 31 50 33 16 63 18
30 51 46 3 62 19 14 35
47 2 49 32 15 34 17 64
52 29 4 45 20 61 36 13
5 44 25 56 9 40 21 60
28 53 8 41 24 57 12 37
43 6 55 26 39 10 59 22
54 27 42 7 58 23 38 11

59 83 15 10 57 48 7 52 45 54
97 11 58 82 16 9 46 55 6 51
84 60 96 14 47 56 49 8 53 44
12 98 81 86 95 17 28 43 50 5
61 85 13 18 27 79 94 4 41 30
99 70 26 80 87 1 42 29 93 3
25 62 88 69 19 36 78 2 31 40
71 65 20 23 89 68 34 37 77 92
63 24 66 73 35 22 90 75 39 32

72 64 21 67 74 38 33 91 76

Table 10.8. Left: An 8⇥ 8 Knight Tour Magic Square. Right: A (100� 1) Knight Tour.

Table 10.9 is the smallest trimagic square that can exist. Its sums are 870, but
when its elements are squared, their rows, columns, and diagonals sum to 83,810, and
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1 22 33 41 62 66 79 83 104 112 123 144
9 119 45 115 107 93 52 38 30 100 26 136
75 141 35 48 57 14 131 88 97 110 4 70
74 8 106 49 12 43 102 133 96 39 137 71
140 101 124 42 60 37 108 85 103 21 44 5
122 76 142 86 67 126 19 78 59 3 69 23
55 27 95 135 130 89 56 15 10 50 118 90
132 117 68 91 11 99 46 134 54 77 28 13
73 64 2 121 109 32 113 36 24 143 81 72
58 98 84 116 138 16 129 7 29 61 47 87
80 34 105 6 92 127 18 53 139 40 111 65
51 63 31 20 25 128 17 120 125 114 82 94

Table 10.9: A Trimagic Square.

when the same elements are cubed, the square remains magic, with sums of 9,082,800.
A magical feat indeed.

Next, multiplicative magic squares. Yes, they do exist (Table 10.10 left, center),
and there are even additive-multiplicative such squares (Table 10.10 right, where the
sums are 465 and the products are 150,885,504,000).

9 2 7
4 6 8
5 10 3

2 9 12
36 6 1
3 4 18

126 66 50 90 48 1 84
20 70 16 54 189 110 6
100 2 22 98 36 72 135
96 60 81 4 10 49 165
3 63 30 176 120 45 28
99 180 14 25 7 108 32
21 24 252 18 55 80 15

Table 10.10: Multiplicative Magic Squares.

A somewhat-magic square? It is not hard to verify that the rows and columns
depicted in the 4⇥ 4 square of Table 10.11 are not just regular, but have the following
property. If you select one number from each row, making sure that no two numbers are
from the same column, their sum would always be 34. The simplest example is the main
diagonal, which produces 1+6+11+16 = 34. This is certainly not a magic square, but
we can perhaps consider it somewhat-magical.

A brute force way to explain this property is to check every possible combination
of four numbers chosen from distinct rows and columns. There are four ways to choose
a number from the top row, but once we have chosen it, there are only three ways to
choose a number from the second row, and similarly, only two ways to choose one from
row 3, and one way to choose from the bottom row. The total number of ways to choose
four such numbers is therefore 4 · 3 · 2 · 1 = 24, not too big, but not too clever either. A
cleverer approach is needed, one that would make it possible to predict the behavior of
similar but larger squares.
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1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Table 10.11: A Somewhat Magic Square.

We start by choosing the four numbers in the leftmost column. They add up to
1 + 5 + 9 + 13 = 28, but they clearly constitute a wrong choice. We try to improve out
choice by moving numbers to di⌃erent columns. We leave the top-left number, 1, alone,
and start moving the three remaining numbers so as to satisfy the somewhat-magical
requirement. By moving any of these numbers to the second column, we would be
adding 1 to the total of 28. Similarly, but moving any to the third column, we would be
adding 2 to the total, and by moving any to the rightmost column, the total would grow
by 3. Hence, moving the three numbers to three distinct columns would add 1+2+3 = 6
to the total of 28, bringing it up to 34.

Next, we observe that moving to the right, column by column, in the square of
Table 10.11, increases the value of the current number by 1, while moving down from
row to row, increases the value of a number by 4. If we number the columns 1 through 4
from left to right and number the rows 1 through 4 top to bottom, we can summarize
this by writing 1⇥ (column) and 4⇥ (row� 1).

Since the top-left number is 1, we conclude that the value of the number on row r
column c is 4(r� 1) + c = 4r + c� 4. Our task is to choose four numbers in cells whose
(unknown) coordinates are (ri, ci) for i = 1, 2, 3, 4. The sum of the numbers in those
cells is

4&

i=1

4ri + ci � 4 = 4(r1 + r2 + r3 + r4) + (c1 + c2 + c3 + c4)� 4 · 4,

But we know that the four rows must be di⌃erent, which is why their sum must be
1 + 2 + 3 + 4 = 10, and similarly for the columns. Thus, the sum of the four numbers,
if we choose distinct rows and columns, is always 4 · 10 + 10� 4 · 4 = 34.

It is easy to see why rotating and transposing this square leaves the sum of 34
unchanged. It is not also obvious that a similarly-constructed n⇥n square would result
in a sum of

$n
i=1 nri + ci � n.

Anti-magic squares may be the favorite of some square enthusiasts. Figure 10.12(left)
shows such a square, where the sums of the rows, columns, and one diagonal are not
equal, but range from 29 through 38. Each of the three sides of the magic triangle of the
same figure has three numbers that add up to 9. Each of the five rows and 10 diagonals
of the order-3 hexagon sums to 38. Each of the four circles and four diagonals sums to
132. Lots of magic is hidden even in non-square shapes.

Finally, a really magical magic square, by no other than the magical Ramanujan.
Figure 10.13 shows that in addition to the rows, columns, diagonals, and four corners,
this square contains many groups of four numbers that sum to 139. Magical indeed.
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29  1 13  3 12
38 15  9  4 10
33  7  2 16  8
36 14  6 11  6
32 37 30 34 35 31
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Figure 10.12: Magic Non-Squares.
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Figure 10.13: Ramanujan’s Magic Square.

Even the top row, magically contains Ramanujan’s birthdate, the 22nd of December,
1887; unbelievable!

10.3 Parking as a greedy problem

Finding a parking spot is a major problem in today’s society. While traveling across
Europe and crossing borders frequently, you may find yourself hearing foreign conver-
sations and trying to decipher street signs written in unfamiliar languages. In these
instances, the first words you may familiarize yourself with in a new language are often
“No Parking!”

Large shopping centers are common in many countries and such centers often have
vast parking lots organized in parallel lanes. It may be easy to find parking even in
the busiest seasons, but human nature is such that we always try to find the parking
spot nearest the front door, thereby turning parking into a greedy problem. It therefore
happens that we get into a parking lane and drive slowly, looking left and right, trying to
find an empty space. In such a lane it may be impossible to see much ahead, so when we
see an available space we must quickly decide whether to park there or try for a nearer,
better spot. This is a decision that drivers in big cities face often, which explains why
mathematicians have also shown an interest in it and have tried to analyze and solve it.
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In order to treat this parking problem analytically, it has to be simplified and stated
precisely. We therefore assume that a driver is trying to park close to a busy destination
while driving along a one-way street that has many adjacent parking spaces on one side.
The driver can read the number of a space as well as its state (empty or full) only when
he gets to it. There is no backing up. The spaces are numbered, and the ideal one, the
one nearest the destination, is #100. The driver starts looking for a space when he gets
to around space 80; lower-numbered spaces are considered too far. He may overshoot
space #100 and park at a higher-numbered space as a last resort.

Under such conditions, what could be a reasonable parking strategy? How can the
driver estimate the general availability of spaces around his destination? Clearly, this
problem is probabilistic, it depends on the density of parking at the time of arrival. If
only 10% of the spaces are occupied, a driver would notice it right away and would be
able to find a good spot without resorting to mathematics. We should therefore assume
a high parking density, perhaps as high as 90%, and keep this in mind.

When you find an empty space, you should weigh the factors of parking there.
Those factors are the (known) distance between the space and the ideal space (#100),
and the (unknown) distance between this space and the next available space. Space
#100 is a good spot to start. If this space is empty, there is no need for a strategy; you
simple park there and that’s it. If it is occupied, you must drive ahead and wait for
the next unoccupied space, where you should better park, since you are already beyond
#100.

Thus, if you are at #100 or beyond, your strategy is clear. Even more, in this
case it is easy to estimate the expected distance between #100 and the next empty
space. Assuming a 90% parking density, there is a 10% probability that space #100
would be available, implying a zero distance. In the 90% case where #100 is taken,
the average number of spaces we would need to cover before finding an empty one is
10% · 0 + 90% · 10 = 9 (the mean of a geometric random variable).

This takes care of the case where we are already at space #100. What if we are at
#99? If it is open, we better park there, ending up with a distance of 1. If we don’t
part at #99, we should move to #100, where the average distance is already known to
be 9. Thus, there is a probability of 10% (combined with distance 1) that space #99
will be open, and a probability of 90% (combined with distance 9) that space #99 will
be occupied. The average distance is therefore 10% · 1 + 90% · 9 = 8.2.

Similarly, the situation at space #98 is a probability of 10% (combined with dis-
tance 2) that it will be open, and a probability of 90% (combined with distance 8.2)
that it will be taken. The average distance in this case is 10% · 2 + 90% · 8.2 = 7.58.
Continuing in this way, the expected distances for spaces #97, #96, and #95 diminish
steadily until, at space #94, the distance is 6.57. If this space is empty, we should park
there, because the expected distance to the next empty space is 6.57, but the distance
to our destination is 6.

The next spot to examine is #93. If we park there, the distance to our destination
is 7, but if we continue to #94, the expected distance is the shorter 6.57. Thus, even
if #93 is free, we should continue to #94 and examine it. We now realize that with
a parking density of 90%, space #94 is our threshold. We should ignore any available
paces before #94, but park at the first empty space following that.

This approach to estimating the expected parking distance is referred to as back-
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ward induction, because it goes backward from the ideal case, spot #100, to find the
best strategies for lower-numbered spaces. This method is also an application of the
more general approach of dynamic programming, a well-known, powerful optimization
technique. The description here is based on reference [Optwhiz 23].

10.4 Error-Control Codes

The computer revolution that took place during the second half of the 20th century was
mostly based on fast, inexpensive computers and on computer networks, specifically,
the Internet. At the time of writing (late 2023), life in large parts of the world is
inconceivable without computers and fast data communication. Computer users have
gotten used to this way of life and are normally unaware of all the details that went into
implementing the hardware and software that make it possible. The topic of this section
is one of these details, namely the clever, sophisticated codes that detect and correct
many of the errors in our data.

The sentence “the world is a noisy place,” is often heard. It usually refers to the
acoustic noise that we hear around us all the time, in crowded places, in restaurants,
and on noisy streets, but there is another type of noise, noise that we don’t hear but that
pervades the entire world, even the quietest places. This noise causes machines to make
mistakes, it garbles data transmissions, and in general degrades the performance of the
tools and devices that we routinely use. Much of this noise is created by electromagnetic
interference resulting from lightning, solar storms, solar flares, high-power radio, and
malfunctioning or poorly designed electronic devices.

As a result, data sent inside a computer or between computers collects errors on its
way. If the data is analog, such errors distort the data and garble its meaning to some
degree. However, most of our current data is digital, where the corruption of even one
bit may have serious e⌃ects. Medical data, both text and images, legal documents, and
commercial contracts are especially vulnerable to data corruption and must be protected.
Considering the vast amount of data in the form of text and images that we all send,
receive, and share, even a small percentage of errors would translate to many millions
of bad documents received every day all over the world, which is why it is imperative to
develop and use strong codes that can correct, or at least detect, many common errors.

It is the nature of digital data transmission that errors corrupt the elements of a
transmitted data, but they do not delete or add any such elements. Because of the use
of binary numbers in computers, the basic elements of our data are bits, and a bit can
have only one of two values which are usually referred to as 0 and 1. This means that
if we can identify a corrupt bit, we can easily correct it. Thus, the problem of error
correction is essentially the task of identifying bad bits.

The mathematical branch of error-control codes (codes that detect or correct errors)
is huge and includes many methods and algorithms, but it is based on a single, most-
important idea, namely redundancy. Any error-control code works by somehow adding
redundancy to the data, thereby making it more reliable, but also longer.

(Definition: In engineering, redundancy is the inclusion of extra, unnecessary com-
ponents which are included only to automatically replace other components in case of
failure.)
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The idea of adding redundancy to digital data is the brainchild of Claude Shannon,
who made it part of his 1948 revolutionary information theory. However, the similar
idea of adding redundancy to natural languages has already occurred to people in the
distant past, when those languages developed. Here is how this powerful technique
works. European languages tend to have a small number of letters, normally around 20–
30, from which a vast number of words can be constructed. The number of three-letter
words that can be derived from the 26 letters of the English alphabet is 263 = 17576
and the number of seven-letter words is 267 � 8.031 billion. On the other hand, we use
only about 50,000 words on a daily basis, many dictionaries include only about 100,000-
250,000 words, and even the currently biggest dictionary, the authoritative web-based
Wiktionary lists “only” 711,378 headwords (in 2023).

A headword, lemma, or catchword is the word under which a set of related dictionary
or encyclopedia entries appears. The headword is used to locate the entry, and dictates
its alphabetical position. Depending on the size and nature of the dictionary or
encyclopedia, the entry may include alternative meanings of the word, its etymology,
pronunciation and inflections, compound words or phrases that contain the headword,
and encyclopedic information about the concepts represented by the word.

—From Wikipedia, 2023.

The huge parity between the vast number of words that can be created by a few
letters and the actual number of words in any given language is the source of redundancy
in the language.

This redundancy is one reason why we can often recognize a word when we hear
only part of it. When we hear “?red” we can associate it with similar words in our
language such as bread, dread, and Fred, and then choose the word that makes the most
sense depending on the context. We may choose bread if we are in line in the bakery,
Fred if we are talking to his brother, and dread if the conversation around us is about
war or locks.

Thus, redundancy in a natural language comes to us naturally, but redundancy in
digital data was a revolutionary concept, because we are conditioned against it. Most
of the time, we try to reduce redundancy both in computer information and in natural
languages. In the former, many data-compression methods have been developed to
reduce redundancy in data and to save space. In the latter, commonly-used words are
always short.

Perhaps the simplest way to use redundancy with digital data is the check bit and
especially the parity bit, as the following example shows. Given a long bitstring, we
partition it into groups of seven bits and append an eighth, parity bit to each group.
The parity bit is set such that the total number of 1 bits in the 8-bit group is odd.
The new bitstring is now 8/7 � 1.14 times longer, but it is more reliable or robust. We
can consider the added reliability as a tradeo⌃ against the extra length, and we can
philosophize and claim that there is always a price to pay for any improvement; nothing
comes completely free.

Groups of eight bits are called bytes, but in general, our groups are referred to as
codewords.

A single parity bit is easy to use, but it is limited to error detection (no automatic
correction) and it does not provide absolute reliability. When a bitstring with parity
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bits is received, the receiver checks each 8-bit group by counting the number of 1-bits. If
the number is odd, the receiver assumes that the group is correct, but this assumption
may be wrong if an even number of bits are bad. If the number of 1-bits is even, the
receiver knows that the group is bad and has an odd number of corrupt bits (i.e., one,
three, five, or seven bits are bad, among them possibly the parity bit itself).

(Definition of parity. The state or condition of being equal, especially regarding
status or pay. In Mathematics, the parity of a number is the fact of being even or odd.
From Latin paritas, from par, meaning equal.)

⌅ Exercise 10.2: What is the advantage of using odd parity over even parity?

Here is how redundancy creates reliability in digital data. We imagine a language
with four letters A, B, C, and D, where strings consisting of these letters have to be
digitized and transmitted. The simplest way to digitize four symbols is to assign them
the codes 00, 01, 10, and 11, respectively. The string ABBDAC would then be converted
to 00|01|01|11|00|10 (without the vertical bars). When such a string is transmitted and
received, there is no way to detect any possible errors, because any error would change a
2-bit string to another 2-bit string, but all four possible 2-bit strings have already been
assigned and are valid codewords.

A simple solution is to add a third bit to the codes and choose, say, the four strings
000, 001, 010, and 011 as the codes of our four symbols. If code 001 is damaged in
transmission and is received as 101, the receiver detects an error, since 101 is a non-
valid codeword. However, if 001 is received as 000, the error would go undetected. A
little thinking suggests that the set of codes 111, 001, 010, and 001 is a better choice
because any 1-bit change in any of these codes turns it into a non-valid code. We say
that the codes of this set are more distant from one another, or that the set of codes
has a larger Hamming distance, a distance of 2. Changing one of these codes to another
requires changing two bits. Changing one bit in any of them changes it from a valid
codeword to an invalid one, which is how the set of codes can detect all one-bit errors.

The Hamming distance of two codes is the number of bit positions where they di⌃er.
The Hamming distance of a set of codes is the maximal distance between the codes of
the set. This important concept is named after Richard Hamming who in the 1950’s has
developed the concept of distance as a general way to use check bits for error detection
and correction. In general, a set of codes with a Hamming distance of d + 1 can detect
all d-bit errors.

Symbol code1 code2 code3 code4 code5

A 0000 0000 001 001001 01011
B 1111 1111 010 010010 10010
C 0110 0110 100 100100 01100
D 0111 1001 111 111111 10101
m: 2 2 1 4 3

Table 10.14: (k = 2).

Table 10.14 lists several error-control codes. Code2 has a Hamming distance of 2,
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so it can detect all single-bit errors. Code3 features the same Hamming distance, but
is shorter. Code4 has a Hamming distance of 4, su⌥cient to detect all 3-bit errors. It
was constructed as two copies of code3, which makes it obvious that codes with longer
Hamming distances can easily be created. However, such codes may be too long, which
is why clever, e⌥cient approaches to code design are important.

Notation. Given a data file with symbols that are k-bits long, we can translate
each symbol to an n-bit codeword by adding m bits for increased redundancy. Thus,
n = k + m. We use the standard notation (n, k) for such a code.

The ratio n/k gives a measure of the overhead of a code. Notice that n/k = m+k
k =

1 + m/k, where m/k is the overhead of the code. In the case of code1 the overhead is 2,
and in the case of code3 it is 3/2.
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Figure 10.15: Cubes of Various Dimensions and Corner Numbering.

For mathematically-savvy readers. The definitions above have a simple geometric
interpretation. Imagine a hypercube in n-dimensional space. Each of its 2n corners can
be numbered by an n-bit number (Figure 10.15) such that each of the n bits corresponds
to one of the n dimensions. In such a cube, points that are directly connected (near
neighbors) have a Hamming distance of 1, points with a common neighbor have a Ham-
ming distance of 2, and so on. If a code with a Hamming distance of 2 is needed, only
points that are not directly connected should be selected as valid codewords.

Once the idea of the Hamming distance and its use for error detecting is clear, its
extension to error correcting is obvious, just increase the Hamming distance of the set of
codewords. When the receiver identifies a bad codeword, it corrects the error by selecting
the codeword that is closest to the bad one. An example is code5 of Table 10.14, which
has a Hamming distance of 3. When one bit is changed in any of its four codewords,
that codeword is one bit distant from the original one but is still two bits distant from
any of the other codewords. Thus, if there is only one error, the receiver can always
correct it.

What code will correct 2-bit errors? When two bits go bad in a codeword A, the
resulting codeword B is at a distance of 2 from A. Such an error can be corrected if the
distance between B and all other codewords is greater than 2, i.e., at least 3. If this is
true, then A is the codeword closest to B and the error is corrected by changing B to
A. Thus, to correct 2-bit errors, a code with Hamming distance 5 or greater is needed.

In general, when d bits get corrupted in a codeword A, it turns into a codeword B
at a distance d from A. (Notice that B should be invalid, which means that the code
must have a Hamming distance of at least d + 1.) If the distance between B and any
other valid codeword is at least d + 1, then B is closer to A than it is to any other valid
codeword. This is why a code with a Hamming distance of d + (d + 1) = 2d + 1 (or
greater) can correct all d-bit errors.
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How are the codewords selected? The problem is to select a good set of 2k codewords
out of the 2n possible ones. The simplest approach is to use brute force. It is easy to
write a computer program that will examine all the possible sets of 2k codewords and
select the first one that has the right distance. The problems with this approach are
(1) the time and storage required at the receiving end to verify and correct the codes
received, and (2) the amount of time it takes to examine all the possibilities.

Problem 1. The receiver must have a list of all the 2n possible codewords. For
each codeword, it must have a flag indicating whether the codeword is valid, and if not,
which valid codeword is the one nearest it. The list has to be searched for each codeword
received in order to verify it.

Problem 2. In the case of four symbols, only four codewords need be selected.
For code1 and code2, these four codewords had to be selected from among 16 possible
numbers, which can be done in

�16
4

⇥
= 7280 ways. It is possible to write a simple program

that will systematically select sets of four codewords until it finds a set with the required
distance. In the case of code4, however, the four codewords had to be selected from a
set of 64 numbers, which can be done in

�64
4

⇥
= 635,376 ways. This is still feasible, but

it illustrates the magnitude of the problem. In practical cases, where sets of hundreds
of symbols are involved, the number of possibilities of selecting codewords may be too
large to handle in a reasonable time frame.

There are many techniques and approaches to constructing sets of error-control
codes, and out of all of them, this discussion concentrates on the Reed-Solomon codes.
Those codes were chosen to maintain the reliability of compact discs (CDs) when those
devices were developed in the late 1970’s, so we precede the discussion of the Reed-
Solomon codes with a short survey of the history, properties, and structure of CDs.

Mistakes are almost always of a sacred nature. Never try to correct them. On
the contrary: rationalize them, understand them thoroughly. After that, it will be
possible for you to sublimate them.

—Salvador Dali.

10.5 Compact Disc (CD)

As of 2023, CDs are seldom produced or utilized. The DVDs, which followed CDs,
are also gradually falling out of common usage. Computer users and music enthusiasts
may find it di⌥cult to comprehend the level of excitement generated by these devices
upon their public release in 1982. In earlier times, music was kept and listened to on
vinyl records and cassette tapes. These devices operated in an analog manner. Their
capacities were limited, lasting only a few minutes of play, and they were delicate and
prone to damage from scratches and rough handling. Additionally, replicating analog
information consistently reduces its quality.

The compact disc (CD) was developed by Philips and Sony, starting in 1974. In June
1980 the two companies agreed on a common CD standard. In 1981 this standard was
approved by the Digital Audio Disc committee, was ratified as standard IEC 908, and
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has been used since. The standard includes details of the signal format, disc material,
and error-correcting code. Note the spelling “disc,” as opposed to a magnetic “disk.”

The original CD was designed to hold up to 74 minutes of uncompressed stereo
digital audio or about 650 MB of data. Capacity is routinely extended to 80 minutes and
700 MiB by arranging data more closely on the same-sized disc. The immediate success
of the audio CD motivated the development of the CD-ROM (for digital information)
in 1985, the CD-V (for video), and the CD-I (interactive), both in 1987. References
[Pohlman 92] and [Peek 09] have detailed information on the history and technology of
this important historical product.

Physically, the CD is a disc, 1.2 millimeters thick, with a 120 mm diameter. The
hole at the center is 15 mm in diameter. The distance between the inner and outer
circumferences is therefore (120 � 15)/2 = 52.5 mm. Of this, only 35 mm is actually
used, leaving safety margins both inside and outside. The information is recorded on a
metallic layer (typically aluminum, silver, or gold), that is 0.5µ to 1µ thick (where µ, or
micron, is 10�6 meter). Above this layer there is a protective lacquer coating (10µ to
30µ thick), with the printed label. Below the metal layer is the disc substrate, normally
made of transparent polycarbonate. It occupies almost the entire thickness of the disc.
Since the protective layer on top is so thin, any scratches on the label can directly
damage the metallic layer. Even pen marks can bleed through and cause permanent
damage. On the other hand, scratches on the substrate are usually handled by the error
correcting code (Section 10.6).

Figure 10.16 illustrates the bits recorded on the spiral of the CD, and it is obvious
that careless handling of this disc can cause bursts of errors in consecutive bits. This is
why a CD should be cleaned with a radial motion, from the center to the rim, rather
than a circular motion, along the spiral track. Such careful cleaning may also introduce
errors, but they would tend to be scattered rather than concentrated in groups.
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Figure 10.16: Scratches on a CD.

The digital information is recorded in pits arranged in a spiral track that runs from
the inner circumference to the outer one. The pits are extremely small. Each is 0.5µ
wide and 0.11µ deep (Figure 10.17b). Pit lengths range from 0.833µ to 3.56µ. The track
areas between pits are called land. The distance between successive laps of the track
is 1.6µ. As a result, the track makes 22,188 revolutions in the 35 mm recording area.
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Its total length is about 3.5 miles. The information is recorded such that any edge of
a pit corresponds to binary 1, and uniform areas in pits and in lands (between pits)
correspond to successive zeros. To reduce fabrication problems, the pits should not be
too short or too long, which means that the number of binary ones recorded should be
carefully controlled (see below).
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Figure 10.17: Lands and Pits on a CD.

