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4.16.9 Cubic Uniform B-Spline by Subdivision

The approach to cubic B-splines by subdivision is similar to that of Section 4.16.3. We
show how Chaikin’s methods (Section 4.15) can be applied to the construction of a
cubic uniform B-spline for a set of n + 1 control points Pi. The points are divided
into overlapping groups of four points each, and each group is used to calculate, by
subdivision, a PC that becomes a segment in the entire curve. These cubic segments
have C2 continuity. Since subdivision is a recursive process, we denote the control points
obtained after the kth subdivision by Pk

i . Thus, it makes sense to denote the original
control points by P0

i . They are divided into the overlapping groups
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Figure 4.74a illustrates the refinement process that leads from the group of four
control points P0

0P
0
1P

0
2P

0
3 to a segment of a cubic uniform B-spline. The treatment

for the other groups is similar. The figure shows the positions of the five iteration-1
points P1

i and the seven points P2
i resulting from iteration 2. The first refinement step

computes the five points P1
0P

1
1P

1
2P

1
3P

1
4 as follows:

1. Each of the three points with even subscripts P1
0P

1
2P

1
4 (termed the edge points)

is located at the center of a segment delimited by two of the original control points.
Thus, P1

0 is located midway between P0
0 and P0

1.
2. Each of the two points with odd subscripts P1

1 and P1
3 (termed the vertex points)

is located at the center of a segment whose endpoints are located at the centers of two
segments delimited by two new edge points and one original control point. Thus, P1

1 is
located at the center of the segment whose endpoints are located at the centers of the
two segments delimited by the three points P1

0, P0
1 and P1

2.
The five points produced by the first refinement step can be expressed in terms of

the four original control points by
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Each of the new points P1
i is computed from either two or three of the points P0

j . The
five new points are then divided into two overlapping groups P1
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of four points each, and the second subdivision step is applied to each group to produce
five new points denoted by P2

i . Some of the P2
i points, however, are identical, so this

second step produces a total of seven points. Figure 4.74b shows the points produced by
the first three iterations of the refinement process and how each group of four points Pk

i

produces two overlapping groups of four new points Pk+1
i each. The compact notation

P3
0123 stands for a group of four points. It is easy to see that iteration k produces 2k

overlapping groups of four points each, for a total of 4 + (2k − 1) = 3 + 2k distinct
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Figure 4.74: (a) The First Two Refinement Steps. (b) Groups After Three Steps.

points. Thus, iteration 0 (the original control points) consists of 3 + 20 = 4 points, and
iterations 1, 2, 3, and 4 produce 5, 7, 11, and 19 points, respectively.

Since each point produced in step k is computed from either two or three points of
step k− 1, it is convenient to express a new triplet of points Pk

i P
k
i+1P

k
i+2 as a function

of a triplet Pk−1
j Pk−1

j+1P
k−1
j+2 . We illustrate this relation for k = 1
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or, using compact notation P1
012 = AP0

012 and P1
234 = AP0

123. In general P1
i i+1 i+2 =

AP0
j j+1 j+2 for even values of i and for j = i, i− 1.
For k = 2, the computation of the seven points P2

i can be summarized by the
three overlapping triplets P2

012 = AP1
012, P2

234 = AP1
123, and P2

456 = AP1
234, or in



364 4.16 The B-Spline

general P2
i i+1 i+2 = AP1

j j+1 j+2, for even values of i and for j = i, i − 1, and i −
2. For k = 3, the calculation of the 11 points P3

i is summarized by the five triplets
P3

i i+1 i+2 = AP2
j j+1 j+2, where i is even and j = i, i−1, i−2, and i−3. In general, the

computation of the 3 + 2k points of step k can be summarized by the 2k−1 + 1 triplets
Pk

i i+1 i+2 = APk−1
j j+1 j+2 where i is even and j goes through the values i, i − 1 and so

on, down to i− (2k−1 − 1).