To read the disc, a laser beam is focused on the track through the disc substrate,
and its reflection is measured (Figure 10.17a). When the beam enters a pit, the reflection
drops to virtually zero, because of interference. When it leaves the pit, the reflection
goes back to high intensity. Each change in the reflection is read as binary one. To read
the zeros, the length of a pit, and the length of a land between pits, must be measured
accurately.

10.6 Reed–Solomon Codes

This section presents an easy to understand, step by step geometric approach to the
popular Reed–Solomon (RS) codes. These codes are commonly used for error correction
in a wide range of applications such as CDs, DVDs, QR codes, barcodes, the voyager
spacecrafts, and satellite communications. To the many books, articles, and videos that
explain and describe these codes, I would like to add [vivint 17] and [tomverbeure 22].

It is obvious that reading the digital data of a CD-ROM must be error free, but
error correction is also important in an audio CD, because one bad bit can cause a big
di⌃erence in the note played. Consider the two 16-bit numbers 0000000000000000 and
1000000000000000. They di⌃er by one bit only, yet when played as sound samples, the
first corresponds to silence and the second produces a loud sound. The size of a typical
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dust particle is 40µm, enough to cover more than 20 laps of the track and cause several
bursts of errors (Figure 10.18a). Without extensive error correction, the music may
sound like one long scratch.

Any error correction method used in a CD must be very sophisticated, since the
errors may come in bursts or may be individual. The use of parity bits makes it possible
to correct individual errors but not a burst of consecutive errors. This is why interleaving
is used in addition to parity bits. The principle of interleaving is to rearrange the samples
before recording them on the CD and to reconstruct them after they have been read. This
way, a burst of errors during reading is translated to individual errors (Figure 10.18b),
that can then be corrected by their parity bits.

IN TE RLE AV ED D ATA

IN T? ??? ?V ED D ATA

I N T E R L E A V E D D A T A

I N T ? ? ? ? ? V E D D A T A

Interleaved data

Original data

Fingerprint 40 μm
0.1 μm

Dust particle 75 μm
Human hair

Individual errors

A burst of errors

(a)

(b)

Figure 10.18: (a) Relative Sizes. (b) Interleaving Data.

The actual RS code used in CDs is called the Cross-Interleaved Reed–Solomon Code
(CIRC). It was developed by Irving Reed and Gustave Solomon at MIT Lincoln Lab in
1960 [Reed and Solomon 60] and is a powerful code. One version of this code can correct
up to 4000 consecutive bit errors, which means that even a scratch that covers three
millimeters of track can be tolerated on a CD and would automatically be corrected.
The principle of CIRC is to construct a geometric pattern that is so familiar that it can
be reconstructed even if large parts of it are missing. It’s like being able to recognize
the shape of a rectangular chunk of cheese after a mouse has nibbled away large parts
of it.
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Mathematician Gustave Solomon died on January 31 [1996] in Los Angeles. He
was 65. Dr. Solomon was a co-inventor with Irving S. Reed of the Reed–Solomon
codes, which have come into increasingly widespread use as a way of combating the
inevitable errors that occur in the transmission and storage of information. He did
early work concerning the algebraic theory of error-correcting codes, and, with H. F.
Mattson, was co-author of the powerful tool for analyzing such codes known as the
Mattson-Solomon polynomial. His other interests included composing popular songs
and folksongs and teaching voice and movement.

—Dave Farber, farber@central.cis.upenn.edu

The RS code is introduced here in steps, using geometric figures and their relations
to polynomials. The first step is based on straight lines; it is easy to understand, but
is very ine⌥cient. In this simple version of the RS code, the input data is read in pairs
of numbers. Assume that a pair consists of the numbers 3.6 and 5.9. We consider them
the y coordinates of two two-dimensional points, and we assign them x coordinates of
1 and 2, respectively. We end up with the points (1, 3.6) and (2, 5.9) that determine
a straight line. We now compute four more points on this line, with x coordinates of
3, 4, 5, and 6. They are (3, 8.2), (4, 10.5), (5, 12.8), and (6, 15.1). Adding such points
to a line or to any geometric figure is referred to as oversampling the figure. Since the
x coordinates are so regular, we only need to output the y coordinates of these points.
We accordingly store (or write on the CD) the six numbers 3.6, 5.9, 8.2, 10.5, 12.8, and
15.1.

Now, consider the decoding done on the receiving end. Suppose that two of those six
numbers have been damaged in cleaning or improper storage of the CD. When the new
sequence of six numbers is input and checked for the straight line property, the remaining
four numbers can be identified as being collinear and can still be used to reconstruct
the line. Once the line is known, the two bad numbers can be corrected, since their x
coordinates are known. Even three bad numbers out of the six can be corrected, since
the remaining three numbers would still be enough to identify the original straight line.
(Notice that there is a small but finite chance that any other set of three of the six
numbers would be on a straight line, so the RS code is not perfect and may sometimes
fail to correct two- or three-number errors.)

This version of the RS code is simple, but it requires four extra numbers to correct
two numbers. The overhead is 4/2 = 2, too big. The next step uses the same technique,
but reduces the overhead by employing a curve, specifically a parabola, instead of a
straight line.

In this step, the input data is read in blocks of three numbers. An input triplet a,
b, and c is converted to the points (1, a), (2, b), and (3, c), and the (unique) parabola
that passes through them is computed. Four more points, with x coordinates of 4, 5,
6, and 7, are then computed on this parabola. Once the seven points are known, they
provide a strong pattern. If even three of the seven get corrupted, the remaining four
can be used to reconstruct the parabola and correct the three bad ones. However, if
four of the seven get corrupted, then no four numbers will be on a parabola (and any
group of three will define a di⌃erent parabola). Such a code can correct three errors in
a group of seven numbers, but it requires high redundancy (seven numbers instead of
four). The overhead of this version of the code is 4/3 = 1.33, lower than in the previous
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step, but still too high.

⌅ Exercise 10.3: Show how to compute the parabola that passes through three given
points.

Both a straight line and a parabola are special cases of polynomials, so the next
step in presenting the RS code extends the technique of the previous steps to general
polynomials. A polynomial p(x) of degree n is the simple function

p(x) = a0 + a1x + a2x
2 + · · · + anxn =

n&

i=0

aix
i.

It depends on n + 1 coe⌥cients ai that are normally real numbers but can be any other
mathematical entities. A degree-1 polynomial has the form a0 + a1x. When plotted, its
curve is a straight line, so it can intercept the x axis at most once (except for the special,
degenerate cases where the line is the x axis itself or runs parallel to it). A degree-2
polynomial has the form a0 + a1x + a2x2, which when plotted becomes a parabola; it
intercepts the x axis at most twice (again, there are special cases). In general, the curve
of a degree-n polynomial is wavy. It oscillates, goes up and down, and intercepts the x
axis at most n times.

An (n, k) Reed–Solomon code, normally denoted by RS(n, k), encodes a block of k
data symbols a0, a1,. . . ,ak�1 into a redundant codeword of n symbols, where n must be
greater than k. Specifically, if n equals k + 2t for a certain t, then the code can correct
errors in up to t symbols (i.e., its Hamming distance is 2t + 1). If a symbol consists of
s bits, then the numeric value of a symbol is an integer in the interval [0, 2s � 1], and
there can be up to 2s distinct symbols.

A common example is the (255, 223) code with s = 8. Each symbol is an s-bit
number (a byte), and 223 data bytes are combined with 32 extra bytes to produce a
255-byte codeword. Adding 32 bytes implies t = 16 (because n = k + 2t), so this code
can correct errors in up to 16 bytes. One extreme case is where each corrupted byte has
just one bad bit. In this case, the number of bits corrected is 16. Another extreme case
is where each of the 16 bad bytes has been completely corrupted; every bit is bad. In
this case, correcting 16 bytes amounts to correcting 16⇥8 = 128 bits.

The codes may be shortened in cases where no convenient value of k is available.
If for some reason it is inconvenient to use k = 223, it is possible to use another value
such as k = 168. The encoder appends 55 zero bytes to a block of 168 data bytes, to
end up with 223 bytes. An additional 32 bytes are then computed from the 223 bytes,
and a codeword consisting of the original 168 data bytes and the extra 32 bytes is sent
to the decoder, where the 55 zero bytes are implied.

We describe two intuitive approaches to generating the code. In both approaches the
original k data symbols ai are considered the coe⌥cients of the degree-(k�1) polynomial

p(x) = a0 + a1x + a2x
2 + · · · + ak�1x

k�1.

In the first approach, the polynomial is evaluated at n distinct, nonzero points xi,
and the n values y0 = p(x0), y1 = p(x1),. . . , yn�1 = p(xn�1) become the codeword. The
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xi values are built into both encoder and decoder. The decoder receives the codeword
with the yi’s and combines each xi with the corresponding yi to end up with the n points
(x0, y0) through (xn�1, yn�1). The points are used to reconstruct polynomial p(x), whose
coe⌥cients ai are the original data symbols. Without any errors, reconstruction is easy.
The polynomial is of degree k� 1, so it can be determined by k points. With no errors,
any k of the n points can be used, and any set of k points will determine polynomial
p(x).

In the presence of errors, decoding is more complex. The decoder generates the n
points. It knows that the unknown, degree-(k � 1) polynomial p(x) passes through the
points. Assume that some of the points (at most t) may be bad. A set of k points is
enough to determine a unique degree-(k � 1) polynomial, but given more points, this
polynomial may not pass through the extra points. The decoder starts by finding a
subset of at least k + t points through which a degree-(k � 1) polynomial q(x) passes.
Such a subset is termed consistent and it always exists, because polynomial p(x) that
was computed by the encoder passes through all n points, and we assume that at most
t points got corrupted. (If such a subset cannot be found, the decoder concludes that
more than t errors have occurred.)

Finding such a subset and determining polynomial q(x) is only the first step. Some
of the points in the subset may be bad, so polynomial q(x) determined by the subset
may be di⌃erent from p(x). However, the subset consists of k + t (or more) points, and
of those, not more than t are bad. We therefore start with the case where there are
no bad points in the subset. All the points in the subset are among the ones originally
used by the encoder, so polynomial q(x) determined by the subset is the one computed
by the encoder. In such a case, every set of k points in our subset will determine the
same polynomial q(x), and this will be identical to p(x). If the subset includes some bad
points, then di⌃erent sets of k points in the subset will determine di⌃erent degree-(k�1)
polynomials.

In the second step, the decoder has to test every set of k points in the subset. If
di⌃erent sets determine di⌃erent degree-(k � 1) polynomials, then the subset contains
some bad points, and another subset must be identified and tested. If no more subsets
can be found, the decoder concludes that more than t points are bad and the error
cannot be corrected.

This approach is impractical because of the many calculations required and because
the numbers involves are non-integers. Extensive simplifications are required in order
to make the RS codes practical, so they can be used in real devices that operate in real
time.

The next approach, while also computationally infeasible, has the advantage of
being simple in the common case where no errors are discovered. The idea is to generate
a codeword where the first k symbols are simply the data symbols ai, and these are
followed by 2t parity check symbols. The parity symbols are of the form p(xi), where
the xi are distinct, nonzero values. Such a Reed–Solomon code is known as systematic,
because in the common case where there are no errors, the decoder simply outputs the
first k symbols of the codeword.
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To check for errors, the decoder generates the system of 2t equations

a0 + a1x0 + · · · + ak�1x
k�1
0 = y0,

a0 + a1x1 + · · · + ak�1x
k�1
1 = y1,

...

a0 + a1x2t�1 + · · · + ak�1x
k�1
2t�1 = y2t�1.

As with the first approach, there must be at least one consistent subset of k+ t symbols,
and any such subset has k correct symbols. Assume that a subset with k correct symbols
has k � l data symbols ai and l polynomial values p(xi). Each polynomial value p(xi)
contributes an equation, for a total of l equations. Each equation has k symbols ai on
the left side, but only l are unknown, so the system of l equations can be solved.

The next steps in the description of the RS codes consider ideas for optimization.
The first question is how to implement the codes using just integers. In a computer,
non-integers are normally represented as floating-point numbers. Such numbers can
be very small (close to zero) and very large, but they have limited precision. In ad-
dition, arithmetic operations on floating-point numbers are slow. All this complicates
the problem of reconstructing the parabola or any other geometric figures. (The term
limited precision means that a number such as, say, 1.3744492 can only be represented
approximately, perhaps as 1.37445.)

The Reed–Solomon codes that are used in practice employ integers, because integers
can be stored in the computer in full precision and operated on without loss of precision.
The problem is that operations on integers may result in very large integers, in negative
integers, or in nonintegers, which is why practical RS codes use arithmetic operations
in finite fields. A finite field (also known as Galois field, GF) is a finite set of elements
(integers or other symbols) with two special arithmetic operations defined on them,
operations that always result in a field element (the field is closed under each operation).
Here is a short summary for those familiar with finite fields.

An (n, k) Reed–Solomon code deals with elements of the finite field GF(n+1), which
implies that n + 1 should be either a prime or a power of a prime. This code encodes a
group of k field elements into a group of n field elements. A common example is the RS
(255, 223) code that is based on the field GF(256). Each element of this field is a byte,
and the code encodes a group of 223 field elements into 255 elements by adding 32 check
field elements. It can be shown that an (n, k) RS code has a Hamming distance of 2t+1,
where t is defined by 2t = n � k. The code can therefore correct up to t errors. (The
following is another interpretation of these numbers. Start with k data items, normally
bits, and increase the data redundancy by adding 2t data items. The resulting code is
n = k + 2t long, and it can correct up to t errors.)

Given a finite field GF(n + 1) and a string a0a1 . . . ak�1 of k field elements to be
encoded, the (n, k) RS code is computed in the following steps:

1. Select a primitive element g of the field. This is a generator of the multiplicative
cyclic group of the nonzero elements of the field.

2. Treat the message as the polynomial p(x) = a0 + a1x + a2x2 + · · · + ak�1xk�1.
3. Compute this polynomial at the n points p(1), p(g), p(g2),. . . , p(gn�1).
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The n field elements computed in step 3 are the RS code of the original string. This
code can be stored or transmitted instead of the string. Because of the way g is selected,
the various powers gi are nonzero and are all di⌃erent. Returning to the geometric
interpretation, these n elements are n points on the graph of the polynomial p(x). This
polynomial is of degree k � 1, so k points are enough to determine it uniquely. The
polynomial is computed at n points where n > k, so it is overcomputed by 2t = n � k
points. Because of the way this particular polynomial is computed, it has the following
useful property: Given any k of the n points, if we compute the degree-(k�1) polynomial
that passes through them, the result will be p(x).

Finally, the last and ultimate optimization is to implement the RS decoder in hard-
ware. The digital computer is a very useful machine because it is general purpose; it
can perform many tasks by running di⌃erent software. However, specialized hardware
is always the fastest way to perform a computation that requires speed. Thus, one of
the main innovations in planning and building CDs (and in other applications of the RS
codes) was the fabrication of special software to implement the decoding part (encoding
is done once, before a batch of CDs is manufactured, but decoding is done each time the
CD or DVD is played, and so must be performed in the small player unit and in real
time.

Decoding is complex and is beyond the scope of this book. It involves five main
steps: (1) syndrome calculation, (2) Berlekamp algorithm, (3) Chien search, (4) Forney’s
algorithm, and (5) error correction. For one of several detailed references that describe
this process, see [Berlekamp 68].

Another advantage of the RS code is its excellent behavior for burst errors. Its
Hamming distance is 2t + 1, so it can correct up to t errors, but if the locations of the
errors are known, all of them (up to 2t errors) can be corrected. This process is easy
to visualize when we consider the geometric interpretation. If we know the bad points,
we can reconstruct the polynomial from k points, then correct up to 2t bad points by
“pulling” them into the polynomial.

From the errors of others, a wise man corrects his own.

—Publilius Syrus.

10.7 What is Average?

A typical dictionary definition of the common term “average” is: An average is a single
number or value that best represents a set of data. For most people, the average of
numeric data is the arithmetic mean, the sum of the numbers divided by the amount
of numbers in the data to be averaged. However, mathematicians, being fussy and
meticulous, distinguish several types of numeric averages, which are mentioned here,
but without examples.

Arithmetic mean (AM or arithmetic average) of the numeric list a1, a2, . . . an, is

1
n

&

i

ai.
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The geometric mean, GM, is the nth root of the product of n numbers. Thus,
n
"

a1, a2, . . . , an. This type of average is often used for a set of numbers whose values are
meant to be multiplied together or are exponential in nature, such as a set of growth
figures, values of a population, or interest rates of loans or investments. The Khinchin
constant (Page 57) employs this type of average.

The harmonic mean, HM, is the reciprocal of the arithmetic mean of the recipro-
cals of the items being averaged, which should be positive real numbers. This type of
average is sometimes appropriate for situations when the average rate is desired. The
mathematical expression is

H(a1, a2, . . . , an) =
n

1
a1

+ 1
a2

+ · · · + 1
an

=
n$n

i=1
1
ai

.

The harmonic mean is based on reciprocals, which explains why it amplifies the
e⌃ect of small data items and mitigates the e⌃ect of large items. It is therefore often
used whenever it is desired to reduce the impact of large outliers and magnify the impact
of small ones.

The above three types of average are also known as the Pythagorean means. They
were recognized and studied by Greek mathematicians because of their applications to
geometry.

The quadratic mean (QM or root mean square, RMS), of a set of values is the
square root of the arithmetic mean of the squares of the values. Thus

xRMS =
2

1
n

(x2
1 + x2

2 + · · · + x2
n).

The following relations exist between the three Pythagorean means. Given a data
set of positive reals that are not all equal, it is true that QM > AM > GM > HM. If all
data items in the set are equal, the three Pythagorean means are also equal.

There are also weighted averages, where a numeric weight is assigned to each data
item. Such an average is useful when it is known that certain items are more important
than others.

There are also measures of central tendency, of which the following are the chief
ones:

The mid-range (or mid-extreme) of a set of data items x is the arithmetic mean of
the maximum and minimum values of the data set. Thus, (maxx + minx)/2.

The median of a data set is the value separating the higher half from the lower
half of the set. It may also be considered “the middle” value. If the set consists of
an odd number of values, there is a middle item. Otherwise, the two middle items are
arithmetically averaged to produce the median of the set.

The mode is the value that appears most often in a set of data values. The mode
of a data set may not be unique, as for example, in (1, 1, 2, 3, 3), which has two modes.

For many other types of average and mean, see Wikipedia article “Average.”
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10.8 The power of the XOR

The Prisoner is a 1967 British television series about the abduction of an unnamed
British intelligence agent. After suddenly and angrily resigning his job, he unexpectedly
finds himself a prisoner held in comfort in a quiet, lovely rural place that is referred to
only as The Village. Everyone in the village has a number instead of a name, and our
hero, due to his past rank, receives the number six, to which he repeatedly refuses to
answer, claiming “I will not be pushed, filed, stamped, indexed, briefed, debriefed, or
numbered!”

The elegant problem presented here, following the video at [almost 20], is best
described in terms of two prisoners. They are o⌃ered their freedom if they can win the
following mathematical game against their warden. The warden shows them an 8 ⇥ 8
board on which are written 64 random bits, and explains the rules of the game he has in
mind. (We assume that it is easy to distinguish the top and bottom of the board.) The
prisoners are then given time to discuss their freedom-winning strategy. Prisoner #2
then leaves the room, and the warden, in the presence of prisoner #1, hides a secret key
under one of the 64 squares of the board. Prisoner #1 then leaves a hint on the board,
to help #2 find the key. The hint is to flip one of the 64 random bits on the board.
Prisoner #1 then leaves and #2 is brought in. He cannot identify the flipped bit, but if
he employs the correct strategy to locate the key, he can gain freedom for both himself
and his friend.

A trivial strategy may be for #1 to flip the bit over the key, but this won’t work
because #2 cannot tell which bit had been flipped.

At first, this seems impossible. How can the unknown location and value of one
flipped bit lead to the location of another bit among 64 similar-looking ones? But this
game can be won due to the power of an important logical operation known as exclusive-
OR, XOR, or ⇧ for short. We know that computers use binary (base-2) numbers. We
also know that there is nothing special about 10, and that any integer greater than 1
can be used as a number base. See also Section 2.2.

However, there is something special about 2 as the base of a numbering system,
because the use of binary numbers allows for an entirely new class of logical operations,
in addition to the familiar arithmetic operations. Of special interest is the exclusive-OR
logical operation, whose definition is extremely simple. The XOR of two di⌃erent bits
is 1 and the XOR of two identical bits is 0. Alternatively, the XOR is the same as
adding two bits modulo 2. Given two n-bit numbers A and B, we compute the XOR
of each pair of corresponding bits of A and B to end up with the n-bit A ⇧ B. The
special property of XOR that makes it very useful in many applications (see, for example,
reference [XOR 23]) is its associativity. If C = A⇧B, then A = B ⇧ C.

Figure 10.19 illustrates the approach to the solution of this intriguing problem. The
figure shows a smaller, 4⇥4 board, but the same technique works for bigger boards. The
idea is for prisoner #1 to employ the binary pattern on the board—whether random,
non-random, or even uniform—to first compute a number P (a parity) whose size can
serve as a location on the board. For a 4 ⇥ 4 board (16 squares), P should be a 4-bit
number, while for a 8⇥ 8 board (64 squares), P should be a 6-bit number.

Once Prisoner #1 gets the location K of the secret key from the warden, he makes
use of the XOR operation to determine the location F of the bit to be flipped, such that
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the new parity of the board would be K. It all depends on how the parity P of the board
is computed. If it is computed cleverly, then the single XOR operation F = P ⇧ K,
would give the location F of the bit to be flipped. Once this bit is flipped by #1, it
changes the parity of the board from the original P to K.
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0 1 2 3

1 1 0 1
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Figure 10.19: Parities for a 4⇥ 4 Random Grid.

Prisoner #1 now leaves the room, #2 comes in, computes the parity P of the board
(without knowing which bit had been flipped), and looks for the key at the location
pointed to by P . Success; followed by freedom.

Here is an example. Suppose that P = 4 = 01002 and K = 11 = 10112. The
operation 0100 ⇧ 1011 yields F = 1111 = 15 (these are the bit positions where P and
K di⌃er). We have to compute the parity P in such a way that the step of flipping the
bit at location 15 would change the parity of the entire board from P to K. This is the
essence of our problem.

First, a few words about parity. The (odd) parity of a set of bits is 1 if the number
of 1’s in the set is odd, and is 0 otherwise. An even parity is the opposite.

Our strategy is to partition the board into four overlapping parts (six in the case
of an 8⇥ 8 board) and compute the odd parity of each. The four (six) bits computed in
this way would constitute our parity P . Figure 10.19a shows how each board location
is assigned a 4-bit binary address. Once this is done, board locations are scanned and
parity bits are determined in four steps as follows:

Step 1. Scan all the locations whose least-significant address bits are 1. Those
are the two vertical red columns in Figure 10.19b. The total number of 1’s in those
columns is 6 (even) in the figure, so we prepare a parity bit of 0 and it becomes the
least-significant bit of P .

Step 2. Scan the board locations whose second least-significant address bits are 1
(the two vertical green columns). There are four 1’s, so the second least-significant
parity bit of P is also 0.

Steps 3 and 4 are the same for the rows (the horizontal bars in the figure), prepend-
ing the two parity bits 10 to P . Thus, P = 10 00.
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Notice that the top-left location of the board is not scanned in this process. Its
value is not used in computing P . This will be discussed shortly.

Now imagine that the key is hidden in location K = 9 = 10012. The operation
P ⇧ K = 1000 ⇧ 1001 produces F = 0001 = 1. Prisoner #1 now flips the bit at
location 1. The figure shows that this location was used in the parity computation in
step 1 (the blue circle in the figure), so it has flipped bit 1 (second from the right) of the
parity of the entire board. This parity, which originally was P = 1000 is now 1001 = 9.
Once Prisoner #2 computes the parity of the board that he sees, he points to location 9
and smiles; freedom is sweet.

Notice that this technique works even if the binary pattern of the board is non-
random or even uniform, resulting in either P = 1111 or P = 0000, where the XOR
operation is trivial. Having the pattern in the first place is a red herring, intended to
confuse the prisoners.

Finally, here is a logical, non-mathematical explanation of why the group of squares
have been chosen by their address bits. A careful scrutiny of the figure shows that
each square belongs to a number of groups as follows (see the 16 red numbers in Fig-
ure 10.19b):

Square 0 belongs to zero groups. In the figure, its value is therefore undetermined.
Squares 1, 2, 4, 8, belong to one group each.
Squares 3, 5, 6, 9, 10, 12, belong to two groups each.
Squares 7, 11, 13, 14, belong to three groups each.
Square 15 belongs to four groups.
Also, each group can be identified by one bit that’s common to the addresses of

all the squares in the group. Therefore, any combination C of groups has at least one
square that is a member of all the groups in C.

We can now modify the 4-bit parity of the board in any possible way by flipping
exactly one bit. For example, if we want to change bits 0 and 2 (least-significant bit and
3rd bit from the right) of the parity, we perform the following steps:

1. Find the group whose members are the squares with a least-significant address
bits of 1.

2. Find the group whose members are the squares with a 3rd-from-the-right address
bits of 1.

3. Flip the bit on the square that is a member of these two groups.
A final note. Suppose that the parity of the board turns out to be 11002 = 12, and

the key happens to be hidden in square 12. In this case there is no need to modify the
parity, and a careful check will verify that the three steps above would end up selecting
Square 0, the one that belongs to no group.

See also reference [cantor.paradise 20] for other approaches to this problem.

10.8.1 Vernam Cipher

The Vernam cipher (or Vernam code) is an important example of the power of XOR.
The cipher has two inputs, a plaintext and a (random) key. In the simplest case, both
are bitstreams. The encoder reads the first bit from the plaintext and XORs it with
the first bit from the keystream to produce the first bit of the ciphertext. This simple
step is repeated for subsequent bits. The code has two important advantages: (1)
It is symmetric. The Vernam decoder inputs a bit from the ciphertext and XORs it
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with a bit from the keystream (the same keystream used by the encoder) to produce
a bit of plaintext. The encoder and decoder may therefore be the same machine. (2)
The ciphertext output by the Vernam encoder is random. It has no patterns that a
codebreaker can latch on to and use as guesses to break the code. This is true even if
the plaintext isn’t random.

This interesting and important cipher was developed by Gilbert Vernam in 1917,
with United States patent #1310719 issued to him in 1918.

⌅ Exercise 10.4: Show that if the keystream of a Vernam cipher is a random sequence
of bits, then the ciphertext is random even if the plaintext isn’t random.

Naturally, the three streams, plaintext, keystream, and ciphertext don’t have to be
bit strings. Each may consist of fixed-length records, such as bytes.

⌅ Exercise 10.5: Explain why the following claim makes sense. The chance that a wrong
key during Vernam decoding would produce meaningful but wrong plaintext is very
small.

10.9 Brouwer fixed-point theorem

The interesting and unusual Brouwer fixed-point theorem is due to the Dutch mathe-
matician L. E. J. Brouwer who is known, among other things, for the Brouwer Hilbert
controversy. In its formal form, the theorem states that for any continuous function
f mapping a nonempty compact convex set to itself, there is a point x0 such that
f(x0) = x0. Here is what it means, in plain words.

O, rocks, tell us in plain words.
—Molly Bloom in James Joyce’s Ulysses, 1922.

Imagine a set of points which is bounded and has no holes. If the points of the
set are transformed continuously, without cutting or gluing them, then at any point
during the transformation, there will be at least one point still at its original spot. The
fixed point may vary over time during the transformation, but the general claim of the
theorem is often surprising and is certainly unexpected.

If the set has no bounds, or has holes, it is possible for every point to change its
position after a transformation. The same is true if a part of the set is cut and is pasted
elsewhere in the set.

This is true regardless of the dimension of the set. Figure 10.20 is a two-dimensional
example. A map is copied, shrunk, rotated and translated. The fixed point is indicated
by the red arrrow. An example of a three-dimensional point set is the set of molecules
of a liquid in a container. As long as there are no spills, the set of molecules is bounded.
When we stir the liquid, it seems that all the molecules must move and change positions
randomly, but the theorem claims that at any point in time, there is at least one molecule
that happens to be at its original location. It is like saying that the process of stirring
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Figure 10.20: A Fixed Point in Two Dimensions.

a liquid must always remain imperfect. (This claim assumes that molecules are small
enough to closely resemble mathematical points.)

A related result is the Borsuk-Ulam theorem. At any point in time, there is at least
one pair of points on the Earth’s surface that are diametrically opposed and have the
same temperature and atmospheric pressure. Diametrically opposed points on a sphere
are called antipodes (pronounced antipodés).

The proof of this surprising result is simple. We start with temperature. Choose
a point A on the surface of the earth. Denote the diametrically opposed point by B.
If the two are at the same temperature, we are done. Otherwise, let’s assume that A’s
temperature is higher than B’s. We now move them along an aribrary path in order to
eventually swap their locations. They can be moved along any path, as long as they are
kept diametrically opposed at all times. During this trip, A’s temperature will change
and fluctuate, going up and down, and eventually reach B’s temperature. Similarly,
B’s temperature will also fluctuate, eventually reaching A’s temperature. Since the two
temperature curves are continuous, there must be a point in time where the two curves
meet. When this is reached, the points will be at the same temperature and can be
stopped.

A similar a argument shows that it is always possible to find paths where at some
point in time, both A and B will be not just at the same temperature but also under the
same pressure. If this is not amazing enough, consider that this claim is true not just
for temperature and pressure but for any other pair of quantities that vary continuously.
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10.10 Short Topics

About bounding boxes. Figure 10.21a shows an image with a minimum bounding
box around it. The box is a rectangle. Part (b) of the figure shows the bounding box
rotated. It is now bigger, and it is also a square. Part (c) of the figure illustrates why
any image can have a square bounding box. As the bounding box of part (c) is rotated,
its short sides (in blue) get longer and its long sides (in red) get shorter. The di⌃erence
between the red and blue sides starts positive and continuously shrinks and ends up
being negative. Thus, at a certain point this di⌃erence must become zero. At that
point, the bounding box becomes a square.

(a)
(b)

(c)

Figure 10.21: Bounding Boxes.

Objects of constant width

A curve of constant width is a closed plane curve whose width, as measured between
two bounding parallel lines, is the same in all directions. The simplest example is
the circle, whose bounding box is always a square, regardless how much it is rotated.
Similarly, a three-dimensional object of constant width is a convex form whose width,
measured by the distance between two opposite parallel planes touching its boundary,
is the same regardless of the direction of those two parallel planes. (From Wikipedia.)

Figure 10.23 shows two examples. Part (a) of the figure is a Reuleaux triangle. This
is a curve of constant width made up of circular arcs of constant radius. It is named
after its developer, Franz Reuleaux, and it is constructed from the intersection of three
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circles (Figure 10.22). General Reuleaux polygons can be similarly formed from any
regular polygon with an odd number of sides, or from certain irregular polygons. General
Reuleaux polygons can approximate any curve of constant width. Several countries have
issued coins shapes like General Reuleaux polygons.

Figure 10.22: Constructing a Reuleaux.

(a)

(b)

Figure 10.23: Objects of Constant Width.

Part (b) of the figure is a regular pentagon where each pair of neighbor vertices is
connected with a circular arc, part of a circle whose center is at the vertex opposite the
pair. This can be done with any regular polygon with an odd number of sides.

It is also possible to create an arbitrary closed curve of constant width with the
following steps (Figure 10.24):
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Draw three intersecting lines. The area bounded by them is an arbitrary triangle.
Mark the corner points A, B, and C, as in the figure.

With point A as the center, draw a circular arc of any radius between segments AB
and AC (shown in red).

Select another point, say C, and draw an arc (in blue) of the same radius between
segments CB and CA.

In a similar way, draw a third arc (in green) centered at B.

Finally, draw three more arcs of the same radius to complete the closed curve.

A

B

C

A

B

C

A

B

C

A

B

C

Figure 10.24: An Irregular Closed Curve of Constant Width.

The width or diameter R of a curve of constant width is defined as the distance
between the parallel lines containing the curve. It can be shown that the length of
the perimeter of the curve is always �R, the length of the circumference of a circle of
diameter R.

The mathematical sciences particularly exhibit order, symmetry, and
limitation; and these are the greatest forms of the beautiful.

—Aristotle, Metaphysica

Miscellaneous is always the largest category.

—Joel Rosenberg.
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Insert: Flags

A national flag is a flag that represents and symbolises a given nation. It is flown
by the government of that nation, but can also be flown by its citizens. A national flag
is typically designed with specific meanings for its colors and symbols, which may also
be used separately from the flag as a symbol of the nation.

The flag of Nepal is the only national flag which is not a quadrilateral. It also has
another unusual, perhaps even unique, property. It is defined rigorously in the Nepal
constitution using a geometric construction. (From wikipedia.)

The following are some of the detailed instructions for constructing the flag, copied
verbatim from Schedule 1 (Relating to Article 5) of the Nepali constitution:

(A) Method of Making the Shape inside the Border
(1) On the lower portion of a crimson cloth draw a line AB of the required length from left to right.
(2) From A draw a line AC perpendicular to AB making AC equal to AB plus one third AB. From AC mark o�

D making line AD equal to line AB. Join BD.
(B) Method of Making the Moon
(7) Bisect CF at J and draw a line JK parallel to AB touching CG at point K.
(8) Let L be the point where lines JK and HI cut one another.
(9) Join JG.
(14) With centre M and radius MQ draw a semi-circle on the lower portion touching P and Q.
(17) With centre T and radius TM draw an arc on the upper portion of PNQ touching at two points.
(C) Method of making the Sun
(19) Bisect line AF at U and draw a line UV parallel to line AB touching line BE at V.
(20) With centre W, the point where HI and UV cut one another and radius MN draw a circle.
(D) Method of Making the Border
(23) The width of the border will be equal to the width TN. This will be of deep blue colour and will be provided

on all the sides of the flag. However, on the five angles of the flag the external angles will be equal to the internal
angles.

Explanation: The lines HI, RS, FE, ED, JG, OQ, JK and UV are imaginary. Similarly, the external and internal
circles of the sun and the other arcs except the crescent moon are also imaginary. These are not shown on the flag.

C

J

U

P

L

Q

G

B

W

A
H

I

V



Bibliography

37everywhere (2024) is tinyurl.com/55p495mb

aatishb (2023) is github.com/aatishb/patterncollider#readme

Aerial (2005) is the video at t.ly/jsCdQ

Agnesi (2024) is witchofagnesi.org

Alexander, Amir (2014), Infinitesimal: How a Dangerous Mathematical Theory Shaped
the Modern World, Scientific American / Farrar, Straus and Giroux.

aliquot (2024) is aliquot.de/aliquote.htm

almost (2020) is tinyurl.com/4ucehtce

ambigram (2023) is en.wikipedia.org/wiki/Ambigram

any.number (2023) is tinyurl.com/4p968fpz

Apostol, Tom (2000) “Irrationality of the Square Root of Two—A Geometric Proof,”
American Mathematical Monthly, 107:841–842, Nov.

arachnoid (2008) is arachnoid.com/is_math_a_science/index.html

Arndt, Jörg and Haenel, Christoph (2006). Pi Unleashed, Springer-Verlag. English
translation by Catriona and David Lischka.

Bar-Hillel, Maya, and Falk, Ruma (1982), “Some teasers concerning conditional proba-
bilities,” Cognition, 11 (2): 109–122.

Barnsley, Michael F. (2013) “Fractals Everywhere,” Dover

Base 13 function (2024) is tinyurl.com/3v3cyfsm

H. Behnke et al. (Eds.) (1974) Fundamentals of Mathematics, Volume II, Geometry,
The MIT Press Cambridge, Massachusetts.

Benford, Frank (1938) “The Law of Anomalous Numbers,” Proceedings of the American
Philosophical Society, 78#4, 551–572, March.



498 Bibliography

Benford (2024) is en.wikipedia.org/wiki/Benford’s_law

Bergerson (1973) Palindromes and Anagrams, Howard W. Bergerson, Dover.

Bergfeldt, Axel (2018) “Open maps which are not continuous,” Stack Exchange Math-
ematics. In an answer to a question. See tinyurl.com/5bmvtxxn

Berggren, Lennart, Borwein, Jonathan, and Borwein, Peter (1997), Pi: a Source Book,
Springer-Verlag.

Berlekamp, Elwyn R. (1968) Algebraic Coding Theory, New York, McGraw-Hill.

Bertrand paradox (2024) is tinyurl.com/4zn68y9a
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Answers to Exercises
A bird does not sing because he has an answer, he sings because he has a song.

—Chinese Proverb.

1. (Tongue in cheek.) Eliminating one equation would have doubled the sales from
one (20) to two (21) copies. Eliminating one more equation would have sold four (22)
copies. Thus, eliminating all 20 equations would have resulted in 220 = 1,048,576 copies
sold. Among other things, this also explains the recent revival of interest in the writings
of Jane Austen.

1.1. This surface consists of a set of circles of radius p in the yz plane. The x coordinate
is simply w, so each circle is drawn slightly to the right of its predecessor. The radius p
of a circle varies periodically with the x coordinate w, leading to larger circles, followed
by smaller ones, followed again by larger ones, and so on (Figure Ans.1).

Figure Ans.1: Varying The Radius.

1.2. Figure Ans.2 plots three such implicit functions and lists their Mathematica codes.

1.3. The basic pattern is a white square whose top-left half is a colored triangle and
has a small colored circle at the bottom-right corner.

1.4. Make a pool table in the form of an ellipse with a hole at one focus. Place a
billiard ball at the other focus and hit it toward the edge of the table in any direction.
The ball would hit the edge and be reflected toward the other focus.
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ContourPlot[ y Sin[x]/Sin[y]==y, {x,-15.,15}, {y,-5,5},Frame->True,
GridLines->Automatic, AspectRatio->.5]
ContourPlot[x Sin[x]/Sin[y]==y, {x,-15.,15}, {y,-7,7},Frame->True,
GridLines->Automatic, AspectRatio->.5]
ContourPlot[Sin[x+y]==y, {x,-7,7}, {y,-1,1}, AspectRatio->.1]

Figure Ans.2: Three Implicit Sine Functions.

1.5. A two-dimensional oval can be obtained from an ellipse by perturbing one co-
ordinate, which suggests that a three-dimensional egg shape can be obtained from an
ellipsoid by perturbing two coordinates in the same way. The equation of an ellipsoid
is (x/a)2 + (y/b)2 + (z/c)2 = 1, which is why the shape of an egg can be obtained by
an expression of the form g(x/a)2 + g(y/b)2 + (z/c)2 = 1, where g can be 1 + 0.25z or a
similar small perturbation. The code

a=1; b=1; c=2; g=1+0.25z;

ContourPlot3D[g(x/a)^2+g(y/b)^2+(z/c)^2==1, {x,-a-0.2,a+0.2},

{y,-b-0.2, b+0.2}, {z,-c,c}, Axes->False, BoxRatios->Automatic]

produces the elegant egg
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2.1. It is much simpler to design and make electronic circuits that have two states
than to have 10 or any other number of states.

2.2. Because the ancient Romans did not have the concept of zero. They started the
first century at year 1, so it had to end at year 100, implying that the 2nd century
started at year 101, and so on.

2.3. No, because any odd number has this property.

2.4. Let’s look at the simple case of a 3-digit integer. Given the integer 100a+10b+ c,
if the sum of its digits is divisible by 3, we can write a + b + c = 3x. Substituting yields

100(3x� b� c) + 10b + c = 300x� 90b� 99c.

This is a three-part sum where each part is divisible by 3. This method can be applied
to n-digit numbers. (See also Exercise 2.7.)

2.5. The sum of the digits of such a number is 1 + 6 + 1 + 6 + 1 = 15, so it is divisible
by 3 and therefore composite.

2.6. Natural hexagons are found in: Snowflakes, certain ice crystals, the compound eyes
of various insects, benzene rings of six carbon atoms and other cyclic compounds, basalt
rocks, quartz, marine skeletons, the edges of soap bubbles that are packed together, an
enormous spinning hexagon was discovered in the 1980’s in the clouds at Saturn’s north
pole, the country of France is often referred to in French as l’Hexagone, plant cells of the
moss Plagiomnium a⌥ne, a spider’s web, pink lily and tulip have six leaves, the pillars
of Fingal’s Cave (Scotland) and of the Giant’s Causeway (in UK and Ireland) have a
hexagonal cross section.

Artificial hexagons are found in the white divisions of a volleyball, the patterns of
a basketball, a stop sign, pencils, the heads of bolts, nuts, floor and wall tiles as well
as paving stones, crystals in rhombic shape, the boards of certain games, the folds of
a hexaflexagon, the reflections inside a kaleidoscope, the components of the primary
mirror of the James Web Space Telescope.

2.7. Let’s look at the simple case of a 3-digit integer. Given the integer 100a+10b+ c,
if the sum of its digits is divisible by 9, we can write a + b + c = 9x. Substituting yields

100(9x� b� c) + 10b + c = 900x� 90b� 99c.

This is a three-part sum where each part is divisible by 9. This method can be applied
to any n-digit numbers.
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Here is an alternative proof. Given an arbitrary (n+1)-digit integer anan�1 . . . a1a0,
we write it explicitly

N = 10nan + 10n�1an�1 + · · · + 101a1 + 100a0,

and denote the sum an + an�1 + · · · + a1 + a0 of its digits by T (N). We now subtract

N�T (N) = (10N�1)an+(10n�1�an�1)+· · ·+(10�1)a1
def= Bnan+Bn�1an�1+· · ·+B1a1.

We notice that each coe⌥cient Bi is of the form 999 . . . 9 and is therefore divisible by 9.
Thus, the right-hand side of the above equation is divisible by 9, which shows that N
itself is divisible by 9 if the sum T (N) on the left side has the same property. This also
shows that N is divisible by 3 if T (N) is so divisible.

2.8. Because � is defined in connection with circles, whereas this series is the sum of
(inverse) squares.

2.9. The next element is 111 (more accurately “one hundred and eleven”). The kth
element of this sequence is the smallest nonnegative integer whose name in U.S. English
consists of k syllables.

As an aside, the name of the integer 111,777 is “one-hundred and eleven thousand,
seven-hundred and seventy seven,” and this is the smallest integer whose name consists
of 19 syllables (1+2+1+3+2+2+2+1+3+2 = 19). This can be cut to 18 syllables
by omitting the second “and” in the name, or by using the following, 18-syllable phrase
to describe this integer “the least integer not nameable in fewer than nineteen syllables”
(1 + 1 + 3 + 1 + 3 + 1 + 2 + 1 + 2 + 3 = 18). See also Berry’s Paradox.

2.10. Current Internet resources and sophisticated mathematical software make this
easy. The two pairs for 1,729 are (1, 12) and (9, 10). The two pairs for 635,318,657
(discovered by Euler in 1772) are (133, 134) and (158, 59).

2.11. A simple search yields the short video at reference [number196 15].

2.12. The number is 10|31|22|33|14.

2.13. The phrase “love of God” yields 12 + 15 + 22 + 5 + 15 + 6 + 7 + 15 + 4 = 101%,
which tells us that hard work and knowledge should be everyone’s goal, attitude is even
more important, but love of God is what our peers mean when they want us to give
101%.

2.14. The Copeland-Erdős constant is normal in base 10. This number, described
in [Copeland 46], is 0.23571113171923293137414347535961677173798389 . . .. It is con-
structed by concatenating the prime numbers in base 10.
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2.15. Yes. To construct right-truncatable primes, we start again with the four 1-digit
primes 2, 3, 5, and 7. We append more digits to the right of each, check for primality,
and continue until one number is left.

Here are the first few such numbers, together with the largest one 2, 3, 5, 7, 23, 29,
31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 313, . . . , 73939133 (sequence A024770 in the
OEIS, reference [Sloane 08]).

2.16. It seems that the first three surprising relations are coincidences, but the length 6
sequence generated by compressing the powers of 2 can perhaps be explained.

2.17. This is simple. Assume that "p is rational and it equals the ratio of integers
a/b. Then b

"
p = a and

b2p = a2. (Ans.1)
Recall that the prime factorization theorem, also known as the Fundamental The-

orem of Arithmetic, states that every positive integer greater than 1 can be expressed
uniquely as a product of prime numbers. Thus, if the prime factorization of x is p1p2p3,
then the prime factorization of x2 must be p1p1p2p2p3p3; it has an even number of
factors. Applying this to Equation (Ans.1), we see that its left-hand side has an odd
number of prime factors and its right-hand side has an even number of factors. This
contradiction proves the claim.

It is easy to prove in a similar way that if a is not a perfect square, then
"

a is
irrational.

2.18. All the square roots of non-square integers are irrational, as are many logarithms.
Perhaps the most well-known irrational, after �, e, and

"
2, is the golden ratio, � � 1.618.

2.19. No. It is unknown whether � contains every possible pattern, but it is easy to
construct irrational numbers that consist of only a certain type of pattern, such as the
number
0.0 1 00 11 000 111 0000 1111 00000 11111 . . ..

2.20. Many sequences and series whose terms are rational converge to an irrational
limit. Here are some examples:

The irrational Euler’s number e is one of the important mathematical constants.
One of its many definitions is the limit of the infinite sequence

lim
n⇧�

⌦
1 +

1
n

↵n

,

of rational terms.

The infinite sequence of ratios of consecutive Fibonacci numbers Fn+1/Fn converges
to the irrational golden ratio ⌘.

Khinchin’s constant, Page 57, is the limit of the geometric mean of the (integer)
coe⌥cients of the continued fraction representations of almost all real numbers. Its value
is 2.6854. . . , and it is “suspected” to be irrational.

The Euler series, Equation (5.13), converges to �2/6 � 1.644.
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2.21. We choose the two irrationals x = y =
"

2. If xy =
"

2
�

2
is rational, we are

done. Otherwise,
"

2
�

2
must be irrational, which permits us to choose x =

"
2
�

2
and

y =
"

2, but this also ends up with an xy that is rational, because

xy =
⌦"

2
�

2
↵�2

=
�"

2
 �2·

�
2

=
�"

2
 2

= 2.

2.22. This basic proof is by contradiction. We first assume that tan 1⇤ is rational, then
prove from this that tan 2⇤, tan 3⇤ is, and so on, are all rationals. However, the right
triangle with sides 1 and

"
3 has a hypothenuse of

"
12 + 3 = 2. The angle between its

1-unit side and the 2-unit hypothenuse is 60⇤ (the other angles are 30⇤ and 90⇤), which
implies that tan 60⇤ =

"
3/1 and is therefore irrational. A contradiction.

One of the many trigonometric identities is

tan(� + ⇥) =
tan� + tan⇥

1� tan� tan⇥
.

When this is applied to � = ⇥ = 1⇤, we get

tan 2⇤ = tan(1⇤ + 1⇤)

=
tan 1⇤ + tan 1⇤

1� tan 1⇤ tan 1⇤

=
rational + rational

1� rational
= rational.

Hence, assuming that tan 1⇤ is rational implies that tan 2⇤ is also rational, which in
turn implies that . . . .

2.23. Start by considering the identity

(
"

2 + 1)(
"

2� 1) = (
"

2)2 � 12 = 1⇣ 1"
2� 1

=
"

2 + 1 = 2.414213 . . . ,

which we use in starting the continued fraction

"
2 = 1 + .414213 . . . = 1 +

1
1

.414213...

= 1 +
1

2 + .414213 . . .
= 1 +

1
2 + 1

1
.414213...

,

and continue in this way to end up with

"
2 = 1 +

1
2 + 1

2+ 1
2+ 1

2+ 1

...

.
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2.24. The Mathematica code below shows the unusual, regular sequence of coe⌥cients
of the continued fraction of e. A proof of this (too advanced for this book) can be found
in [Cohn 06].

In[4]:= ContinuedFraction[E,100]

Out[4]= {2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,18,1,1,20,1,1,

22,1,1,24,1,1,26,1,1,28,1,1,30,1,1,32,1,1,34,1,1,36,1,1,38,1,1,40,1,1,42,1,1,44,

1,1,46,1,1,48,1,1,50,1,1,52,1,1,54,1,1,56,1,1,58,1,1,60,1,1,62,1,1,64,1,1,66,1}

2.25. The fact that the left-hand sides of the two continued fractions are di⌃erent,
suggests that we should consider them (the left-hand sides) an unknown x and write the
two continued fractions as the single quadratic equation

x =
2

3� x
.

This equation can be written as (x � 1)(x � 2) = 0, which produces the two solutions
x = 1 and x = 2. The right-hand sides of the continued fractions can converge to either 1
or 2 depending on which point they are chopped o⌃. If they are chopped as shown in the
exercise, after any of the (3� 2)’s, then they always equal 2. If they are chopped after
any of the 3’s, then they converge to 1. The following Mathematica lines show typical
outputs in the two cases.

2./(3-2/(3-2/(3-2/(3-2/(3-2/(3))))))

0.992126

2./(3-2/(3-2/(3-2/(3-2/(3-2/(3-2))))))

2.

2.26. Assume that p
def=

"
2 + � is rational, and consider the quadratic equation

x2�2px+(p2�2) = 0. This algebraic equation has rational coe⌥cients, and it’s easy to
verify that one of its solutions is �. But � has been proved to be transcendental, which
is a contradiction. Here is a simple check:

�2 � 2(
"

2 + �)� + [(
"

2 + �)2 � 2] = �2 � 2�
"

2� 2�2 + 2 + 2�
"

2 + �2 � 2 = 0.