� Exercise 4.99: Write each of the nine triplets P4
i i+1 i+2 (for even values of i) in terms

of a triplet P3
j j+1 j+2.

Because of the repeated use of matrix A, most triplets produced in step k can be
expressed in terms of triplets produced in earlier steps. For example, the trio of points
P3

012 can be written as AP2
012 = A2P1

012 = A3P0
012, the triplet P3

234 equals AP2
123, and

P3
456 can be written as AP2

234 = A2P1
123. (Note that for the triplet on the left-hand

side, the first subscript is always even, but the first subscript of the triplet on the right
can be even or odd.) These relations point the way to moving forward from an earlier
triplet to a later one. If we start, say, with the triplet P1

123, we can easily compute the
triplets P2

234, P3
456, P4

89 10, P5
16 17 18, and so on by multiplying the three points P1

123

by powers of A. We can use this method to leapfrog across many recursion steps and
proceed, in one step, from any triplet Pk

i i+1 i+2 to a triplet many subdivision steps later!
In the limit, this can be written limk→∞Pk

i i+1 i+2 = A∞Pk
i i+1 i+2, where A∞ denotes

limk→∞Ak. Any triplet Pk
i i+1 i+2 is an approximation to the ideal B-spline curve, but

the limit limk→∞Pk
i i+1 i+2 converges to a point on the actual curve.

The problem is therefore to calculate the limit of Ak as k approaches infinity, and
this can easily be done with the help of the following theorem (see any text on matrices
for the proof and for more information on eigenvalues and eigenvectors):

Theorem: If A is an n×n matrix for which there exist n linearly independent
eigenvectors, then A = QΛQ−1, where Q is the matrix whose columns are the n
eigenvectors and Λ is the diagonal matrix whose diagonal elements are the eigenvalues
of A.

This theorem implies that A2 = QΛQ−1QΛQ−1 = QΛ2Q−1, and in general Ak =
QΛkQ−1. Following this theorem, we can write our matrix A (after its eigenvalues
and a set of linearly independent eigenvectors have been computed with appropriate
software) as

A =


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1 1 1


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
 .

Since matrix Λ is diagonal, we have

lim
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k→∞


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
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
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The limit A∞ is therefore
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so we end up with the limits

lim
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where k is any nonnegative integer. Notice that the three points of the triplet converge
to the same point on the B-spline curve.

To summarize, we can (1) select four control points P0
0123, (2) select a value k and

perform k refinement steps, (3) select a value i and a triplet Pk
i i+1 i+2, and (4) compute

(Pk
i + 4Pk

i+1 + Pk
i+2)/6. This will be a point on the cubic B-spline curve segment

defined by the four original control points. To prove that this is so, we can express each
of the three points Pk

i i+1 i+2 in terms of the original control points P0
0123, and compare

the result with the general cubic B-spline segment, Equation (4.159). Here are some
examples.

Example 1 : We start with k = 0, i = 0. The initial triplet is therefore P0
012.

lim
k→∞
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1
6
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2),

which is the initial point P(0) of the B-spline segment, as can be seen from Equa-
tion (4.159).

Example 2 : The values k = 0, i = 1 specify the triplet P0
123 (notice that i does not

have to be even).

lim
k→∞
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123 =

1
6
(1, 4, 1)


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3),

which is the final point P(1) of the B-spline segment, as can be seen from the same
equation.

Example 3 : We perform one refinement steps and select the triplet P1
123 specified

by k = 1 and i = 1. When this triplet is expressed in terms of the control points P0
i ,
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the result is

lim
k→∞
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1
6
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1 + 4P1
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3)

=
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8
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2
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1
8
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3)
)

=
1
48

(P0
0 + 23P0

1 + 23P0
2 + P0

3).

Equation (4.159) tells us that this is the midpoint P(1/2) of the curve segment.