2.27. This is straightforward and results in the similar expression

y = ±

3
�a +

"
a2 + b2

2
.
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2.28. We start with the four roots for n = 4. If � is such a root, then �4 = 1, implying
that �8 = 12 = 1, making � one of the eight roots for n = 8. Four more roots are
needed, and we guess that

"
i is one of them. To prove this, we observe that if � =

"
i

then �2 = i and �8 = i4 = 1, but what number is
"

i? If we write
"

i = a + bi and
square both sides, we get i = a2 +2abi� b2, which implies that a2� b2 = 0 and 2ab = 1.
Thus

"
i =

"
2

2
+ i

"
2

2
. The other roots are

"
2

2
� i

"
2

2
, �

"
2

2
+ i

"
2

2
, and �

"
2

2
� i

"
2

2
.

2.29. Figure Ans.3 (reprinted under attribution license from its author, Wiki user
Cmglee) shows roots 2 through 6 of a general complex number Z = (r, �).

2.30. We start with (i3)
1
4 . The cartesian coordinates of �i in the Argand diagram are

(0,�1), which is why its polar coordinates are (1, 3�/2) or, in general (1, 3�/2 + 2n�)
for nonnegative integers n. We therefore write

(i3)
1
4 = (�i)

1
4 =

*
ei 4n+3

2 ⇤
+ 1

4
=
*
ei 4n+3

8 ⇤
+
.

For n = 0, 1, 2, and 3, this yields ei 3⇥
8 , ei 7⇥

8 , ei 11⇥
8 , and ei 15⇥

8 .
We now swap the exponents and compute (i 1

4 )3 using polar coordinates as before,
to obtain the results (ei ⇥

8 )3 = ei 3⇥
8 , (ei 5⇥

8 )3 = ei 15⇥
8 , (ei 9⇥

8 )3 = ei 27⇥
8 , and (ei 13⇥

8 )3 =
ei 39⇥

8 . Two of these results equal two parts of the previous results, and the relations
27�/8� 2� = 11�/8 and 39�/8� 4� = 7�/8 imply that the remaining two results equal
the other two parts of the previous results. Thus, for the fractional power 3/4, the order
of the exponents does not matter.

2.31. The derivation of 3
"
�1 is straightforward. Let a3 = �1, then a3 + 1 = 0.

We add and subtract both a2 and a to obtain a3 + a2 � a2 + a � a + 1 = 0 which
simplifies to (a + 1)(a2 � a + 1) = 0. Hence, one cube root of i is the real number �1
and the other two are the solutions of the quadratic equation a2 � a + 1 = 0, which are
1/2 ± (

"
3/2)i � 1/2 ± 0.866i.

The three cube roots can also be plotted on the Argand diagram as the complex
powers ei⇤/3+i2⇤n/3 for n = 0, 1, and 2. This is illustrated in Figure Ans.4 together with
the Mathematica code. Note that the three roots form the vertices of an equilateral
triangle (shown in dashed red lines).

2.32. An imaginary number has the form ai where a is real. The sum of two such
numbers is therefore ai + bi = (a + b)i, and this can be real only if it is zero, i.e., when
a = �b.

2.33. An Internet search has yielded the unpronounceable term trigintaduonions. The
Wikipedia article says:

“The trigintaduonions, also known as the 32-ions, 32-nions, 25-nions, or sometimes
pathions P, form a 32-dimensional noncommutative, and nonassociative algebra over the
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Figure Ans.3: Roots 2 Through 6 of a Complex Number Z.

Reprinted with permission from Wiki user Cmglee.

real numbers, usually represented by the capital letter T, boldface T or blackboard bold
T.

The word trigintaduonion is derived from Latin triginta (thirty) + duo (two) + the
su⌥x -nion, which is used for hypercomplex number systems.”

(The term pathion may be a reference to the 32 paths of wisdom, found in certain
religious writings.)

2.34. Today, we believe that Rene Descartes was one of the first, perhaps the first,
who coined the term “imaginary” in his book La Geometrie, where he wrote:
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cr=(1/2)+I Sqrt[3.]/2
cr^3
ComplexListPlot[{{E^(Pi I /3)},{E^(Pi I /3+2Pi I /3)},{E^(Pi I /3+2Pi I 2/3)}},
PlotRange->{{-1.1,1},{-1,1}}]

0.5 + 0.866025 I
-1. + 1.11022*10^-16 I

Figure Ans.4: Three Cube Roots of i.

“For the rest, neither the false nor the true roots are always real, sometimes
they are only imaginary, that is to say one may imagine as many as I said in
each equation, but sometimes there exists no quantity corresponding to those
one imagines.”
To Descartes, imaginary numbers were an alternate method of solving “what-if”

types of questions. He thought of them as imagined solutions instead of true solutions.
This seemed reasonable to mathematicians of his day. They accepted Descartes’ thinking
and point of view, and the term “imaginary” stuck.

Then came Gauss, convincing his contemporaries that imaginary quantities make
sense by showing that they can be visualized:

“That this subject [imaginary numbers] has hitherto been surrounded by
mysterious obscurity, is to be attributed largely to an ill adapted notation.
If, for example, +1, �1, and the square root of �1 had been called direct,
inverse and lateral units, instead of positive, negative and imaginary (or even
impossible), such an obscurity would have been out of the question.”

2.35. We denote our unknown function and its derivative by y(x) and y⌥(x), respec-
tively, and require that yy⌥ = 1. The derivative of any y2(x) with respect to x, i.e.

dy2

dx
,
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is always 2yy⌥. We require that yy⌥ = 1, which yields

dy2

dx
= 2yy⌥ = 2.

Integrating produces y2(x) = (2x) + Const, which implies y = ±
"

2x + C.

2.36. Here are a few.
Born: English actor Michael Caine, comedian Billy Crystal.
Died: Physicist and cosmologist Stephen Hawking, philosopher and socialist Karl

Marx.

2.37. No, because such an “inner” subsequence would have, in such a case, another
sub-subsequence inside it, causing the sequence of � digits to repeat itself, and thereby
causing � to be rational.

2.38. We cannot really tell. The best we can claim is that in our world, � is proved
transcendental, so in a world where � is non-transcendental, this proof would be invalid
and our mathematics would not hold. Would there still be intelligent life in such a
world? Is there intelligent life in a world where someone can even ask this question
about �? Weird!

2.39. The error is in step 5. It is valid to divide a real number by an imaginary
number, but replacing

"
a/
"

b with
0

a/b, as in step 2, is valid only if a is non-negative
and b is positive. We can also consider the square root a function f(x), but then we
have to prove that it satisfies f(a)/f(b) = f(a/b).

2.40. From the discussion of ii on Page 107 we know that i = ei ⇥
2 and ii = e�

⇥
2 , from

which we easily deduce that

i(i
i) =

⇤
ei ⇥

2
⌅e�⇥

2
= ei ⇥

2 e�
⇥
2 = cos(

�

2
e�

⇥
2 ) + i sin(

�

2
e�

⇥
2 ).

This expression, which some may consider ugly, is nevertheless correct.

2.41. This is trivial. 1/i = �i because i · (�i) = �i2 = �(�1) = 1.

2.42. This is straightforward
"

i +
"
�i

=
1"
2

"
2i +

1"
2

"
�2i

=
1"
2

"
1 + 2i� 1 +

1"
2

"
1� 2i� 1

=
1"
2

*0
(1 + i)2 +

0
(1� i)2

+

=
1"
2

[±(1 + i) + ±(1� i)]

= ±
"

2.



518 Answers to Exercises

2.43. Solution 1 uses the famous Euler equation

ei⇤ = �1,

and proceeds in the following steps:

(�5)x = 5,
(�1)x5x = 5,

ei⇤x5x = 5,

ln
⇤
ei⇤x
⌅
+ ln 5x = ln 5,

i�x ln e + x ln 5 = ln 5,

x =
ln 5

i� + ln 5
.

The second solution is simpler

(�5)x = 5,

ln(i2 · 5)x = ln 5,

x
⇤
ln(i2) + ln 5

⌅
= ln 5,

x =
ln 5

2 ln(i) + ln 5
=

ln 5
i� + ln 5

.

2.44. The answer depends on n mod 4 and can have one of the four values

in+1 � in = in(i� 1) =

⌧
��

��

n mod 4 = 1, i(i� 1);
n mod 4 = 2, �1(i� 1);
n mod 4 = 3, �i(i� 1);
n mod 4 = 0, 1(i� 1).

2.45. The answer, naturally, is a matter of personal opinion, but we can claim that
so many numbers, including integers and nonintegers, have interesting properties, that
this feature of ⌘ is perhaps not as fundamental as seems at first.

2.46. Draw a square of side a. With the compass, locate the midpoint M of one side.
Draw a circle (in black) of radius BM centered at M . Notice that it touches corners A
and B. Use this circle to locate point C that is on the line DF . Complete the rectangle
by locating the midpoint of AB and drawing a circle (in blue) at that point that will
touch corners D and F . Extend segment AB to touch the circle, which will determine
point E.

The radius of the black circle (segments MB and MC) is
2

a

2
2

+ a2 =
a

2
"

5,
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A

D

B

F

E

M C

a

a/2a/2

a

a5√a2

Figure Ans.5: A Golden Rectangle with Ruler and Compass.

which is why the length of segment DC is

a

2
+

a

2
"

5 = a(1 +
"

5)/2 = a⌘,

showing that rectangle ADCE is golden.
Figure Ans.6 illustrates several geometric constructions that yield ⌅ and related

constants.

2.47. A simple explanation is that the golden ratio is a solution of the quadratic
equation

x2 � x� 1 = 0. (Ans.2)

Writing this in the form x2 = x + 1, Figure Ans.7 shows that for x = 0, the right-hand-
side (RHS, the blue straight line) is bigger than the LHS (the red parabola), but for
x = 2, the RHS is smaller. Because the two curves are continuous, there must be a point
A between x = 0 and x = 2 where the two curves meet. This point, which is a solution
of Equation (Ans.2), is named the golden ratio ⌘. The other solution of this equation
is point B between x = �1, where RHS < LHS and x = 0, where RHS > LHS, that we
denote by 1/⌘.

Figure Ans.7: Two Intersecting Curves at ⌘.
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Figure Ans.6: A Golden Zoo of ⌘ and L.
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Another answer to this tricky question is that the study of quadratic equations
shows that the real number (1 +

"
5)/2 is the positive solution of Equation (Ans.2).

2.48. The two solutions of the quadratic equation x2 � ix + 1 = 0 are the complex
numbers (i ± i

"
5)/2, as can be verified by direct checking.

Similarly, the two solutions of 2x2 � 2x + 3 = 0 are the imaginaries (1± i
"

5)/2, as
can be verified by the single Mathematica statement Solve[2x^2-2x+3==0,x]

Also, the fifth roots of unity, Page 90, are related to ⌘, and four of those roots are
complex.

2.49. For n = 2 the noem is 1 +
"

2 as can be derived from Figure 2.30a.

2.50. This is true, but the zero can be included in several places by, for example,
writing 03 instead of 3. Alternatively, we can get clever and claim that Sabey’s formula
is only weakly pandigital.

3.1. Examining the hands, it is clear that the symmetry of this image is not bilateral
but rather rotational symmetry about a vertical axis at the center of the figure.

3.2. A common example is the pedal threads in a bicycle, which are di⌃erent for the left
and right sides. The right side pedal has a right-hand thread (removes counterclockwise,
installs clockwise). The left side pedal has a left-hand thread (removes clockwise, installs
counterclockwise). Similarly, left-hand threads are used in any engine and turbine parts,
where the rotation can cause right-handed threads to loosen over time.

There are cases where left-hand threads are used to intentionally create incompat-
ibility as a safety indicator. Gas-supply valves use left-handed threads to di⌃erentiate
them from the valves that control oxygen.

Used in fiction. In his 1974 book Rendezvous with Rama, Arthur C. Clarke says,
“there was no reason to suppose that clocks and corkscrews on Rama turned in the same
direction as they did on Earth.”

3.3. (By chatGPT in October 2023).
No, not every group is a symmetry group. A symmetry group is a specific type of

mathematical group that describes the symmetries of a particular object or system. It is
a set of transformations that leave an object or system unchanged, such as rotations or
reflections. Not all groups have this property, and therefore not all groups are symmetry
groups.

3.4. The only subgroups of G are G itself and the trivial group.

3.5. The process is straightforward and the result is (1, 6, 2, 9, 7, 4)

3.6. D8 = {(), (1234), (13)(24), (1432), (24), (13), (14), (23)}.

3.7. The result, known as the “average die” has faces numbered 2, 3, 3, 4, 4, and 5.
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Reflect

ReflectRotate 

77
7 7

7 7 7

Figure Ans.8: Transformations for Exercise 3.8.

3.8. This is easy. Figure Ans.8 shows how a reflection about a horizontal line that
passes through the blue dot results in the green figure, which is rotated about the same
dot to produce the cyan figure. Finally, another reflection about a vertical line that
passes through the blue dot brings the cyan figure to its original, red orientation and
location (in the figure, it is slightly shifted to make it visible).

The point of this exercise is to stress the important fact that a flat, two-dimensional
figure does not have front and back. It is infinitely thin, which is why it is easy to visualize
two-dimensional reflections and why they are often symmetry transformations.

3.9. The following was generated by ChatGPT in October 2023:
The symmetry group of a cube is known as the octahedral symmetry group and is

often denoted as O or Oh. It consists of 48 distinct symmetries, including rotations and
reflections, that preserve the shape and position of the cube in three-dimensional space.
To represent the multiplication table for this group, we can use a Cayley table.

The 48 symmetries can be categorized into the following:
1. Identity (E): No transformation; the cube remains unchanged.
2. Rotations (Cn): There are 24 rotational symmetries, which include rotations of

90, 180, and 270 degrees around various axes.
3. Reflections (⇣h): There are 11 horizontal mirror reflections that reflect the cube

across a plane perpendicular to one of the cube’s faces.
4. Reflections (⇣v): There are 6 vertical mirror reflections that reflect the cube

across a plane containing two opposite vertices.
5. Reflections (Sd): There are 6 diagonal mirror reflections that reflect the cube

across a plane containing two opposite edges.
6. Rotational reflections (S4): There is 1 symmetry that combines a 90-degree

rotation with a reflection across a plane perpendicular to the axis of rotation.
The Cayley table (group multiplication table) of the octahedral symmetry group is

quite extensive, as it involves the compositions of all these symmetries. It’s typically
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represented as a 48⇥ 48 table, which would be too large to display here in its entirety.
However, I can provide a simplified version of the table that shows the composition of a
few selected symmetries. For the full table, you may refer to group theory textbooks or
online resources.

Figure Ans.9 is a simplified portion of the Cayley table for the octahedral symmetry
group:

Figure Ans.9: Part of the Octahedral Symmetry Group Oh.

3.10. This is because the five faces of the square-based pyramid are not equal. The
base is a square while the four sides are triangular. In contrast, the four faces of the
triangular-based pyramid are identical, which endows it with more symmetry. Similarly,
the octahedron, which consists of two square-based pyramids connected at their bases,
also features higher symmetry (its symmetry is isomorphic to that of the cube).

3.11. The following rephrases and extends reference [Reid 04], a detailed discussion
of symmetries in brick walls, which also considers di⌃erent brick patterns and how they
a⌃ect the symmetries of such a wall. Figure Ans.10 shows only the brick pattern known
as “running bond,” which is the most common. Each brick has four sides which can be
viewed as six edges (in dashed blue). The following symmetries are easy to visualize:
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Figure Ans.10: Symmetries of a Brick Wall.

Translation. The black arrows show how an infinite wall can be translated to itself
horizontally, vertically, and diagonally.

Reflection. The green lines can be viewed as mirrors about which the wall can be
reflected. The horizontal mirrors are located in the middle of each brick layer and the
vertical mirrors are located between bricks and at the center of a brick, between its
vertical edges.

Rotation. The circles indicate some of the rotation points. The black circles are
located between the horizontal edges of a brick and the red circles are at the centers of
the bricks.

Gyration. The black circles are also gyration points. They are centers of rotation,
but are not on any line of reflection.

3.12. The string OXIHHIXO has this signature, but only in certain typefaces.

3.13. Two simple patterns are illustrated by Figure Ans.11. Both feature rotation
symmetries but no gyrations.

4
4

2

∗442

1

2

3

∗333

Figure Ans.11: Patterns with ⇤442 and ⇤333 Symmetries.

3.14. Such a pattern is shown in Figure Ans.12 where four equivalent gyration centers
are shown in blue.

3.15. Figure Ans.13 shows such a pattern. Notice that in spite of its rich symmetry,
this pattern has no reflection axes.
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3∗3

Figure Ans.12: A Pattern with Signature 3⇤3.

Figure Ans.13: An Otherwise Asymmetric Pattern with Signature ⇥⇥.

3.16. A point (x, y) on a circle with radius R satisfies x2+y2 = R2 or (x/R)2+(y/R)2 =
1. The transformed point (x⇥, y⇥) on an ellipse should satisfy (x/a)2 + (y/b)2 = 1. It is
easy to guess that the transformation rule is x⇥ = ax/R, y⇥ = by/R, but this can also
be proved as follows: The general scaling transformation is x⇥ = k1x, y⇥ = k2y. For the
transformed point to be on an ellipse, it should satisfy (k1x/a)2 + (k2y/b)2 = 1, which
can be simplified to k2

1b
2x2 + k2

2a
2y2 = a2b2. Substituting y2 = R2 � x2 yields

(k2
1b

2 � k2
2a

2)x2 = a2b2 � k2
2a

2R2.

This equation must hold for every value of x and this is possible only if k2
1b

2� k2
2a

2 = 0
and a2b2 � k2

2a
2R2 = 0. Solving these equations yields k1 = a/R and k2 = b/R.

3.17. The transformation can be written (x, y) ⇣ (x,�x + y), so (1, 0) ⇣ (1,�1),
(3, 0)⇣ (3,�3), (1, 1)⇣ (1, 0), and (3, 1)⇣ (3,�2). The original rectangle is therefore
transformed into a parallelogram.

3.18. From cos 45⇤ = 0.7071 and tan 45⇤ = 1, we get the 45⇤-rotation matrix as the
product: ⌦

0.7071 0
0 0.7071

↵⌦
1 �1
1 1

↵
.

Figure Ans.14 shows how a 2⇥2 square centered on the origin (Figure Ans.14a)
is first shrunk to about 70% of its original size (Figure Ans.14b), then sheared by the
second matrix according to (x⇥, y⇥) = (x+y,�x+y), and becomes the rotated diamond
shape of Figure Ans.14c. Direct calculations show how the two original corners (�1, 1)
and (1, 1) are transformed to (0, 1.4142) and (1.4142, 0), respectively.
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(a)

(-1,1) (1,1)

(1.4142,0)

(0,1.4142)

(b) (c)

Figure Ans.14: A 45⇤ Rotation as Scaling and Shearing.

3.19. Figure 3.45 gives the polar coordinates P = (r,�) and P
⇥ = (r,⌘) = (r,�� �).

We are looking for a matrix T =
�a b
c d

⇥
such that P

⇥ = PT and it does not take much to
figure out that

T =
⌦

1 ��/r
0 1

↵
.

3.20. A reflection about the x axis transforms a point (x, y) to a point (x,�y). A
reflection about y = �x similarly transforms a point (x, y) to a point (�y,�x) (this
is matrix T3 of Equation (3.3)). The combination of these two transformations thus
transforms (x, y) to (y,�x), which is another form of the negate and exchange rule,
corresponding to a 90⇤ clockwise rotation about the origin. This rotation can also be
expressed by the matrix

⌦
cos 90⇤ sin 90⇤
� sin 90⇤ cos 90⇤

↵
=
⌦

0 1
�1 0

↵
.

3.21. The determinant of this matrix equals

⌦
1� t2

1 + t2

↵2

� �4t2

(1 + t2)2
=

(1� t2)2 + 4t2

(1 + t2)2
= +1,

which shows that it generates pure rotation. Also, if we denote this matrix by
⌦

a11 a12

a21 a22

↵
,

it is easy to see that a11 = a22, a12 = �a21, a2
11 + a2

12 = 1, and a2
21 + a2

22 = 1. These
properties are all satisfied by a rotation matrix.

3.22. The determinant of this matrix is

� a

A

 2
� b

A

⌦
� b

A

↵
=

a2 + b2

A2
.
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It equals 1 for A = ±
"

a2 + b2 but cannot equal �1 since it is the quotient of the two
non-negative numbers a2 + b2 and A2. We, consequently, conclude that this matrix
represents pure rotation. An example is a = b = 1, which produces A = ±

"
2 � ±1.414.

The rotation matrices for this case are
⌦

1/
"

2 1/
"

2
�1/

"
2 1/

"
2

↵
=
⌦

0.7071 0.7071
�0.7071 0.7071

↵
,

⌦
�1/

"
2 �1/

"
2

1/
"

2 �1/
"

2

↵
=
⌦
�0.7071 �0.7071
0.7071 �0.7071

↵
,

and they correspond to 45⇤ rotations about the origin.

3.23. Two reflections of an object about parallel lines are equivalent to a translation,
and a translation can be considered a rotation about a point at infinity. But two parallel
lines can also be considered as meeting at infinity. Two reflections about the same line
return an object to its original position, and are therefore equivalent to a rotation of
zero degrees.

“Lines that are parallel
meet at infinity!”
Euclid repeatedly,
heatedly,
urged

until he died.
and so reached that vicinity:
in it he
found that the damned things
diverged.
—Piet Hein (dedicated to Martin Gardner).

3.24. By the definition of matrix A we have

A
def= I �R =

⌦
1 0
0 1

↵
�
⌦

cos � � sin �
sin � cos �

↵
=
⌦

1� cos � � sin �
sin � 1� cos �

↵
,

so its determinant equals (1 � cos �)2 + sin2 � = 2 � 2 cos �, and this can be zero only
when cos � = 1, which happens when � is zero or a multiple of 2�, but in such cases, a
rotation by � reduces to no rotation.

3.25. Figure Ans.15 lists the steps in preparing the tessellation of the well-known
Escher horse.

3.26. Here are some in English. Skimitry, symmetrie, altimetry, asymmetry, c-
symmetry, cp-symmetry, dissymmetry, dosimetry, perimetry, t-symmetry.

3.27. This is trivial because in any base, the infinite sequence of numbers written (in
that base) as 101, 1001, 10001, 100001, . . . consists of palindromic numbers.
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Figure Ans.15: Steps in Constructing the Horse From a Rectangle.

3.28. The divisibility test of 11 is found on Page 56. Scan the digits from right to left
and perform an alternating sum, i.e., a0 � a1 + a2 � a3 + . . .. If the result is divisible
by 11, then the entire number is. A little thinking shows that applying this test to a
palindrome with an even number of digits results in a zero.

4.1. This is another unexpected e⌃ect of repeating a process to infinity. The fragmen-
tation process preserves the circumference of the square, but shrinks its area in each
step. At the limit, the area of the fragmented square is �, but its circumference is still 4.
It has become an infinitely fragmented square, a fractal (Section 8.1). Its circumference
is infinitely fragmented and is nondi⌃erentiable at every real point. The final square
looks like a circle, but its circumference is not smoothly curved like that of a circle.

4.2. The specially-crafted list on the left below results in the special number S =
0.999 . . . that is also included in the list.

1⇣R1 = 0.99999999 . . .
2⇣R2 = 0.x9xxxxx . . .
3⇣R3 = 0.xx9xxxx . . .
4⇣R4 = 0.xxx9xxx . . .
5⇣R5 = 0.xxxx9xx . . .
6⇣R6 = 0.xxxxx9x . . .

1⇣R1 = 0.3572690 . . .
2⇣R2 = 0.7096418 . . .
3⇣R3 = 0.5381905 . . .
4⇣R4 = 0.1033687 . . .
5⇣R5 = 0.0036731 . . .
6⇣R6 = 0.1958208 . . .
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A possible way to avoid this special case is to construct the diagonal as follows: If
the ith digit of Ri is 7, generate a zero in position i of S, otherwise generate a 7. The
result of the list on the right would, in such a case, be S = 0.0000700 . . ., a number that
cannot be on the list.

4.3. The following bijection, Figure Ans.16, transforms the interval (0, 1) to the entire
real number line

f(x) =
�

1
x � 2, x ⇠ (0, 1

2 ];
2� 1

1�x , x ⇠ (1
2 , 1).

0.5 1

-100

100

f[x_] := If[0 < x <= 1/2, (1/x) - 2, 2 - 1/(1 - x)];
Plot[f[x], {x, 0.01, 0.99}, PlotRange -> 100,
Ticks -> {{0, 0.5, 1}, {-100, 100}}]

Figure Ans.16: Interval (0, 1) transformed.

4.4. We start with a bijection from the set of integers to that of the natural numbers
(nonnegative integers). These sets are infinite and it has been known that if there is a
bijection between two infinite sets, then there are infinitely many such bijections. Here
are two.

Perhaps the simplest bijection is (0, 1,�1, 2,�2, 3,�3, . . .) ⇣ (0, 1, 2, 3, 4, 5, 6, . . .).
Its inverse is (0, 1, 2, 3, 4, 5, 6, . . .)⇣ (0, 1,�1, 2,�2, 3,�3, . . .).

Another simple bijection is to map the nonnegative integers to the even positive
integers (n ⇣ 2n), and map all the negative integers to the odd positive integers by
n⇣ �(2n + 1).

We can now denote any such bijection by ai ⇣ bi, where ai is an integer and bi is
a nonnegative integer.

An algebraic number is the solution of a polynomial equation with integer coef-
ficients. Such equations have the form a0 + a1x + a2x2 + · · · + anxn = 0. We now
construct a transformation F from such an equation to the natural number A defined
as the product 2b03b15b3 · · · pbn

i , where pi is the ith prime number and the various bi are
the images of ai under any bijection from the integers to the naturals. The number A is
positive because all the exponents bi are nonnegative. Also, A can equal 1 only if all the
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bi are zeros, but in such a case we can choose a bijection where the integer 0 is mapped
to the natural number 0. This would imply that all the ai coe⌥cients are zero and the
polynomial equation does not exist.

The fundamental theorem of arithmetic states that any natural number greater
than 1 can be uniquely represented as the product of prime numbers. This implies that
every polynomial equation with integer coe⌥cients can be transformed by F to a unique
positive integer A, and any positive integer is the transform of such an equation. Thus,
transformation F is a bijection, which implies that the sets of natural numbers and of
polynomial equations have the same cardinality, and the cardinality of the algebraic
numbers is therefore �0.

5.1. In three days, a chicken and a half will lay three eggs. Thus, a chicken and a half
lays one egg a day, and one chicken lays 2/3 an egg in one day. Easy, but what about
the following: If a chicken and a half lays an egg and a half in a day and a half then how
long would it take a cricket with a wooden leg to kick all the seeds out of a dill pickle?

5.2. Because the area of a square of side x is x2 and this is also the dominant term in
a degree-2 equation. Similarly for the volume of a cube.

5.3. One reason is that mathematicians are curious. Also, history shows that it is
impossible to tell which mathematical and scientific ideas and theories would prove
useful in future. An answer that we often hear from mountain climbers is “because they
are there.”

5.4.

We define x = 1�
"

5 to obtain 1� x =
"

5 and (1� x)2 = 1� 2x + x2 = 5 or

x2 = 2x + 4. (Ans.3)

Equation (Ans.3) is now used in the following derivation of x4

x4 = (x2)2 = (2x + 4)2 = 16 + 16x + 4x2

(Ans.3)
= 16 + 16x + 4(2x + 4) = 32 + 24x,

as well as in the derivation of x8

x8 = (x4)2 = (32 + 24x)2 = 322 + 2 · 32 · 24x + 242x2

= 1024 + 1536x + 576x2 (Ans.3)
= 1024 + 1536x + 576(2x + 4)

= 3328 + 2688x = 3328 + 2688(1�
"

5) = 6016� 2688
"

5.

A calculator shows that the last expression equals approximately 5.44928.
This technique can be applied to similar simplification problems. Try, for example,

((1 +
"

5)/2)12.
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5.5. Yes, except zero. Even irrational and transcendental numbers, and even imaginary
and complex numbers, can serve as bases of a number system. The details of this
are tedious, and the interested reader is referred to [any.number 23]. However, in a
numbering system based on an irrational number, such as �, e, or

"
2, almost every

integer would become an irrational; resulting in infinitely-long computations.

5.6. This is true for numbers to base 7, because the infinite sum

�&

i=1

6
7i

,

converges to 1.

5.7. A quick search yields the following: buttercups have 5 petals; lilies and iris have
3 petals; some delphiniums have 8; corn marigolds have 13 petals; some asters have 21
whereas daisies can be found with 34, 55 or even 89 petals.

5.8. The rational (a + xb)/(a + b) is closer to
"

x than is a/b. This is referred to as
the Bhaskara-Brouncker algorithm and it shows that there are infinitely many rationals
that get closer and closer to

"
x.

5.9. The rule of the first sequence is to increase the number of holes in the glyphs of
the digits that make up the current element. It relies on the fact that in many fonts,
the digit 4 has a hole in its glyph. In a font where the 4 is open, the 6 can instead be
used. Thus, 4888 has a total of 7 holes, one more than in its predecessor, 888. This is
sequence oeis A249572 (holey numbers).

The second sequence is simply the multiples—6, 12, 18, 24, 30, 36, . . .—where
the commas separating the elements have been moved one digit to the right. This is
sequence oeis A087409 (sixers).

The third sequence (very tricky) is based on Roman numerals. To determine the
nth element, we first write the integer n in English, and then concatenate all occurrences
of the letters I, V, X, L, C, D, and M (which stand for 1, 5, 10, 50, 100, 500, and 1,000,
respectively), and compute the Roman numeric value of the resulting string of letters.
If the string is invalid (as, for example, in IDIV), then the corresponding element is
defined as 0. This is sequence oeis A002904 (think like a Roman).

The fourth sequence (oeis A006933) is referred to as the Eban sequence (for E-is-
banned). It consists of the positive integers whose English names do not contain the
letter E. It is surprising that the integers 67 through 1999 have one or more Es in their
names.

Finally, sequence (oeis A006567) which is dubbed Emirps, consists of the non-
palindromic primes.

The tricky bonus sequence, which is not in the oeis as of April 2024, is based on
the lengths of the months. January has 31 days, so 131, and February (often) has 28
days, producing 228. Thus, the missing element is April, 30 days, or 430. Is this neat
or nifty?
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I pounded the keys so hard that night that the letter e flew o⌃ the part of the machine
that hits the paper. Not wanting to waste the night, I went next door to a neighbor
who, I knew, had an elaborate workshop in his cellar. He attempted to solder my e
back, but when I started to work again, it flew o⌃ like a bumblebee. For the rest of
the night I inserted each e by hand, and in the morning I took the last dollars from
our savings account to buy a new typewriter. Nothing could be allowed to delay the
arrival of my greatest triumph.

—Sloan Wilson, What Shall We Wear to This Party, (1976).

5.10. We look at the ratio

n
n3/2+3

1�
n

=
n3/2

n3/2 + 3
=

1
1 + 3n�3/2

n⇧��⇣ 1.

The p-test implies that the series
$�

n=1
1�
n

diverges, and since the ratio of it and our
series is 1, our series also diverges.

5.11. This is trivial. We consider each term of this series a distance. Thus 1 means
a distance of 1 unit, 1/2 means a distance of half a unit, and so on. Each term in the
series covers half the distance of its predecessor. The total distance covered is 2, because
each term covers half of the remaining distance to 2.

6.1. The Ship of Theseus paradox is an antinomy, and its most popular solution is
that, looking at the ships as abstract objects, the old and the new ship do occupy the
same space at the same time. However, when considering them as material objects, the
new ship is not the same as the original one.

6.2. The sorites paradox is similar to the Ship of Theseus paradox. Sorites (or sorós,
from the Greek ⇣◆✏ó�, meaning pile, heap, or stack) is a paradox that starts with a
heap of sand, from which we remove one grain at a time. Eventually the heap reduces
to a single grain of sand, but at what stage is it no longer a heap?

6.3. When in a good mood, a person tends to be optimistic. When in a bad mood,
the same person sees things in a di⌃erent light, forgets the positive aspects and deceives
himself about the importance of the negative aspects of the event at hand. At work,
a worker may secretly and wrongly believe that they are superior to their co-workers.
After an accident, the guilty party often manages to convince themselves that the other
party is at fault. A jealous person may suspect his/her spouse of infidelity and may
allow such suspicion to overcome him and become a delusion.

6.4. The infinite gift. Imagine a set of n cubes, each having dimensions of 1/
"

n. Their
total surface area is

n&

i=1

6
(
"

i)2
= 6

n&

i=1

1
i
.
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This is the harmonic series which is known to diverge (albeit slowly) and reach any
value for a large enough n. Thus, at the limit where n approaches infinity, the total area
becomes infinite. On the other hand, the total volume, which is

n&

i=1

1
(
"

i)3
=

n&

i=1

i�3/2,

is always finite and in the limit it becomes the Riemann zeta function ⌃(3/2), which
converges to 2.61238 . . .. Hence, it is possible (as well as inexpensive) to fill it up with
gifts.

Another example of a mathematical object with is the fractal known as the Koch
snowflake. Its area is finite, but its boundary curve is so fragmented, jagged, crinkled,
and zigzaggy that its length is infinite.

6.5. They are part of a triplet.

6.6. (By chatGPT 4o, May 2024.) The liar paradox arises from a statement made by
a person who declares, “I am lying.”

Analysis of the Paradox:
1. If the statement is true: If the person is indeed lying, then the statement “I am

lying” must be false. This is a contradiction because it means that the statement is both
true and false at the same time.

2. If the statement is false: If the person is not lying, then the statement “I am
lying” must be true, which again leads to a contradiction because it implies that the
person is both telling the truth and lying simultaneously.

Explanation:
This paradox highlights a fundamental problem in logic and language, where a

statement refers to itself in a way that creates a loop of self-reference. It shows the
complexity and sometimes the limitations of trying to apply strict logical analysis to
certain types of statements. The liar paradox is significant in discussions about truth,
self-reference, and the foundations of mathematics and logic.

6.7. The best example I could come up with is an unexploded bomb. Such a bomb,
if undisturbed, may remain active for many years, but it is reasonable to assume that
the chance of it exploding spontaneously drops over time (although it may not exactly
halve each year).

6.8. The Mathematica code of Figure Ans.17 produces 0.107143 and 0.0246724, for
the areas under the interval and under the new subinterval, respectively, followed by
0.230276 for the probability of choosing a point at random on the curve in the subinterval
[0.75, 0.85]. This probability is greater than the one for subinterval [0.55, 0.65], because
the curve is higher, thus indicating higher probabilities.
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crv[x_] := x^3 (1. - x^3);
a = Integrate[crv[x], {x, 0, 1.}]
b = Integrate[crv[x], {x, 0.75, 0.85}]
b/a

Figure Ans.17: Probability of the Subinterval [0.75, 0.85].

6.9. The number of chords is infinite, but an uncountable infinite. Therefore, the
numbers assigned to the chords must be real; there are “not enough” integers for this
task. The problem is that it is impossible to assign real numbers to the chords (or any
other objects) generated in his way because a real number does not have a successor or
a predecessor.

6.10. This is similar to the Bertrand box paradox and should be treated as an example
of conditional probability. If we simply assume that someone’s child is a boy, then the
probability that her other child is also a boy is 1/2, since the other child may be any
gender with equal probability. In our particular case, however, we first hear that she has
two children, so the possibilities are BB, GG, BG, and GB. We then learn that the boy
is her son, which eliminates case GG, and turns the problem into conditional probability.
Applying Bayes’ rule, the desired probability becomes

P (two boys|at least one boy) = 1/3.

7.1. The Law of Small Numbers is an 1898 book (in German) by Ladislaus Bortkiewicz.
However, there are the two strong laws of small numbers, observations made by Richard
Guy. The first of these [Guy 88], claims that “there aren’t enough small numbers to
meet the many demands made of them,” or, alternatively “You can’t tell by looking.”
The second law [Guy 90], states that “When two numbers look equal, it ain’t necessarily
so.” An example of the first law is Moser’s circle sequence, discussed on Page 236.

7.2. In his intriguing book Death by Black Hole, reference [Tyson 07], Neil deGrasse
Tyson says: “The recoil of Earth from the launch of a single space probe can influence
our future in such a way that in about 200 million years, the position of Earth in its
orbit around the Sun will be shifted by nearly 60⇤.”

7.3. Such a claim is true in systems that generate random numbers and then remove
any number generated. Imagine a card game where the Jack is removed from the game
under certain conditions. Once it is removed and the deck is reshu�ed, the chances
of other cards to appear are increased. However, in a system that produces random
numbers without removals, such a claim is wrong. The chance of a number A to be
drawn next is constant and does not depend on how often A has been selected earlier.
The next roll of a die can produce one of the numbers 1 through 6 regardless of how
each has appeared in the past.

Thus, gamblers, which are generally poor decision makers, are sometimes correct
(just joking).
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The excitement that a gambler feels when making a bet is equal to the amount he
might win times the probability of winning it.

—Blaise Pascal.

7.4. Imagine many successive rolls of a die that rarely result in 4. This simply means
that the die is loaded and should be replaced. In a process where probabilities are
uniform, each result will appear about the same number of times, and this behavior
improves the more numbers are drawn. This behavior is known as the law of large
numbers.

“I think you’re begging the question,” said Haydock, “and I can see looming ahead
one of those terrible exercises in probability where six men have white hats and six
men have black hats and you have to work it out by mathematics how likely it is that
the hats will get mixed up and in what proportion. If you start thinking about things
like that, you would go round the bend. Let me assure you of that!”

—Agatha Christie, The Mirror Crack’d, 1962.

7.5. If the die lands on 6, simply roll it again. A similar technique is to use a 10-sided
die and have each integer from 1 to 5 written on two sides.

7.6. A sphere can be considered a polyhedron with infinitely many faces and vertices,
which is why the chance of a rolled sphere landing on any given point is zero. If we write
six numbers equidistant on the surface of a sphere and roll it, chances are the sphere
will never stop on any of the numbers.

It is possible to make a spherical die by cutting the sphere in two and creating a
cavity in the shape of half an octahedron in each hemisphere. An octahedron has eight
faces and six vertices, so each of its halves is a square pyramid. Now place a small,
heavy ball inside one cavity and glue the two hemispheres together.

When this sphere is rolled, the heavy ball drops from vertex to vertex and weighs
down the sphere such that it eventually stops at one of the six special positions that
correspond to the ball being in a vertex.

It would seem that such a sphere is not fair because the cavities cause its inside to
be asymmetric and nonuniform. However, with a small, lightweight plastic sphere and a
heavy metal ball, the mass of the ball more than compensates for any unfairness caused
by the nonuniformity of the sphere.

7.7. In any of the dice of the set, every pair of opposite faces add up to the same
number. This is apparent in the standard 6-sided dice used in gambling.

7.8. Here are a number of simple solutions, explained in [harshbarger 24].

Each player rolls a standard d6 die. If there are ties in the highest or second highest
results, they all roll again. This is simple and can accommodate any number of players
(simply roll to determine the first among n players, then roll to choose the first among
the n� 1 remaining players, and so on).

If there are fewer than 14 players, take the 13 hearts from a deck of cards, shu�e,
and have each players pull a card.
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Those who like to work hard can dirty their hands and construct a special n-sided
die with the n! permutations of integers or letters. This is simple for n = 3, where only
a d6 die with the 3! permutations is needed, and may be practical for up to 5! = 120.

Enough nonsense!

7.9. A good example. Doctor Badcock decides to become a candidate for an important
public o⌥ce, but she has to win an election for this. She appears on television and
claims to be ahead of her competitors, but you estimate her chances to be very low,
based on the results of public opinion polls and private discussions with your friends
and acquaintances.

A bad example. A person buys a lottery ticket every month, even though he knows
that his chance of winning are astronomically small. He justifies his bad decision by
saying “someone must eventually win, so why not me?”

7.10. It is taken from the middle row of a standard telephone keypad.

7.11. I don’t know the precise answer, but the probability in question must be very
low, because it is generally agreed that only 10% of the population (of humans) is left
handed, and not much is known about left-handedness in monkeys. The little-known
painting The licentious kitchen maid (c. 1665) by Pieter van Roestraten depicts such a
scene, but this must be because the painter used a camera obscura to project the scene
onto his canvas and then trace it before painting the picture.

Figure Ans.18: The Licentious Kitchen Maid (1665).
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7.12. He starts by sending messages to a large number of investors. In half the messages
he predicts that the stock market will go up in the next six months and in the other half
he predicts the opposite. Once the trend of the market becomes known, he deletes from
his mailing list the investors who received the wrong message, and sends a similar wave
of messages to the remaining half. After a few such steps, his word becomes law to the
remaining ones on his list.

7.13. (1) The total number of outcomes of flipping a coin six times is 26 = 64. The
number of outcomes with exactly three heads is

�6
3

⇥
= 20, because this is the number

of ways to choose exactly three objects out of a total of six. Thus, the probability in
question is 20/64 = 5/16.

(2) Out of the 64 outcomes of six coin tosses, the following 12 contain three heads
in a row:
HHHTHT HHHTTH HHHTHH HTHHHT HTTHHH HHTHHH THHHTT THHHTH THTHHH TTHHHT TTTHHH

Thus, the probability is 12/64 = 3/16.
(3) The list above shows that there are only four outcomes with exactly three heads

in a row, yielding a probability of 4/64 = 1/16.

7.14. Counting the number of distinct visitors to a website. A visitor is identified by
their 32-bit IP address, which is then hashed and partitioned as described in the text.

8.1. No. This is because of the choice of axiom.

8.2. Both tan(x) and cot(x) are good examples, as is also y = | sin(x)|.

8.3. Figure Ans.19a shows a straight line defined by the basic linear interpolation
(lerp) relation, Equation (8.6). The canonical parabola g = x2 is also shown. Part (b)
of the figure shows how this parabola is inverted, raised, and shifted to the right to
become the green curve h = 1 � (x � 1)2. In part (c), the two parabolas are blended
linearly to produce the red “ease” curve (1�x)g + xh, which can easily be simplified to
3x2 � 2x3.

8.4. We can write P1 = P0 + �(P3 � P0) and similarly P2 = P0 + ⇥(P3 � P0). It
is now obvious that n collinear points can be represented by two points and n� 2 real
parameters.

8.5. A quadratic polynomial is fully defined by three coe⌥cients A, B, and C. They
can be two- or three-dimensional points, but any three points are always on the same
plane.

8.6. We can gain a deeper insight into the shape of the n-degree polynomial P (x) =$n
i=0 Aixi by writing the equation P (x) = 0. This is an nth-degree equation in the

unknown x and it therefore has n solutions (some may be identical or complex). Each
solution is an x value for which the polynomial becomes zero. As x is varied, the
polynomial crosses the x axis n times, so it oscillates between positive and negative
values, resulting in wiggling.
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-x2
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x 2
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+
xb

(1-x)g+xh
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)2

(a)

(b)

(c)

Figure Ans.19: An S-Curve Interpolation of Two Parabolas (Desmos).

8.7. This is the case n = 1. The general form of the LP is, therefore, y =
$1

i=0 yiL1
i .

The weight functions are easy to calculate:

L1
0 =

x� x1

x0 � x1
, L1

1 =
x� x0

x1 � x0
,

and the curve is therefore

y = y0L
1
0 + y1L

1
1 = y0

x� x1

x0 � x1
+ y1

x� x0

x1 � x0

= x
y0 � y1

x0 � x1
+

y1x0 � y0x1

x0 � x1
= ax + b,

which is a straight line.

8.8. Since the three points are approximately equally spaced, it makes sense to use
knot values t0 = 0, t1 = 1/2, and t2 = 1. The first step is to calculate the three basis
functions L2

i (t):

L2
0 =

⇤2
j  =0(t� tj)

⇤2
j  =0(ti � tj)

=
(t� t1)(t� t2)

(t0 � t1)(t0 � t2)
= 2(t� 1/2)(t� 1),

L2
1 =

⇤2
j  =1(t� tj)

⇤2
j  =1(ti � tj)

=
(t� t0)(t� t2)

(t1 � t0)(t1 � t2)
= �4t(t� 1),

L2
2 =

⇤2
j  =2(t� tj)

⇤2
j  =2(ti � tj)

=
(t� t0)(t� t1)

(t2 � t0)(t2 � t1)
= 2t(t� 1/2).
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The LP is now easy to calculate:

P(t) = (0, 0)2(t� 1/2)(t� 1)� (0, 1)4t(t� 1) + (1, 1)2t(t� 1/2)
= (2t2 � t,�2t2 + 3t). (Ans.4)

This is a quadratic (degree-2) parametric polynomial and a simple test verifies that it
passes through the three given points.

8.9. The first step is to calculate the basis functions

N0(t) = 1, N1(t) = t� t0 = t, N2(t) = (t� t0)(t� t1) = t(t� 1/2).

The next step is to compute the three coe⌥cients

A0 = P0 = (0, 0),

A1 =
P1 �P0

t1 � t0
=

(0, 1)� (0, 0)
1/2

= (0, 2),

A2 =

(1, 1)� (0, 1)
1� 1/2

� (0, 1)� (0, 0)
1/2� 0

1� 0
= (2,�2).

The polynomial can now be calculated:

P(t) = 1⇥ (0, 0) + t(0, 2) + t(t� 1/2)(2,�2) = (2t2 � t,�2t2 + 3t).

It is, of course, identical to the LP calculated in Exercise 8.8.

8.10. The curve is given by P(t) = (2t2�t,�2t2 +3t), so its derivative is P
t(t) = (4t�

1,�4t + 3). The three tangent vectors are P
t(t0 = 0) = (�1, 3), P

t(t1 = 1/2) = (1, 1),
and P

t(t2 = 1) = (3,�1). The direction of tangent vector (�1, 3) is described by saying
“for every three steps in the y direction, the curve moves one step in the negative x
direction.”

The slopes are calculated by dividing the y coordinate of a tangent vector by its
x coordinate. The slopes at the three points are therefore �3/1, 1/1, and �1/3. They
correspond to angles of 288.44⇤, 45⇤, and �18.43⇤, respectively.

8.11. When the user specifies four points, the curve should pass through the original
points. After a point is moved, the curve will no longer pass through the original point.
When only the two endpoints are specified, the user is normally willing to consider
di⌃erent curves that pass through them, with di⌃erent start and end directions.

8.12. Take one of these vectors, say, (2, 1, 0.6), and divide it by its magnitude. The
result is

(2, 1, 0.6)"
22 + 12 + 0.62

� (2, 1, 0.6)
2.93

= (0.7272, 0.3636, 0.2045).



540 Answers to Exercises

The new vector points in the same direction but its magnitude is 1. Its components
therefore satisfy

0
0.72722 + 0.36362 + 0.20452 = 1, or 0.72722 + 0.36362 + 0.20452 = 1, (Ans.5)

so they are dependent. Any of them can be calculated from the other two with Equa-
tion (Ans.5).

8.13. Substituting t = 0.5 in Equation (8.17) yields

P(0.5) = (2P1 � 2P2 + P
t
1 + P

t
2)/8 + (�3P1 + 3P2 � 2Pt

1 �P
t
2)/4 + P

t
1/2 + P1

=
1
2
(P1 + P2) +

1
8
(Pt

1 �P
t
2). (Ans.6)

The first part of this expression is the midpoint of the segment P1 ⇣ P2 and the second
part is the di⌃erence of the two tangents, divided by 8. Figure Ans.20 illustrates how
adding (Pt

1�P
t
2)/8 to the midpoint of P1 ⇣ P2 brings us to the midpoint of the curve.

P1

Pt1
Pt2

P2

(P2+P1
)/2

Figure Ans.20: The Midpoint P(0.5) of a Hermite Segment.

8.14. The Hermite segment is a cubic polynomial in t, so its third derivative is constant.
It is easy to see, from Equation (8.19), that the third derivatives of the Hermite blending
functions Fi(t) are

F ttt
1 (t) = 12, F ttt

2 (t) = �12, F ttt
3 (t) = 6, F ttt

4 (t) = 6.

The third derivative of the segment is therefore

P
ttt(t) = (12P1 � 12P2 + 6Pt

1 + 6Pt
2)

= (t3, t2, t, 1)

�

⇢⇠

0 0 0 0
0 0 0 0
0 0 0 0

12 �12 6 6

⌫

�⇡

�

⇢⇠

P1

P2

P
t
1

P
t
2

⌫

�⇡

= T(t)HtttB = HtttB.

P
ttt(t) is independent of t, because the top three rows of Httt are zero. This derivative

is the constant vector 12(P1 �P2) + 6(Pt
1 + P

t
2).
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Here are the Hermite matrix and its derivatives side by side. Use your experience
to explain how each is derived from its predecessor.

H =



" 

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

�

#! , Ht =



" 

0 0 0 0
6 �6 3 3
�6 6 �4 �2

0 0 1 0

�

#! ,

Htt =



" 

0 0 0 0
0 0 0 0

12 �12 6 6
�6 6 �4 �2

�

#! , Httt =



" 

0 0 0 0
0 0 0 0
0 0 0 0

12 �12 6 6

�

#! .

8.15. It’s trivial to show that P(0) = (�1, 0)03 + (1,�1)02 + (1, 1)0 = (0, 0) and
P(1) = (�1, 0)13 + (1,�1)12 + (1, 1)1 = (1, 0). The tangent vector of P(t) is

dP(t)
d t

= 3(�1, 0)t2 + 2(1,�1)t + (1, 1),

so the two extreme tangent vectors are

dP(0)
d t

=3(�1, 0)02 + 2(1,�1)0 + (1, 1) = (1, 1),

dP(1)
d t

=3(�1, 0)12 + 2(1,�1) + (1, 1) = (0,�1),

as should be.

8.16. Similar to the previous example, we get

P(t) = (t3, t2, t, 1)H ((0, 0), (1, 0), (2, 2), (0,�1))T

= (0, 1)t3 � (1, 3)t2 + (2, 2)t.

It’s a di⌃erent polynomial and it has a di⌃erent shape; yet a simple check shows that it
passes through the same endpoints and has the same start and end directions.

8.17. Equation (8.20) becomes

P(t) = (t3, t2, t, 1)

�

⇢⇠

2 �2 1 1
�3 3 �2 �1

0 0 1 0
1 0 0 0

⌫

�⇡

�

⇢⇠

P1

P2

(0, 0)
(0, 0)

⌫

�⇡ = (3t2�2t3)(P2�P1)+P1. (Ans.7)

To find the type of the curve, we substitute j = 3t2 � 2t3 (note that t = 0  j = 0
and t = 1  j = 1). This results in the familiar expression P(t) = j(P2 �P1) + P1 =
(1 � j)P1 + jP2. The curve is therefore the straight segment from P1 to P2. The
(important) conclusion is: If the initial and final directions of the Hermite segment are
not specified, the curve will “choose” the shortest path from P1 to P2.



542 Answers to Exercises

8.18. For case 1, we use the notation P
t(0) = P

t
1, P

t(1/2) = P
t
2, and P

t(1) = P
t
3.

From P(t) = at3 + bt2 + ct + d, we get P
t(t) = 3at2 + 2bt + c, resulting in the three

equations
3a·02 + 2b·0 + c = P

t
1,

3a·(1/2)2 + 2b·(1/2) + c = P
t
2,

3a·12 + 2b·1 + c = P
t
3,

where the unknowns are a, b, c, and d (notice that d does not participate in our
equations). It is clear that c = P

t
1. The other two unknowns are solved by the simple

Mathematica code Solve[{3a/4+2b/2+p1==p2, 3a+2b+p1==p3}, {a,b}], which yields
a = 2

3 (Pt
1 � 2Pt

2 + P
t
3) and b = 1

2 (�3Pt
1 + 4Pt

2 �P
t
3). Thus, the curve is given by

P(t) = at3 + bt2 + ct + d

=
2
3
(Pt

1 � 2Pt
2 + P

t
3)t

3 +
1
2
(�3Pt

1 + 4Pt
2 �P

t
3)t

2 + P
t
1t + d,

which shows that the three given tangents fully determine the shape of the curve but
not its position in space. The latter requires the value of d.

For case 2, we denote P(1/3) = P1, P(2/3) = P2, P
t(0) = P

t
1, and P

t(1) = P
t
2.

This results in the four equations

a(1/3)3 + b(1/3)2 + c(1/3) + d = P1,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P2,

3a·02 + 2b·0 + c = P
t
1,

3a·12 + 2b·1 + c = P
t
2,

where the unknowns are again a, b, c, and d. It is again clear that c = P
t
1 and the

other three unknowns are easily solved by the code

Solve[{a (1/3)^3+b (1/3)^2+p1t (1/3)+d==p1,
a (2/3)^3+b (2/3)^2+p1t (1/3)+d==p2, 3a+2b+p1t==p2t}, {a,b,d}],

which yields the solutions

a = � 9
13

(�6P1 + P
t
1 + 6P2 �P

t
2),

b =
1
13

(�81P1 + 7Pt
1 + 81P2 � 7Pt

2),

d =
1

117
(180P1 � 43Pt

1 � 63P2 + 4Pt
2).

Thus, the PC segment is

P(t) = at3 + bt2 + ct + d

= � 9
13

(�6P1 + P
t
1 + 6P2 �P

t
2)t

3 +
1
13

(�81P1 + 7Pt
1 + 81P2 � 7Pt

2)t
2

+ P
t
1 ·t +

1
117

(180P1 � 43Pt
1 � 63P2 + 4Pt

2).
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Case 3 is similar to case 2 and is not shown here.

8.19. By using the same symbol, P
t
k+1, for the end tangent of Pk(t) and the start

tangent of Pk+1(t).

8.20. The code and curve of Figure Ans.21 shows that the first segment is very tight.
It is does not proceed straight to the right because it has to reach point (1, 0) at an
angle, but it is the shortest possible. It is also initially slow. A simple test shows that
at t = 0.5, the curve hasn’t reached the midpoint between P1 and P2.

0.5 1.0 1.5 2.0 2.5 3.0

- 0.05

0.05

0.10

0.15

p1 = {0, 0}; p2 = {1, 0}; p3 = {2, 0}; p4 = {3, 0};
mt = {{1, 4, 1, 0}, {0, 1, 4, 1}};
c = {{{{0, 0}}}, {{{a11, a12}}}, {{{a21, a22}}}, {{{-1, -1}}}};
r = {{3 ({p3} - {p1})}, {3 ({p4} - {p2})}};
Solve[mt . c == r, {a11, a12, a21, a22}]
pt1 = {0, 0}; pt2 = {17/15, -1/15};
pt3 = {22/15, 4/15}; pt4 = {-1, -1};
tr = {t^3, t^2, t, 1};
m4 = {{2, -2, 1, 1}, {-3, 3, -2, -1}, {0, 0, 1, 0}, {1, 0, 0, 0}};
po1[t_] := tr . m4 . {{{p1}}, {{p2}}, {{pt1}}, {{pt2}}};
po2[t_] := tr . m4 . {{{p2}}, {{p3}}, {{pt2}}, {{pt3}}};
po3[t_] := tr . m4 . {{{p3}}, {{p4}}, {{pt3}}, {{pt4}}};
g1 = ParametricPlot[{po1[t], po2[t], po3[t]}, {t, 0, 1}];
g2 = ListPlot[{p1, p2, p3, p4}, PlotStyle -> {PointSize[Medium], Red}];
Show[g1, g2, AspectRatio -> .5]

{{a11->17/15,a12->-(1/15),a21->22/15,a22->4/15}}

Figure Ans.21: A Tight Cubic Spline Example.

8.21. When T > 1, s becomes negative, causing the two direction vectors to reverse
directions. This changes the shape of the curve completely. However, large negative
values of s still produce a loose curve.

8.22. The tangent vector of the curve is easily calculated from Equation (8.37):

P
t
1(t) = (�1.5t2 + 2t� 0.5)P1 + (4.5t2 � 5t)P2 + (�4.5t2 + 4t + 0.5)P3 + (1.5t2 � 1)P4.
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At the end (t = 1), the tangent is �0.5P2 + 0.5P4.
The tangent vector of the next segment has the same coe⌥cients, so its form is

P
t
2(t) = (�1.5t2 + 2t� 0.5)P2 + (4.5t2 � 5t)P3 + (�4.5t2 + 4t + 0.5)P4 + (1.5t2 � 1)P5.

At the start (t = 0), this tangent also has the value �0.5P2 +0.5P4, so the two tangents
are equal at the connection points between curve segments.

8.23. Figure Ans.22 lists the points and the code for this computation. Notice how
the sharp corner at the top-center of the heart is obtained by the particular placement
of points 3 through 6 and how parameter ppr determines the width of the heart.

P0=P9

P3=P6

P1

P2
P7

P8
P4P5

−200 −100 100 200

50

100

150

200

(*Heart-shaped Bezier curve*)n=9;ppr=130;

pnts={{0,0},{-ppr,70},{-ppr,200},{0,200},{250,0},{-250,0},

{0,200},{ppr,200},{ppr,70},{0,0}};

pwr[x_,y_]:=If[x==0&&y==0,1,x^y];

bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]

bzCurve[t_]:=Sum[pnts[[i+1]]bern[n,i,t],{i,0,n}]

g1=ListPlot[pnts,PlotStyle->{Red,AbsolutePointSize[6]}];

g2=ParametricPlot[bzCurve[t],{t,0,1}];

g3=Graphics[{AbsoluteDashing[{1,2,5,2}],Line[pnts]}];

Show[g1,g2,g3,PlotRange->All]

Figure Ans.22: A Heart-Shaped Bézier Curve.

8.24. We simply calculate the quadratic Bézier curve for the three points. As a
quadratic parametric polynomial it is a parabola (see second paragraph of Section 8.9).
Since this is a Bézier curve, its extreme tangents point in the desired directions:

P(t) = P1(1� t)2 + 2P2(1� t)t + P3t
2 = (P1 � 2P2 + P3)t2 + 2(P2 �P1)t + P1.

8.25. A simple procedure is to compute

P0 = P(0) = (1, 0), P1 = P(1/3) = (13/9, 1/27),
P2 = P(2/3) = (19/9, 8/27), P3 = P(1) = (3, 1).
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8.26. The substitution is u = 2t � 1, from which we get t = (1 + u)/2 and 1 � t =
(1� u)/2. The curve of Equation (8.46) can now be written

P(t) =
1
8
(1� u)3P0 +

1
4
(1 + u)(1� u)2P1 + 2

⌦
1 + u

2

↵2⌦1� u

2

↵
P2 +

1
8
(1 + u)3P3

=
1
8
(u3, u2, u, 1)



" 

�1 2 �2 1
3 �2 �2 3
�3 �2 2 3

1 2 2 1

�

#!



" 

P0

P1

P2

P3

�

#! .

The only di⌃erence is the basis matrix.

8.27. Direct calculation of B4,i(t) for 0 ⌦ i ⌦ 4 yields the five functions

B4,0 = (1� t)4, B4,1 = 4t(1� t)3, B4,2 = 6t2(1� t)2, B4,3 = 4t3(1� t), and B4,4 = t4.

8.28. Three collinear points are dependent, which means that any of the three can be
expressed as a linear combination (a weighted sum) of the other two, with barycentric
weights. We therefore assume that P1 = (1��)P0 + �P2 for some real �. The general
Bézier curve for three points,

P(t) = P0(1� t)2 + P12t(1� t) + P2t
2,

now becomes

P(t) = P0(1� t)2 + [(1� �)P0 + �P2]2t(1� t) + P2t
2,

which is easily simplified to

P(t) = P0 + 2�(P2 �P0)t + (1� 2�)(P2 �P0)t2

= P0 + (P2 �P0)[2�t + (1� 2�)t2]
= P0 + (P2 �P0)T. (Ans.8)

This is linear in T and therefore represents a straight line.
This case does not contradict the fact that the Bézier curve does not pass through

the intermediate points. We have considered three collinear points, which really are
only two points. The Bézier curve for two points is a straight line. Note that even with
four collinear points, only two are really independent.

We continue this discussion by examining two cases. The first is the special case
of uniformly-spaced collinear points and the second is the case of three collinear points
P0, P1, and P2 where P1 is not between P0 and P2 but is one of the endpoints.

Case 1. Consider the case of n+1 points that are equally spaced along the straight
segment from P0 to Pn. We show that the Bézier curve for these points is the straight
segment from P0 to Pn. We start with two auxiliary relations;
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1. Point Pk (for k = 0, 1,. . . , n) can be expressed in this case as the blend
(1� k/n)P0 + (k/n)Pn.

2. It can be proved by induction that
$n

i=0 iBn,i(t) = nt.
Based on these relations, the Bézier curve for uniformly-spaced collinear points is

P(t) =
n&

i=0

Bn,i(t)Pi =
n&

i=0

Bn,i(t)
⇤
(1� i/n)P0 + (i/n)Pn

⌅

= P0

&
Bn,i(t)�

P0

n

&
iBn,i(t) +

Pn

n

&
iBn,i(t)

= P0 � tP0 + tPn = (1� t)P0 + tPn.

Case 2. P1 is not located between P0 and P2 but is one of the endpoints. The
two cases � = 0 and � = 1 imply that point P1 is identical to P0 or P2, respectively.
The case � = 0.5 means that P1 is midway between P0 and P2. The cases � < 0 and
� > 1 are special. The former means that P1 “precedes” P0. The latter means that
P1 “follows” P2. In these cases, the curve is no longer a straight line but goes from
P0 toward P1, reverses direction without reaching P1, and continues to P2. The point
where it reverses direction becomes a cusp (a sharp corner), where the curve has an
indefinite tangent vector (Figure Ans.23).

P1 P0 P2 P0 P2 P1

(a) (b)

 >1<0

Figure Ans.23: Bézier Straight Segments.

Analysis. We first show that in these cases the curve does not go through point P1.
Equation (Ans.8) can be written

P(t) = P0

�
1� 2�t� t2 + 2�t2

⇥
+ P2

�
2�t + t2 � 2�t2

⇥
.

Let’s see for what value of t the curve passes through point P1 = (1��)P0 +�P2. The
conditions are

1� 2�t� t2 + 2�t2 = 1� � and 2�t + t2 � 2�t2 = �.

These conditions yield the following quadratic equations for t:

�� 2�t + (2�� 1)t2 = 0 and � � + 2�t� (2�� 1)t2 = 0.

These equations are identical and their solutions are

t =
� ±

0
�(�� 1)
�

and t =
�� ±

0
�(1� �)
��

.
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The first solution has no real values for negative � and the second one has no real values
for � > 1. For these values of �, the curve does not pass through control point P1.

We now calculate the value of t for which the curve has a cusp (a sharp corner).
The tangent vector of the curve is

P
t(t) = P0 (�2�� 2t + 4�t) + P2 (2� + 2t� 4�t) = (2� + 2t� 4�t)(P2 �P0).

The condition for an indefinite tangent vector is therefore 2� + 2t � 4�t = 0, which
happens for t = �/(2�� 1).

The following three special cases are particularly interesting:
1. � � 0. This is the case where P1 is far away from both P0 and P2. The limit

of �/(2� � 1) in this case is 1/2, which means that the curve changes direction at its
midpoint.

2. � = �1. In this case point P0 is exactly between P1 and P2. The value of
�/(2�� 1) in this case is 1/3 (Figure Ans.23a illustrates why this makes sense).

3. � � 1. Here, P1 is again far from both P0 and P2, but in the other direction
(Figure Ans.23b). The limit of �/(2�� 1) in this case is, again, 1/2.

(End of long answer.)

8.29. Figure Ans.24 illustrates the construction. First, the blue lines a and b are
constructed, followed by the two lines labeled c. This is followed by the ten green lines,
five of which are equally spaced on the left-hand side of b and the other five equally
spaced on the right-hand side of b. The last step is to construct the eight red vertical
line segments.

We shall therefore borrow all our rules for the finishing of our proportions, from the
musicians, who are the greatest masters of this sort of numbers, and from those things
wherein nature shows herself most excellent and compleat.

—Leon Battista Alberti.

c c

b

a

Figure Ans.24: Two-Point Perspective with Equally-Spaced Lines.

8.30. Yes, by viewing it through a telescope. A telescope is a device that “telescopes”
a scene and brings objects closer to the observer rather than magnifying them, but it
does not a⌃ect the perspective.
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8.31. In the standard position, the line of sight of the viewer is the z axis. In order
for a line segment to be perpendicular to this direction, all its points must have the
same z coordinate (i.e., the segment must be contained in a plane parallel to the xy
plane). We therefore select two endpoints with z = 1 and two other endpoints with
z = 3. The first two points are selected, somewhat arbitrarily, as P1 = (2, 3, 1) and
P2 = (3,�1, 1). The third point is chosen as P3 = (0, 2, 3) and the last point is
determined from P4 = P2�P1 +P3 = (1,�2, 3). The four points are now projected to
P
⇥
1 = (1, 3/2), P

⇥
2 = (3/2,�1/2), P

⇥
3 = (0, 1/2), and P

⇥
4 = (1/4,�1/2).

We show that the two straight segments defined by the four projected points are
parallel, by computing the di⌃erences v1 = P

⇥
2 �P

⇥
1 = (1/2,�2) and v2 = P

⇥
4 �P

⇥
3 =

(1/4,�1). The di⌃erence of two points is a vector, and the two vectors v1 and v2 point
in the same direction.

8.32. We are looking for a t value for which P
⇥(t) = (0, 1/4). This can be written as

the vector equation

(1� t)2(�1/2, 0) + 2t(1� t)(0, 1/3) + t2(1/4, 1/4) = (0, 1/4),

or as the two separate scalar equations (1� t)2(�1/2) + 2t(1� t)(0) + t2(1/4) = 0 and
(1 � t)2(0) + 2t(1 � t)(1/3) + t2(1/4) = (1/4). The first equation yields the solutions
t � 0.5858 and t � 3.414, while the second equation has the solutions t = 0 and t = 1.6.
The two equations are therefore contradictory.

8.33. Appropriate mathematical software produces the result (0, 2, 4, 1). The rotation
transforms (0, 1,�4, 1) to (0, 4, 1, 1), the translation transforms this to (0, 4, 4, 1), and
the scaling produces (0, 2, 4, 1).

8.34. When T1 or T2 gets large, the object is magnified. However, when T3 gets large,
the object is scaled in the z direction relative to the origin. All the z coordinates become
large, e⌃ectively moving the object away from the observer. When all three scale factors
get large, the magnification in the x and y directions is canceled out by the e⌃ect of
moving away in the z direction, so the object does not seem to change in size.

8.35. Equation (8.51) yields

T =

�

⇢⇠

1 0 0 0
0 0 0 1
0 �1/2 0 0
0 0 0 4

⌫

�⇡ ,

and we know that (0, 1,�4, 1)T = (0, 2, 0, 5). We are looking for a point P = (x, y, z)
such that (x, y, z, 1)T = (0, 0, 0, w) for any w ⇡= 0. The explicit form of this set of
equations is (x,�z/2, 0, y + 4) = (0, 0, 0, w), and this is satisfied by all the points of the
form (0, y, 0), where y ⇡= �4. The interpretation of this result is simple. The rotation
brings the points on the y axis to the z axis, where they are translated by three units and
remain on the z axis. The scaling doesn’t move these points any farther. Point (0,�4, 0)
is rotated to (0, 0,�4) and translated to (0, 0,�1), which is the viewer’s position. All
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the points on the z axis are projected to the origin, except the viewer’s location. The
projection of the viewer is undefined because the case z = �k results in Equation (8.47)
having a zero denominator. The next example sheds more light on the perspective
projection of points with negative z coordinates.

9.1. Figure Ans.25 is big enough to show the empty gaps between objects. The six
objects are not enough to cover the entire area and the narrow gaps add up to two
squares. There is no such thing as free chocolate.

Figure Ans.25: 58 Chocolate Squares.

9.2. The solution, shown in the figure, requires us to stop thinking that the crossing
point consists of only one coin.
⌃

⌃⌃⌃⌃⌃
⌃

10.1. One example of a large factorial is 52!, the number of possible shu�es of a deck
of cards. This number is so large that it vastly exceeds any estimate of the number of
particles in the observable universe. In fact, it is so large that we can safely claim that
your next shu�e will be unique! No one in human history has come up with this shu�e
so far and no one within the life of our sun would come up with it either!
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10.2. When even parity is used, the number of 1-bits in a codeword is complemented
by the parity bit to an even number. If the codeword was originally all zeros, its even
parity would then be zero, causing the entire codeword to be zeros. This may not be a
problem, but some software designers, especially in the past, felt that it is better to use
odd parity where no codeword can be all zeros.

10.3. A general parabola can be expressed by its standard equation c1x2 + c2x +
c3y + c4 = 0 (for a vertical parabola) or c1y2 + c2x + c3y + c4 = 0 (for a horizontal
parabola). Given the three points (x1, y1), (x2, y2), and (x3, y3), the equation of the
unique parabola passing through them is computed by solving one of the determinant
equations ⌥⌥⌥⌥⌥⌥⌥

x2 x y 1
x2

1 x1 y1 1
x2

2 x2 y2 1
x2

3 x3 y3 1

⌥⌥⌥⌥⌥⌥⌥
= 0,

⌥⌥⌥⌥⌥⌥⌥

y2 x y 1
y2
1 x1 y1 1

y2
2 x2 y2 1

y2
3 x3 y3 1

⌥⌥⌥⌥⌥⌥⌥
= 0.

Figure Ans.26 shows an example of the two orientations of parabolas. Mathematica
code is included.

-30 -20 -10 0 10 20 30
-40

-30

-20

0

10

-10

20

x1=-2; y1=0; x2=10; y2=2; x3=-0; y3=-20;
dv=Det[{{x^2,x,y,1},{x1^2,x1,y1,1},{x2^2,x2,y2,1},{x3^2,x3,y3,1}}]
dh=Det[{{y^2,x,y,1},{y1^2,x1,y1,1},{y2^2,x2,y2,1},{y3^2,x3,y3,1}}]
(*dv=Vertical parabola. dh=Horizontal parabola*)
gc=ContourPlot[{dh==0,dv==0},{x,-30,30},{y,-40,20}];
gp=ListPlot[{{x1,y1},{x2,y2},{x3,y3}},PlotStyle->{Red}];
Show[gc,gp]

4800 + 1912 x - 244 x^2 + 240 y
1760 + 880 x - 4792 y - 244 y^2

Figure Ans.26: Horizontal and Vertical Parabolas for Three Points.
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10.4. We denote the ith bits of the plaintext, the keystream, and the ciphertext by
di, ki, and ci = di ⇧ ki, respectively. We assume that the keystream is random, i.e.,
the probabilities P (ki = 0) and P (ki = 1) equal 0.5 each. The plaintext isn’t random,
so we assume that P (di = 0) = p, which implies P (di = 1) = 1 � p. Table Ans.27
summarizes the four possible cases of di and ki and their probabilities. The values of
ci and their probabilities for those cases are also listed. It is easy to see from the table
that the probability of ci being 0 is P (ci = 0) = p/2 + (1 � p)/2 = 1/2, and similarly
P (ci = 1) = 1/2. The ciphertext produced by the Vernam cipher is therefore random,
which makes this simple method unbreakable.

di P (di) ki P (ki) ci P (ci)

0 p 0 1/2 0 p/2
0 p 1 1/2 1 p/2
1 1� p 0 1/2 1 (1� p)/2
1 1� p 1 1/2 0 (1� p)/2

Table Ans.27: Truth Table of a Vernam Cipher.

10.5. The average word size in English is 4–5 letters. We therefore start by examining
4-letter words. There are 26 letters, so the number of combinations of four letters
is 264 = 456,976. A good English-language dictionary contains about 100,000 words.
Assuming that half these words consist of four letters, the percentage of valid 4-letter
words is 50000/264 � 0.11. The percentage of five-letter words is obtained similarly as
50000/265 � 0.004. We can therefore expect random text to contain a few short (2–4
letters) valid words, and very few 5–6-letter valid words. Longer valid words would be
extremely rare.

I don’t have any solution, but I certainly admire the problem.

—Ashleigh Brilliant.
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harmonic, 326
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Banach-Tarski paradox, 10

Bandura, Albert (1925–2021), xxx
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Barrow, Isaac (1630–77), 224

barycentric (meaning of), 366
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any?, 241, 531

base-⇧ numbers, 241

base-10 numbers, 45, 48, 55, 241

base-13 (Conway function), 347

base-13 function, 347

base-16 numbers, 59

base-2 numbers, 45, 47, 48, 487

length of, 48

base-8 numbers, 54

Basel problem, 264
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Bayes’ rule, 284, 285, 534

Bayes, Thomas (1701–1761, 284

beauty in mathematics, xiii, 2–4, 103

Becquerel, Antoine Henri (1852–1908), xvii

Bell, Eric Temple (1883–1960), 217, 286

Benford’s Law, 303–305
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Bergfeldt, Axel, 346
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Bernoulli, Daniel (1700–1782), 272, 464
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401
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in Mathematica, 402

Bernstein, Peter Lewyn (1919–2009), xix

Berra, Lawrence Peter (1925–2015), 263

Berry’s Paradox, 287, 510

Bertrand box paradox, 284–285, 534

Bertrand paradox, 282–284

Bertrand, Louis François (1822–1900), 282,

284

Bézier curve, 397–404, 437

Bernstein form of, 400–403

collinear points, 404, 545, 547
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cubic, 404

degree 4, 404
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in Mathematica, 402

parameter substitution, 404, 545

quadratic, 403

Bézier methods, 397–404

Bézier, Pierre Etienne (1910–1999), 397, 401

Bhaskara-Brouncker algorithm, 531
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bijection, see bijective function

bijective function (definition of), 137

bilinear interpolation, 348, 359–361

smoothed, 361–362

bimagic squares, 467

binary numbers, see base-2

Binet formula, 119, 239

Binet, Jacques Philippe Marie (1786–1856),

119, 239

binomial coe⇥cient, 399–401

binomial expansion theorem, 258

binomial theorem, 399–400

birthday paradox, 314–315

birthday problem, 14–16

black swan theory, 295

Blake, William (1757–1827), 227

Bleckley, Logan E. (1827–1907), 293
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Bernstein polynomials, 401

Hermite, 377–382

Hermite derivatives, 382–384

Hermite functions, 381–382

parabolic, 376, 393–396

in a PC, 371

block-stacking problem, 262

Bloom, Molly (fictional character), 490

Bogomolny, Alexander (1948–2018), 7

Bohr, Niels David (1885–1962), 288

Bolzano, Bernardus Placidus Johann

Nepomuk (1781–1848), 226, 278, 343

Bombelli, Rafael (1526?–1572), 85

book-stacking problem, 262

boring numbers, 2, 62, 65, see also rarely

used numbers

Borsuk-Ulam theorem, 491

Bortkiewicz, Ladislaus Josephovich

(1868–1931), 534

bounding box (square?), 492

braccio (unit of length used in the

Renaissance, plural braccia), 416

brachistochrone, 22, see also curve of

shortest time

Brahmagupta (c. 598–c. 668), 414

Brewster, David (1781–1868), 152

brick wall (symmetries of), 523

Brilliant, Ashleigh Ellwood (1933–), 551

Brouwer fixed-point theorem, 490–491

Brouwer, Luitzen Egbertus Jan

(1881–1966), 490

brown numbers, 65

Brownian motion, 298, 300

as a random process, 300

not true random, 301

Brunelleschi’s peepshow experiment,

407–411
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Brunelleschi, Filippo di ser Brunellesco di

Lippo Lapi (1377–1446), 406–412, 414

Bu�on needle (for ⇥), 101

Bunyan, John (1628–1688), 2001

Buonarroti, Michelangelo di Lodovico

Simoni (1475–1564), 407

Burnett, Carol (1933–), 460

burning ship fractal, 338, 339

Bush, Catherine (1958–), 104

byte (definition of), 54

C
cable guy paradox, 270

Caesar, Gaius Julius (100–44 b.c.), 273

CAGD (computer aided geometric design),

397

Caine, Michael (1933–), 517

camera obscura (and left-handedness), 536

Campbell, Joseph John (1904–1987), 445

Camus, Albert (1913–1960), 302

candidate (choosing), 315–317

Cantor (diagonal argument), 215, 272

Cantor paradox, 218

Cantor sets, 333, 335

Cantor, Georg Ferdinand Ludwig Philipp

(1845–1918), xii, 8, 80, 81, 94, 202, 203,

212, 333

card draw, 280

Cardano, Gerolamo (1501–1576), 85, 278

cardinal splines, 376, 388, 390–393

cardinality

definition of, 215, 324

of power sets, 217–218

of the algebraics, 216

of the irrationals, 216

of the reals, 216

of the transcendentals, 216

Carpenter, Loren C. (1947–), 335

Carroll, Lewis (1832–1898), 43, 50

Cassini oval, 32–33, see also ellipse and

superellipse

Cassini, Giovanni Domenico (1625–1712), 32

Catalan-Dixon conjecture, 237

Catmull-Rom curves, 391–396

Cauchy, Augustin-Louis (1789–1857), 85,

226, 343

Cauchy–Schwarz inequality, 318

causal determinism

and Laplace, 295

definition of, 295

Cavalieri, Bonaventura Francesco

(1598–1647), 221

Cayley table, 135, 142, 522, 523

Cayley’s theorem, 144

CD (compact disc), 477–479

error correction in, 479–485

Cesàro, Ernesto (1859–1906), 334

Chaitin’s constant, 65, 83

Chaitin, Gregory John (1947–), 65, 82, 302

Champernowne constant, 65, 82, see also
lexicon

Champernowne, David Gawen (1912–2000),

65, 82

chance (what is it?), 299

chaos game (fractals), 339–340

chaos theory, 299, 337

ChatGPT in this book, vii, xi, xii, 68, 94,

95, 125, 129, 134, 200, 227, 296, 328,

461, 521, 522, 533

chirality

definition of, 132

in a die, 145

in symmetry, 132

choosing a candidate, 315–317

Christie, Agatha Mary Clarissa

(1890–1976), 7, 152, 225, 535

Chrystal, George (1851–1911), 113

circle, 180

bounding box of, 492

decomposing, 8

dissecting, 7

scaled to ellipse, 180, 525

squaring, 7–8, 10, 100

circle inversions, 31, 194–195

circle squarer (derogatory term), 100

Clarke, Arthur Charles (1917–2008), 50,

286, 521

Clawson, Calvin Clarence, xx

codes

(n, k), 476

error-control, 473–485

Hamming distance, 475

parity, 475

Reed–Solomon, 479–485

codeword (definition of), 474

coin landing on its edge, 297
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coin puzzle, 448

coin toss, 279, 280, 297, 327, 537

coins shapes, 493

collinear points

and Bézier curve, 404, 545, 547

not independent, 365

uniformly spaced, 545, 546

colossally abundant, 68

comma sequence, 254–255

complete randomness does not exist, 13

complex golden ratio, 118–119

complex numbers, 84–91, 105–109, see also
hypercomplex numbers

and points, 93–94

conjugate, 86

fractional powers of, 89, 514

history of, 84–85

composite number, 67, see also antiprime

computable numbers, 65, see also
non-computable numbers

conditional probability, 284–285, 534

conical helix, 27

Conrad, Keith (1970–), 136

constructible numbers, 63

continued fractions, 75–78, 203, 254

and irrational numbers, 75

and Khinchin’s constant, 57, 511

and palindromes, 198

and quadratic equations, 78, 79

confusing, 78

definition of, 75

introduced by John Wallis, 225

of ⇥, 76, 77

of ⇧, 77

of e, 513

continuity (of functions), 343–347

continuous function (definition of), 340

continuum

ba⇤ing, 81

no individual steps, 280

no successor, 81, 280

probabilities in, 279–282

real numbers, 3

continuum hypothesis, 216

control points, 397, 398, 402

and convex hull, 403

reversing, 403

control points (for curve design), 371

control polygon of the Bézier curve, 398

Conway, John Horton (1937–2020), 3, 62,

150, 151, 153, 256

Copeland-Erdős constant, 510

cosh (“kosh,” definition of), 108

countable

algebraic, 80

definition of, 71, 206

rationals, 71, 80, 81

Coward, Noel Peirce (1899–1973), xi

Coxeter, Harold Scott MacDonald

(1907–2003), 113

Cristillo, Louis Francis (1906–1959), 308

cross-product, 367

crunode (definition of), 32

Crystal, William Edward (1948–), 517

cubic Bézier curve, 404

cubic polynomials, 369–372

cubic splines, 376, 385–389

clamped, 387

indefinite direction, 389

cuboctahedron, 307

Curd, John, 58

curve of shortest time (cycloid), 21

curves

Bézier, 397–404, 437

cubic, 404

degree 4, 404

parameter substitution, 404, 545

quadratic, 403

Cassini oval, 32

Catmull-Rom, 391–396

cycloid, 21

direction vector, 377

egg shape, 27–31

explicit representation of, 367

heart, 35–36

helices, 25–27

Hermite, 377–384

indefinite tangent vectors, 541

hypotrochoids, 20–21

implicit representation of, 367

inflection points, 370

parabola, 24–25

parametric representation of, 368

representations of, 367–368

slope of, 369

spirals, 25–27

superellipse, 34–35
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tangent vector, 371, 372, 376, 383

Bézier, 402

definition of, 368, 369

direction of, 539

extreme, 386–388

indeterminate, 383, 546, 547

tension in, 387–388, 390–393

velocity of, 372

witch of Agnesi, 32–34

curves and surfaces, 18–36

curves of constant width, 492–494

cusp, 398, 546, 547

cycle notation of permutations, 144

cyclic group

definition of, 141

isomorphic, 141

cyclic numbers, 60, 65, 127

cycloid, see also brachistochrone

curve of shortest time, 21

definition of, 21

D
D10 symmetry group, 142

D4 dihedral group, 140

D8 symmetry group, 142

Dali, Salvador (1904–1989), 477

dartboard paradox, 279–282

Darwin, Charles Robert (1809–1882), xvii,

302

data points (for curve design), 370

da Vinci, Leonardo (1452–1519), 407, 414

de Moivre formula, 85, 90

de Moivre, Abraham (1667–1754), 85, 90

decimal numbers, see base-10

decompositions of the sphere, 10

defective number, see deficient number

deficient numbers, 65, 68, 69, 237

definable numbers, 65

del Ferro, Scipione (1465–1526), 85

delayed palindrome, 198

Democritus, (c. 460–c. 370 b.c.), 221

denumerable, see countable

Descartes, René (1596–1650), xii, xix, 3, 84,

515

determinant

pure reflection, 182

pure rotation, 182

use in scaling, 180

determinism (definition of), 295

Diaconis, Persi (1945–), 311

diagonal argument (Cantor), 215, 272

diagonally-dominant matrix, 387

dialetheia (definition of), 268

dice

go first, 308–310

randomness in, 305–308

symmetries of, 144

di�erentiable function (definition of), 341

digamma function ⌅(x), 262

digram (definition of), 301

dihedral group D4, 140, 144

dihedral group D2·3, 143

dihedral group D2·4, 142, 144

dihedral group D2·5, 142

dihedral group (definition of), 140

dimension (meaning of), 276

dimensions, non-commensurate, 533

Diophantus of Alexandria, xix

Dirac, Paul Adrien Maurice (1902–1984),

233

direction vector of Hermite curve, 377

Dirichlet function, 344, 345

everywhere discontinuous, 344

Dirichlet, Johann Peter Gustav Lejeune

(1805–1859), 344

discontinuous function (definition of), 341

discontinuous functions (everywhere),

344–347

dissecting a square, 446

divergent series, 50

divided di�erences, 376

divine proportion, see golden ratio

divine section, see golden ratio

divisibility tests, 49–56, 509

dodecahedron (as a kaleidoscope), 152

dot product, 185, 367

and Perlin noise, 357

double factorial, 233

double miracle symmetry, 159

dungeon numbers, 65

Dunham, William Wade (1947–), 212

duodecimal number system, 58

duonions (complex numbers)?, 93

Dürer, Albrecht (1471–1528), 421, 465
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E
e, Euler constant, 57

as natural base, 97

continued fraction of, 513

transcendental, 210

Eddington, Arthur Stanley (1882–1944), 231

egg shape, 27–31, 508

Einstein tile, 190–191

Einstein, Albert (1879–1955), xiii, xvii, 2,

190, 202, 330, 450

birthday, 101

play dice?, 298

Eliot, George (1819–1880), 317, 445

ellipse, 180

and billiard, 30, 507

circle inversion of, 31

Ellsberg paradox, 312

Ellsberg, Daniel (1931–2023), 312

enneanacci numbers, 240

equations, 229–234

equiangular spiral, 26, 123

equilateral triangle (symmetries of), 142,

144

Erdős, Paul (1913–1996), 22, 125

error-control codes, 473–485

error-correcting codes in a CD, 479–485

escape-time (fractals), 338–339

Escher’s horse, 527, 528

Escher’s lizard, 193, 194

Escher, Maurits Cornelis (1898–1972), 134,

334, 429, 430

Estermann, Theodor (1902–1991), 79

ETAOIN SHRDLU (letter distribution), 301

eternal fame (in mathematics), 2

Euclid, (ca. 325–270 b.c.), 112, 114, 369

and ⇤, 120

GCD method, 71, 76

Euler equation, xiii, 85–87, 90, 101, 518

contains ⇥, 100

Euler prime generator function, xvii

Euler series, 264, 511

proof of, 264

Euler’s constant �, 95

Euler’s number e, 95–99, 124, 246, 258, 511

as natural base, 97

Euler, Leonhard (1707–1783), 57, 85, 86, 90,

95, 264, 450, 464, 510, 511

everywhere discontinuous functions,

344–347, see also nowhere di�erentiable

function

everywhere nondi�erentiable function, 341

exclusive-OR (XOR), 45, 487–490

in Vernam cipher, 489, 551

existence (in mathematics), xiii

expected value

of a dice roll, 293

of a random experiment, 293

explicit representation of curves, 367

extended Fibonacci sequence, 123–124, 249

extreme and mean ratio, see golden ratio

F
Faber, Georg (1877–1966), 334

factorial (double), 233

factorion, 65

definition of, 65

fair by continuity, 308

polyhedra, 307

fair by symmetry (polyhedra), 306

fair game (definition of), 273

Falbo, Clement E. (1935–), 114

falsidical paradox, 267

Farber, David J. (1934–), 481

Fatou, Pierre Joseph Louis (1878–1929), 334

Faucher, Kane X., 226

Ferguson, James C., 385

Fermat, Pierre de (1607–1665), xix, 3, 224,

225

Feynman, Richard Phillips (1918–1988),

319, 320

fiasco (definition of), 326

Fibonacci integer sequences, 240

Fibonacci numbers, 48, 65, see also
anti-Fibonacci numbers

and ⇤, 115

and L-systems, 338

and powers of ⇤, 115, 249

Fibonacci primes, 238

Fibonacci sequence, 123, 238–249, 253, see
also extended Fibonacci sequence

a base of a numbering system, 241, 242

and Pisano period, 240–241

as truncated continued fraction, 254

converting between miles and kilometers,

241

increasing monotonic, 67
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Fibonacci variable-length code, 242–244

Fibonacci word, 240

Fibonacci, Leonardo Pisano (1170–1250),

48, see also Leonardo of Pisa

Fibonacci-esque numbers, 254

fifth roots of unity, 90–91

figurate numbers, 48

finite field, 484

fixed-point theorem (Brouwer), 490–491

flag of Nepal, 495

foci (pronunciation of), 30

Foucher, Simon (1644–1696), 208

four color map theorem, xviii, 51

four-square theorem, 51, 53

fractal dimension, 331, 332

fractals, 330–340

burning ship, 338, 339

Cantor sets, 333, 335

carpet, 202, 334

chaos game, 339–340

definition of, 330, 331

dragon curve, 202, 335

escape-time, 338–339

fragmented circle, 528

Haferman carpet, 335

history of, 333–335

iterated function systems, 335

Julia, 202, 334, 338

Koch, 276, 332, 334, 335, 533

L-systems, 337–338

Levy C curve, 334

logistic map, 336

Lyapunov, 338

Mandelbrot set, 338, 339

Menger sponge, 202, 335

nova fractal, 338

Peano curve, 335

self-inverse, 333

Sierpinski, 332

Sierpinski triangle, 334, 335

strange attractors, 335–337

T-square, 335

Weierstrass function, 333

fractional powers complex numbers, 89, 514

Fraenkel, Abraham (1891–1965), 9

Francesca, Piero Della (1415–1492), 30, 32,

415

free chocolate (no such thing), 549

frieze patterns, 154

functions

Bergfeldt, 346

bijective, 137

continuity of, 343–347

continuous, 340

Conway base 13, 347

definition of, 340

di�erentiable, 341

digamma, 262

Dirichlet, 344, 345

discontinuous, 341

everywhere discontinuous, 344–347

everywhere nondi�erentiable, 341

Gamma, 262, 463–464

general, 137

Heaviside, 341

injective, 137

main types of, 137

nondi�erentiable, 341

nowhere di�erentiable, 341

orthogonal, 185

Signum, 341

surjective, 137, 347

Thomae, 345, 346

Weierstrass, 333, 340–343

fundamental region of a pattern, 157

fundamental theorem of algebra, 84

G
Gabriel’s horn, 275

Galileo di Vincenzo Bonaiuti de’ Galilei

(1564–1642), xiii, xiv, 208, 221, 222, 270,

278, 291

Galileo’s paradox, 270

Galois field, 484

Galois, Évariste (1811–1832), xii, 134

gambler’s fallacy, 294

game (fair?), 272, 273

Gamma function, 262, 463–464

Gardner, Martin (1914–2010), 274, 527

Gaudi, Antoni i Cornet (1852–1926), 466

Gauss, Johann Carl Friedrich (1777–1855),

84, 102, 217

and i, 105

and imaginary quantities, 84, 516

Gauss-Legendre formula for ⇥, 102–103

general function (definition of), 137

generalized golden spiral, 122
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generator of a cyclic group, 141

geometric average, 327

geometric mean, 102, 486

glide reflection, 150

miracle, 158

go-first dice, 308–310

God (love of), 510

Godard, Jean Luc (1930–2022), 317

Goethe, Johann Wolfgang von (1749–1832),

95, 133

Gogh, Vincent Van (1853–1890), 421

golden angle, 59, 112, 244

golden ratio, 56–57, 95, 110–115, 238, 253,

511, see also Fibonacci numbers, Lucas

sequence

a contrary viewpoint, 114

and golden angle, 59, 244

and Penrose tiles, 190

and sunflower patterns, 248

complex, 118–119

generalization of, 113, 120–124

history of, 112–114

most irrational number, 77, 114, 246, 248

unusual appearances of, 115–117, 338

golden rectangle, 115, 252, 519

self similar, 122

golden spiral, 115, 252

generalized, 122

self similar, 123

Goliath number, 69

Golomb sequence, 237

Grabowski, ⌅Lukasz, 8

gradient (meaning of), 357

Grandi’s series, 208, 211

Granville numbers, 65

graphics (visible math objects), 17–38

Graves, John Thomas (1806–1870), 55

Grelling, Kurt (1886–1942), 287

Grey, Thomas (1455–1501), 199

group

and symmetry, 134

definition of, 136–137

groups

Abelian, 136

cyclic, 141

dihedral, 140

monster, 135

order of an element, 136

symmetry, 136–150

trivial, 140

Guy, Richard Kenneth (1916–2020), 235,

534

gyration

definition of, 151

example, 151, 156

in orbifold signatures, 156

order of, 151

H
Hadamard, Jacques Salomon (1865–1963),

377

Haferman carpet, 335

Haken, Wolfgang (1928–2022), xviii

Hales–Jewett theorem, 13

Hall (Halparin), Monte (1921–2017), 286

Hals, Frans (1580–1666), 406

Hamilton, William Rowan (1805–1865), 55,

93

Hamming distance, 475

Hamming, Richard Wesley (1915–1998), xv,

475

Hardy, Darel, 400

Hardy, Godfrey Harold (1877–1947), xii, 60,

343

Hardy-Ramanujan number, 60

harmonic average, 326

harmonic mean, 486

in HLL, 326

harmonic numbers, 259

harmonic series, 257, 259–263, 347

diverges, 47

real, 259–262

Harry Potter (novels), 54

Harshbarger, Eric C., 309

Harter-Heighway dragon curve, 202, 335

hashing and hash tables, 325

hat, see Einstein tile

Hawking, Stephen William (1948–2018),

xiii, 404, 517

headword (definition of), 474

heart shape, 35–37, 307

Bézier curve, 402, 544

Heaviside function, 341

Hein, Piet (1905–1996), 34, 35, 527

Heisenberg’s Uncertainty Principle, 105

helices, 25–27

helix (definition of), 27



562 Index

heptagonal numbers, 53

heptanacci numbers, 240

Heraclitus, (5th–6th century b.c.), 202

Hermite blending, 377–382

Hermite blending functions, 361, 381–382

Hermite interpolation, 377–384

derivatives, 382–384, 540

indefinite tangent vectors, 541

midpoint, 381, 540

Hermite, Charles (1822–1901), 95, 210, 342,

377

Hernandez, Laurie (2000–), 443

Hertz, Heinrich Rudolf (1857–1894), xv

heterological word (definition of), 287

hexadecimal numbers, see base-16

hexagonal numbers, 52

hexanacci numbers, 240

highly abundant number, 68

highly composite number, 67

(definition of), 66

Hilbert curve, 198, 199, 332, see also space

filling curves

Hilbert, David (1862–1943), 206, 212

history of fractals, 333–335

history of perspective, 406–424

HLL algorithm, 323–327

Hobbes, Thomas (1588–1679), 225

Hockney, David (1937–), 405, 406, 421

Ho�man, Paul (1953–), 4

Hofstadter, Douglas Richard (1945–), 10

homogeneous coordinates, 439

homological word, see autological word

Hooke, Robert (1635–1703), 414

horizon line

high, 425

low, 430

placement of, 415, 425–430

horror paradox, 274

horse (Escher), 527, 528

Hubble, Edwin Powell (1889–1953), xv

Hume, David (1711–1776), 321

humor in this book, 2, see also jokes in this

book

Humphrey, Hubert Horatio (1911–1978),

266

Huxley, Aldous Leonard (1894–1963), 205

hyper-4, see tetration

hyperbolic functions, 108

hypercentric camera, 421

hypercomplex numbers, 65, 92–94

hyperoperation sequence, 43–45

hyperperfect numbers, 65

hyperreal numbers, 65

hypotrochoid (curve), 20–21

I
I hate mathematics, x

icosidodecahedron, 307

i� (meaning of), 137

IFS, iterated function systems, 335

Ignatius of Loyola (1491–1556), 224

ii is real, 107

illegal numbers, 65

imaginary numbers, 84–85

origin of, 515

immediate successor (none), 3, 71, 81, 341

implicit representation of curves, 367

improper rotation, 151

infinite

mysterious nature of, 47, 95, 202–204

paradoxical nature of, 206, 267, 269, 276,

279, 280

infinite gift (and Gabriel’s horn), 532

infinite grand hotel, 206–208

infinitesimals (history of), 221–226

infinity, 201–227

and human stupidity, 2

as a limit, 48

in math, xii, 5–7

not a number, 48

unexpected results of, 48, 209–211, 528

inflection point

definition of, 116

of a quartic polynomial, 116, 118

inflection points, 370

in a PC, 370

injective function (definition of), 137

integers, 46–65

infinitely many, 3

square roots are irrational, 72

types of, 67

interpolation

Hermite, 377–384

Lagrange, 373–375

Newton, 375–376

spline, 376–396
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interpolation methods, 347–404

bilinear, 348, 359–360

linear, 372

points and vectors, 364–367

irrational numbers, 70–79, 513

and randomness, 298

definition of, 70

lots are known, 72, 73

irrationality, 74–79

isocephaly (meaning of), 416

isometric (objects with the same

symmetries), 141

isometry, 135

definition of, 150

improper rotation, 151

rigid motion, 150

isomorphic (meaning of), 141

isomorphism

and Cayley’s theorem, 138

definition of, 138

of D2·4, 142

isosceles triangle (symmetries of), 143

Izmailovo hotel, 206

J
Jacobsthal sequence, see (1,2)-Fibonacci

sequence

Jeandel, Emmanuel, 191

Jeans, James Hopwood (1877–1946), 102

jokes in this book, xiii, xxi, 63, 83, 197, 249,

257, 275, 295, 319, 323, 338, 507, 534

Jones, William, (1675–1749), 100

Joyce, James Augustine Aloysius

(1882–1941), x, 197, 490

juggler sequence, 235

Julia set, 202, 334, 338

Julia, Gaston Maurice (1893–1978), 202, 334

K
Kac, Mark (1914–1984), 299

kaleidoscope, 152

kaleidoscopic point, 151, 152, 155

Kamermans, Mike, 397

Kaprekar process, 60

Kaprekar, Dattatreya Ramachandra

(1905–1986), 60

Kau�man, Stuart Alan (1939–), 245

Keats, John (1795–1821), vii, 2

Keith number, 240

Keith, Michael (1955–), 240

Kepler, Johannes (1571–1630), 113, 114

and ⇤, 239

Khinchin constant, 6, 57, 486, 511

Khinchin, Aleksandr Yakovlevich

(1894–1959), 57

kissing numbers, 65

Klein, Felix Christian (1849 –1925), 333

knight tour (chess problem), 468

knots (in curve design), 373

Knuth, Donald Ervin (1938–), 44, 61, 104,

307

Koch snowflake, 276, 332, 334, 335, 533

König Gyula (Julius, 1849–1913), 272

König’s paradox, 272

Königsberg bridge problem, 450

Kovalevskaya, Sofia (1850–1891), 234

Kronecker, Leopold (1823–1891), 63, 212,

217

L
L-systems (fractals), 337–338

Lévy, Paul Pierre (1886–1971), 334

Laan, Hans van der (1904–1991), 252

Laczkovich, Miklós (1948–), 8

Lagrange interpolation, 373–375

Lagrange polynomial, 373–375, 463, 538

quadratic, 374

Lagrange’s theorem, 146

Lagrange, Joseph Louis (1736–1813), 53, 137

Lagrangian points, 52

Lamé, Gabriel (1795–1870), 34

Lambert Johann Heinrich (1728–1777), 100

Lanier, Susie, 60

Laplace, Pierre-Simon de (1749–1827), 295

large numbers (notation for), 44–45

law of cosines, 231

law of large numbers, 294, 535

law of small numbers, 295

law of small numbers (book), 534

law of truly large numbers, 294–295

least squares interpolation, 333, 348–354,

372

left handed (chance of being), 319, 536

left-truncatable primes, 66, see also
right-truncatable primes

Lehmer, Derrick Henry (1905–1991), 237
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Lehrer, Thomas Andrew (1928–), 217

Leibniz, Gottfried Wilhelm (1646–1716), xii,

48, 208, 223, 225, 333

lemniscate of Bernoulli, 32

length of an integer, 327

Leonardo of Pisa (Fibonacci, c. 1170–c.

1250), 114, 238, 240

LERP, see linear interpolation

letters (symmetry of), 196

Levy C curve, 334

lexicon (definition of), 82

liar paradox, 277

licentious kitchen maid (painting), 536

lifeguard problem (minimization), 226

likelihood vs. probability, 293

Lindemann, Carl Louis Ferdinand von

(1852–1939), 95, 100

Lindenmayer, Aristid (1925–1989), 337

Lindon, James Albert (1914–1979), 241

line (parametric representation of), 541

linear interpolation, 372

two parabolas, 361, 537

linear least squares, 348–353

linear perspective, 404–440

Liouville constant, 94

Liouville, Joseph (1809–1882), 94

Littlewood’s law, 295

Littlewood, John Edensor (1885–1977), 60,

295

Livio, Mario (1945–), 113, 114

lizard (Escher), 193, 194

Lo-Shu method for a 9⇥ 9 magic square,

467

locus (definition of), 24

logarithmic spiral, see equiangular spiral

logical operations (on binary numbers), 45,

487

logistic map (chaotic behavior), 336

look and say sequence, 62, 67, 256

Loomis, Elisha Scott (1852–1940), 231

loop in a curve, 370, 398, see also cusp

Lorenz attractor, 337

Lorenz system, 337

Lorenz, Edward Norton (1917–2008), 299,

337

Lorenzo di Piero de’ Medici (the

Magnificent, 1449–1492), 410

lotus shape, 27

love curve, 37

love of God, 510

Loyd, Samuel (1841–1911), 447, 448

Lucas numbers, see Lucas sequence

and powers of ⇤, 115, 249

Lucas primes, 249

Lucas sequence, 249–251, see also Lucas

numbers

Lucas spiral, 249

Lucas, François Édouard Anatole

(1842–1891), 249

Luther, Martin (1483–1546), 224

Lyapunov fractal, 338

M
M-Fibonacci (Mbonacci) sequences, 239

Máthé, Andras, 8

magic squares, 465–471

magic theorem (wallpaper symmetries),

160–161

Mandelbrot set, 338, 339

Mandelbrot, Benôıt B. (1924–2010), 202,

300, 330, 335

obituaries, 335

Manet, Édouard (1832–1883), 138

Manetti, Antonio di Tuccio (1423–1497),

407–411

Marilyn vos Savant, see vos Savant, Marilyn

Mark Twain (1835–1910), 303

Marsili, Cesare (1592–1633), 222

Marx, Andrew, 8

Marx, Karl (1818–1883), 517

Mary Poppins (movie), 315, 316

Masaccio (Tommaso di ser Giovanni di

Mone, 1401–1428), 411–414

Masolino da Panicale (Tommaso di

Cristoforo Fini, 1383–1447), 412

mathematical beauty, xiii, 2, 3, 103

mathematical doodling, 38

mathematical existence, xiii

mathematical jokes, xxi

mathematical quotations, xxii–xxv

mathematicians

curious, 34, 259, 468, 530

devious, 5, 307, 463

funny and rigorous, 67

hard workers and fun loving, 69

human, 467

methodical, 43
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meticulous, 240, 485

recreational, 69

mathematics

I hate it, x

is it science?, xvi–xx

nature of, 254

oldest unsolved problem, 68

study of patterns, xii

why so e�ective?, xiv–xvi, 84

Mathews, Daniel, 234

matrices

diagonally dominant, 387

nonsingular, 387

orthogonal, 184, 185

tridiagonal, 387

Maugham, William Somerset (1874–1965), x

Maxwell, James Clerk (1831–1879), 30, 296

Mayfield Clarke, Marilyn (1931–1991), 286

meandering ratio, see sinuosity index

median (of a data set), 486

Medici, Giovanni di Lorenzo de

(1475–1521), 224

Medici, Lorenzo di Piero de’ (1449–1492),

224

Meisner, Gary B., 113

Melencolia magic square, 465

Menger sponge, 202, 335

Menger, Karl (1902–1985), 202

Merrill, James (1926–1995), 301

Mersenne, Marin (1588–1648), 222, 224, 278

Messing, Susan (1963–), 200

metadrome (definition of), 127

metallic ratios, 253–254

mid-range average, 486

millillion, 60, see also large numbers

(notation for)

miracle (mirrorless crossing), 158, see also
glide reflection

Mittal, Adi, 117

mode (of a data set), 486

modulo 2 (same as XOR), 487

monotile, see Einstein tile

monster group, 135

Monte Carlo method (for ⇥), 101

Monty Hall problem, xvii, 285

Morgan, Augustus de (1806–1871), xviii

Moriarty, Liane (1966–), x, 295

Morse, Samuel Finley Breese (1791–1872),

301

Moser’s circle sequence, 236–237, 534

Moser, Leo (1921–1970), 236

most irrational number (⇧), 77, 114, 246,

248

multiplying negative square roots, 89, 105

N
Napier’s number, see Euler’s number

Napier, John (1550–1617), 96

Narayana’s cows sequence, 248

negate and exchange rule, 526

negative square roots (multiplying), 89, 105

Nelson, Leonard (1882–1927), 287

Nepali flag, 495

Newcomb, Simon (1835–1909), 303

Newton polynomial, 375–376

Newton, Isaac (1642–1727), xii, xiv, 24, 223,

225, 258, 375, 400, 414

Niels Fabian Helge von Koch (1870–1924),

334

(n, k) codes, 476

noem, see also poem

noem (nth order extreme mean), 120

noise, 354

acoustic, 473

as texture, 354

atmospheric, 297

correlated, 355

decorrelated, 355

electromagnetic interference, 473

error-control codes, 354

gradient, 355

image of random pixels, 302

in data transmissions, 473

random, 354

white, 354

non-commensurate dimensions, 533

non-computable numbers, 63, 65

non-palindromic primes, 531

nondi�erentiable function, 341

nonlinear least squares, 354

nonlinear perspective, 404

nonlinear processes, 297, 299

and chaos, 299, 337

nonperiodic tiling, 186, see also aperiodic

tilings

nonsense in this book, 536, see also jokes in

this book
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nonsingular matrix, 387

normal (definition of), 185

normal numbers, 63, 65, 510

nova fractal, 338

nowhere di�erentiable function, 341, see
also everywhere discontinuous functions

number (definition of), 46

numbers, 43–129

constructible, 63

triangular, 50

abundant, 65, 67, 237

algebraic, 63, 216

almost integer, 65

amicable, 65, 237

any base?, 241, 531

apocalypse, 69

aspiring, 237

base-⇧, 241

base-10, 45, 48, 55, 241

base-16, 59

base-2, 45, 47, 48, 487

length of, 48

base-8, 54

boring, 2, 62, 65

brown, 65

colossally abundant, 68

complex, 84–91, 105–109

composite, 67

computable, 65

cyclic, 65

deficient, 65, 68, 69, 237

definable, 65

dungeon, 65

Fibonacci, 65

figurate, 48

Goliath, 69

Granville, 65

harmonic, 259

heptagonal, 53

hexagonal, 52

highly abundant, 68

highly composite, 67

hypercomplex, 65, 92–94

hyperperfect, 65

hyperreal, 65

illegal, 65

irrational, 70–79, 513

definition of, 70

kissing, 65

non-computable, 63, 65

normal, 63, 65, 510

octagonal, 54

pentagonal, 51

perfect, 52, 65, 68

polygonal, 65

practical, 65

primitive abundant, 68

pseudo-random, 298

quasiperfect, 65

quaternions, 63

rarely used, 65

rational, 70–79

definition of, 70

real, 2–3, 80–83

really exist?, xiii

self-describing, 62

semiperfect, 68

sociable, 65, 237

spaghetti, 65

square, 48

superabundant, 68

superperfect, 65

surreal, 3, 63

transcendental, 63, 216

trigonometric, 65

twin, 65

twin primes, 65

vampire, 65

witness, 65

numerical sequences, 235–256, 531

O
O (orbifold translation indicator), 155, 159,

160

objective probability, 310

objects of constant width, 492–494

octagonal numbers, 54

octahedron symmetry, 523

octal numbers, see base-8

octanacci numbers, 240

octonions, 55, 93

odd perfect numbers (unknown), 68

Ogawa, Yoko (1962–), 101

Ohm, Martin (1792–1872), 112

Oiler, see Euler

omniscience paradox, 218

operations on points, 364, 366
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operations on vectors, 366, 367

orbifold (meaning of name), 153

orbifold notation, 135, 153–160

examples, 161

miracle, 158

order of a group element, 136

orthogonal functions, 185

orthogonal matrix, 184, 185

orthogonal polynomials, 185

orthogonality (definition of), 185

P
p-series, 257

p-test, 257, 532

proof of, 257

Pacioli, Luca Bartolomeo de (1445–1517),

113

Padovan sequence, 252

Padovan, Richard (1935–), 252

painter’s paradox, 276

palindromes, 131, see also Universal

Palindrome Day

definition of, 196

delayed, 198

in dates, 197

in music, 197

in numbers, 197–198, 528

in speech, 197

in text, 197

non-palindromic primes, 531

palindromic numbers, 197–198, 528

pandigital formula (definition of), 124

pandigital number (definition of), 124, 457

parabola, 24–25

and Bézier curve, 403

parabolic blending, 376, 392–396

paradox

Achilles and the fly, 211, 274

antinomy, 268

Aristotle’s wheel, 277

barber, 271

Berry’s, 287, 510

Bertrand, 282–284

Bertrand box, 284–285

cable guy, 270

Cantor, 218

categories of, 267–268

dartboard, 279–282

definition of, 267

dialetheia, 268

Ellsberg, 312

falsidical, 267

Gabriel’s horn, 275

Galileo, 270

horror, 274

König’s, 272

liar, 277

Monty Hall problem, 285

omniscience, 218

painter’s, 276

preface, 270

Quinn, 271

racecourse, 211, 268, 274

rakehell, 271

Richard’s, 271, 272

Ross Littlewood, 211, 287

self-deception, 273

self-fulfilling, 273

ship of Theseus, 268, 532

sorites, 271, 532

St Petersburg, 272

Thomson’s lamp, 211, 269, 274

Tristram Shandy, 270

unpleasant, 274

veridical, 267

Wang’s, 271

Zeno’s, 202, 270, 274

paradoxes, 267–287

Zeno, 221, 269–270

parallel projection, 430

as a limit, 435

parametric cubic, 369–372, 377–384

geometric representation of, 379

Hermite, 377–384

inflection points, 370

noninteractive, 378

PC, 370

parametric curves

cubic, 369–372

loops in, 370

substitution of parameter, 404, 541, 545

parity (definition of), 475

Parker, Matthew Thomas (1980–), 250, 467

parking (a greedy problem), 471–473

Pascal triangle, 399–400

Pascal, Blaise (1623–1662), xii, 535
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pathions, see trigintaduonions

pattern

center of mass of, 159

fundamental region, 157

gyration symmetry, 157

kaleidoscopic symmetry, 155

miracle symmetry, 158

translation symmetry, 159

Paul III (Alessandro Farnese 1468–1549),

224

Pauling, Linus Carl (1901–1994), 317

Peacham, Henry (1546–1634), 196

Peano curve, 335

Peano, Giuseppe (1858–1932), 202

pedal line of a triangle, 443

Peirce, Benjamin (1809–1880), 99

Peitgen, Heinz-Otto (1945–), 335

Penrose tiles, 188–190

and golden ratio, 190

Penrose, Roger (1931–), 114, 188, 190, 220

pentagonal numbers, 51

pentanacci numbers, 240

percents (fun with), 63

Perec, Georges (1936–1982), 468

perfect numbers, 52, 65, 68

periodic tiling, 186, see also aperiodic,

nonperiodic, and semiregular tilings

Perlin noise, 354–364

Perlin, Kenneth H., 355

Perls, Friedrich Salomon, (Fritz,

1893–1970), 202

permutation group (definition of), 143

permutations

and symmetry, 143

cycle notation, 144

perpendicular (meaning of), 185

perspective, 36

divergent, 421

general case, 432

linear, 404–440

nonlinear, 404

shallow, 425, 430, 432

special case, 432

standard position, 432, 433

vertical, 429

perspective projection

Dürer’s method, 421, 422

mathematical treatment, 430–440

Perugino, Pietro (c.1446/1452–1523), 412,

414

phi (⇤), see golden ratio

phyllotaxis (and spirals), 244

pi (⇥), 99–105

and 5, 52

and pizza, 101

non-transcendental?, 105

not very irrational, 75

Pi Approximation Day, 101

Pi Day, 101

Pikhurko, Oleg, 8

pins (choosing 4-digit pins), 312–314

Pisano, see Leonardo of Pisa

Pisano period (Fibonacci sequence),

240–241

pizza and ⇥, 101

plaindrome (definition of), 127

Planck time, 211

plastic (meaning of term), 252

plastic ratio, 251–252

plastic rectangle, 252

plastic spiral, 252

Plato (428/427 or 424/423–348/347 b.c.),
66

Platonic solids, 51, 133, 305

as edge-transitive, 307

the simplest, 148

Plutarch (c. a.d. 46–after a.d. 119), 268

Poe, Edgar Allan (1809–1849), 79

poem, see also noem

poem (pth order extreme mean), 121

Poincaré, Jules Henri (1854–1912), 333

points

control, 397, 398, 402

and convex hull, 403

reversing, 403

inflection, 370

operations on, 364, 366

points and complex numbers, 93, 364

points and vectors, 364–367

Poirot, Hercule (fictional detective), 287

Poliziano, Angelo (1454–1494), 421

polygon (definition of), 100, 135

polygonal numbers, 65

polyhedra

fair by continuity, 307

fair by symmetry, 306

Platonic solids, 306
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polyhedron (definition of), 135

polyline, as a curve with maximum tension,

391

polynomials

Bernstein, 401

cubic, 369–372

definition of, 369

orthogonal, 185

wiggle, 370, 372

polytope

definition of, 135

the monster, 135

popcorn function, see Thomae function

power sets

cardinality of, 217–218

definition of, 217

practical numbers, 65

preface paradox, 270

prime constant, 67

prime number theorem, 65

prime numbers, 65–66

definition of, 65

left-truncatable, 66

right-truncatable, 67, 511

primitive abundant number, 68

Prince of Pi, see Shaw, Lawrence N.

probabilistic counting, 323–327

probabilities in a continuum, 279–282

probability, 289–328

and likelihood, 293

and psychology, 311–314

and statistics, 292

birthday paradox, 314–315

choosing a candidate, 315–317

examples, 317–323

in Vernam cipher, 551

objective, 310

of sum of events, 292

range of, 292

subjective, 310–311, 536

probability concepts, 289–291

probability density

definition of, 280, 281

nonuniform, 281, 282

Wikipedia definition, 282

pseudo-random numbers, 298

pseudoperfect number, see semiperfect

number

psychology (and probability), 311–314

pursuit curve, 26

Putnam, Hilary Whitehall (1926–2016), xv

puzzles, 445–460

14-15 puzzle, 447

16-room puzzle, 447

coin puzzle, 448

dissecting a square, 446

vanishing area puzzle, 448

Pythagoras (c. 569–475 b.c.), 46, 112, 114,

231

Pythagorean means, 486

relation of, 486

Pythagorean theorem, 231–233

Q

quadratic Bézier curve, 403

quadratic convergence (in AGM), 102

quadratic mean, 486

quadratic polynomial (a plane curve), 370

quartic polynomial

and ⇤, 117

definition of, 116

quasi-numerical sequences, 256–257

quasiperfect numbers, 65

quaternions, 63, 93, see also hypercomplex

numbers

quatrain (definition of), 198

Quine (self-replicating software), 10

Quine, Willard Van Orman (1908–2000), 10,

267, 268

Quinn’s paradox, 271

quintic equations (no solutions), 230

R
racecourse paradox, 211, 268, 274

rakehell (meaning of), 271

rakehell paradox, 271

Ramanujan, Srinivasa Aiyangar

(1887–1920), 60, 66

magic square, 470

Ramsey theory, 12–14

Ramsey, Arthur Michael (1904–1988), 12

Ramsey, Frank (1903–1930), 12

random noise, 354

randomness, 295–303

and Benford’s law, 303

and information, 301–302
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in a die, 305–308

Rao, Michael, 191

rarely used numbers, 65

rational numbers, 70–79

definition of, 70

dense, 71, 215

real harmonic series, 259–262

real numbers, 2–3, 80–83

continuum, 3, 81

smallest, 3

redundancy

definition of, 473

in a natural language, 474

in digital data, 474

Reed, Irving Stoy (1923–2012), 480

Reed–Solomon codes, 479–485

reflection matrix, 180

reflections

in a cube, 146

in a triangle, 143

in three dimensions, 145

in two dimensions, 145, 522

rotary, 146, 147

regular tiling, 186, see also aperiodic,

nonperiodic, and semiregular tilings

relativity, special, 269

Rényi, Alfréd (1921–1970), 22

repetend (definition of), 70

repfigit number, see Keith number

Reuleaux triangle, 492

Reuleaux, Franz (1829–1905), 492

reverspective (reverse perspective, 421

rhombic dodecahedron, 307

rhombic triacontahedron, 306

Rich, John, 219

Richard’s paradox, 271, 272

Richard, Jules (1862–1956), 272

Richter-Gebert, Jürgen, 161

Riemann zeta function, 257, 265, 533

Riemann, Georg Friedrich Bernhard

(1826–1866), 85, 342

right-truncatable primes, 67, 511

Roberval, Gilles Personne de (1602–1675),

224

Roestraten, Pieter Gerritsz van

(1630–1700), 406, 536

Rogers, William Penn Adair (1879–1935),

303

Rohmer, Éric (1920–2010), 279

Roman numerals, 531

Rooney, Andrew Aitken (1919–2011), 328

root mean square, see quadratic mean

roots of i =
⌅
�1, 91, 514

roots of unity, 88–89, 514

Rorschach inkblot test, 49

Rosenberg, Joel (1954–), 494

Ross-Littlewood paradox, 211, 287

Rostand, Edmond Eugène Alexis

(1868–1918), 2000

rotary reflections, see turn reflections

rotary reflections of the cube, 146, 147

rotation

equals two reflections, 182

followed by a translation, 183

rotation matrix, 180

rotoreflection, 147

an improper rotation, 151

in a tetrahedron, 149

RS codes, see Reed–Solomon codes

ruled surfaces, 37

Runge’s phenomenon, 370

Russell, Bertrand Arthur William

(1872–1970), 9, 10, 271, 303, 322

S
Sabey’s formula, 124

weakly pandigital, 521

Sabey, Richard, 124

Sagan, Carl Edward (1934–1996), 104

Sagrada Familia magic square, 466

Santa Maria del Fiore (Cathedral), 407

Sarközy, Nicolas Paul Stéphane de

Nagy-Bocsa (1955–), 335

Sautoy, Marcus du (1965–), 151

Schaaf, William Leonard (1898–1992), 105

Schiaparelli, Giovanni Virginio,

(1835–1910), xv

Schilpp, Paul Arthur (1897–1993), 330

science and superstition, xvii

Scott, Walter (1771–1832), 199

sedenions, 93

self similar

⇤?, 122

golden rectangle, 122

golden spiral, 123

self-deception paradox, 273
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self-describing numbers, 62

self-fulfilling belief paradox, 273

self-inverse fractals, 333

self-reference (definition of), 10

semimagic square, 468

semiperfect number, 68

semiregular tilings, 186

sequences, 234–257

aliquot, 59, 237

comma, 254–255

extended Fibonacci, 123–124, 249

Fibonacci, 238–249

hyperoperation, 43–45

Lucas, 249–251

Moser circle, 236–237

numerical, 235–256

quasi-numerical, 256–257

Stern-Brocot, 214

Sergels torg (a superellipse), 34

series, 257–265

harmonic, 50, 259–263, 347

diverges, 47

real, 259–262

p-series, 257

Serle, Rebecca, 290

set theory, 212–217

Seurat, Georges-Pierre (1859–1891), 224

seven deadly sins, 54

seven-segment display, 54

Shakespeare (and letter distribution), 301

Shannon, Claude Elwood (1916–2001), 474

Shaw, Lawrence N. (Prince of Pi,

1939–2017), 101

shearing matrix, 180

Ship of Theseus paradox, 268, 532

Sierpiński, Wac⌅law Franciszek (1882–1969),

202, 334

Sierpinski carpet, 202, 334

Sierpinski triangle, 332, 334, 335

the fractal dimensions, 332

sign function, signum, 341

silver ratio, 253, see also metallic ratios

Simmons, Dan Hermann (1938–), 505

Simson line of a triangle, 443

singleton (one-element set), 218

sinh (“shine,” definition of), 108

sinuosity index (of a river), 104

Sloane, Neil James Alexander (1939–), 235

slope, see also tangent vector

slope (definition of), 369

smallest positive real number, 3

so, what is chance? (quotation), 299

sociable numbers, 65, 237

Solomon, Gustave (1930–1996), 480

somewhat-magic square, 469

sorites paradox, 271, 532

space filling curves, 198

spaghetti numbers, 65

sphere decompositions, 10

spirals, 25–27

logarithmic, 123

spline (definition of), 376

spline interpolation, 376–396

splines

as a piecewise curve, 370

cardinal, 376, 388, 390–393

cubic, 376, 385–389

clamped, 387

Hermite, 377–384

tension in, 387–388, 390–393

square numbers, 48

square spiral, 26

squaring the circle (impossible), see
dissecting the circle, 7–8, 100

St Petersburg paradox, 272

statistics (and probability), 292

Stern-Brocot sequence, 214

Sterne, Laurence (1713–1768), 270

Stigler’s Law, 303

Stigler, Stephen Mack (1941–), 303

strange attractor

definition of, 336

examples of, 336

strange attractors (fractals), 335–337

strong law of small numbers, 236, 534

subjective probability, 310–311, 536

substitution of parameter (in curves), 404,

541, 545

sunflowers and the irrationality of ⇤,

245–248

superabundant number, 68

superellipse, 34–35

supergolden ratio, 248

supergolden rectangle, 249

superperfect numbers, 65

Suppes, Patrick Colonel (1922–2014), 291

surjective function (definition of), 137, 347
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surreal numbers, 3, 63

syllables (in the names of integers), 510

symmetric group

S4, 149

definition of, 144

not the same as symmetry group, 144

symmetricity, 132

symmetries

of a brick wall, 151, 523

of tetrahedron, 147–150

symmetry, 131–200

ambigram, 197

and permutations, 143

bilateral, 132

chirality, 132

fundamental region of a pattern, 157

gyration, 157

historical developments, 133

in a circle, 133

in dice, 144

in graphics, 198

in poems, 198, 199

in text, 196–197

in three dimensions, 144

in two dimensions, 145

inverse of, 139

isometry, 135

kaleidoscopic, 155

miracle, 158

of a cube, 146

of the rhombus, 141

of the square, 142

of the triangle, 142

palindrome, 196–198

poem on, 200

reflection, 180

rotation, 180

scaling, 180

shearing, 180

translation, 159

trivial group, 140

symmetry groups, 134–150, 306

definition of, 139

elements of, 139

operation of, 139

transitive, 306

trivial, 140

Syrus, Publilius, 485

T
T-square (fractal), 335

Talwalkar, Presh, 101

tangent vector, 376, 383

Bézier, 402

definition of, 368, 369

direction of, 539

extreme, 386–388

indeterminate, 383, 546, 547

of a PC, 371, 372

Tangram, 8

and circle dissection, 7

Tarski, Alfred (1901–1983), 7

Tartaglia, Niccolò Fontana

(1499/1500–1557), 85

Tegmark, Max (1967–), xvi

teleidoscope, 152

ten commandments, 49, 56

Tennyson, Alfred (1809–1892), 199

tension (in curves), 387–388, 390–393

tessellation, see also tiles and symmetry

definition of, 186, 191

how to, 191–194, 528

same as tiling, 192

tesseract (4-dimensional cube), 135

tetrahedron

no center, 148

symmetries of, 147–150

tetranacci numbers, 240

tetration, 109, 212

definition of, 109

of i, 108–110

repeated exponentiation, 98

Text by ChatGPT, vii, xi, xii, 68, 94, 95,

125, 129, 134, 200, 227, 296, 328, 461,

521, 522, 533

texture

definition of, 354

procedural, 354

The Prisoner, television series, 487

thinking outside the box, 448

Thomae function, 345, 346, see also popcorn

function

Thomae, Carl Johannes (1840–1921), 345

Thompson, D’Arcy Wentworth (1860–1948),

113

Thomson’s lamp paradox, 211, 269, 274
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Thurston, William Paul (1946–2012), 153,

154

tic-tac-toe board, 14

tiles and symmetry, 186–194, see also
tessellation

tiling

aperiodic, 186–191

Einstein, 190–191

nonperiodic, 186

periodic, 186

regular, 186

semiregular, 187

Wang, 191

time (is money), 272

Toblerone chocolate as a polyhedron, 307

Tolkien, John Ronald Reuel (1892–1973),
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A great nose may be an index of a great soul.
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