� Exercise 4.100: Select k = 3 and i = 6 and compute the point on the cubic B-spline
curve segment obtained from these values at the limit of subdivision.

4.16.10 Higher-Degree Uniform B-Splines

The methods of Sections 4.16.2 and 4.16.4 can be used to compute uniform B-splines
of higher degrees. It can be shown (see, e.g., [Yamaguchi 88], p. 329) that the degree-n
uniform B-spline segment is given by

Pi(t) = (tn, . . . , t2, t, 1)M




Pi−1

Pi

Pi+1

...
Pi+n−1


 ,

where the elements mij of the basis matrix M are given by

mij =
1
n!

(
n

i

) n∑
k=j

(n− k)i(−1)k−j

(
n + 1
k − j

)
.

Figure 4.75 shows a few examples of these matrices.

4.16.11 Interpolating B-Splines

The B-spline is an approximating curve. Its shape is determined by the control points
Pi, but the curve itself does not pass through those points. Instead, it passes through
the joints Ki. In our notation so far, we have assumed that the cubic uniform B-spline
is based on n + 1 control points and passes through n− 1 joint points. The number of
control points for the cubic curve is, thus, always two more than the number of joints.

One person’s constant is another person’s variable.
— Susan Gerhart.

This section solves the opposite problem. We show how to use the B-spline method
to calculate an interpolating cubic spline curve that passes through a set of n + 1 given
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+ (−3t3 + 3t2 + 3t + 1)(0,−3/2) + t3(3/2, 0)]

=
1
4
(−2t3 + 6t2 − 4, 2t3 − 6t),

P3(t) =
1
6
[(−t3 + 3t2 − 3t + 1)(−3/2, 0) + (3t3 − 6t2 + 4)(0,−3/2)

+ (−3t3 + 3t2 + 3t + 1)(3/2, 0) + t3(0, 3/2)]

=
1
4
(−2t3 + 6t,−2t3 + 6t2 − 4),

P4(t) =
1
6
[(−t3 + 3t2 − 3t + 1)(0,−3/2) + (3t3 − 6t2 + 4)(3/2, 0)

+ (−3t3 + 3t2 + 3t + 1)(0, 3/2) + t3(−3/2, 0)]

=
1
4
(2t3 − 6t2 + 4,−2t3 + 6t). (Ans.33)

4.97: Compute the midpoint (S + E)/2 and normalize its coordinates.

4.98: Equation (4.166) can be written Pt(t) = (t2− t)[(P0−P3) + 3(P1−P2)]. This
is the sum of two differences of points. The first difference is the vector from P3 to P0

and the second is the vector from P2 to P1 (multiplied by 3). The tangent vector of
Equation (4.166) therefore points in the direction of the sum of these vectors, and this
direction does not depend on t. The size of the tangent vector depends on t, but the
size affects just the speed of the spline segment, not its shape.

4.99: This is straightforward and the triplets are P4
012 = AP3

012, P4
234 = AP3

123,
P4

456 = AP3
234, P4

678 = AP3
345, P4

89 10 = AP3
456, P4

10 11 12 = AP3
567, P4

12 13 14 = AP3
678,

P4
14 15 16 = AP3

789, and P4
16 17 18 = AP3

89 10.

4.100: The problem is to compute limk→∞P3
678 = 1

6 (P3
6+4P3

7+P3
8). The Mathematica

code of Figure Ans.27 does the calculations and produces the result (P0
0 + 121P0

1 +
235P0

2 + 27P0
3)/384. A comparison with Equation (4.159) shows that this is point

P (3/4) of the B-spline curve segment.

4.101: By substituting, for example, t + 1 for t in the expression for N13(t).

4.102: The tangent vectors of the three segments are

Pt
1(t) = 2(t− 1)P0 + (2− 3t)P1 + tP2,

Pt
2(t) = (t− 2)P1 + (3− 2t)P2 + (t− 1)P3,

Pt
3(t) = (t− 3)P2 + (7− 3t)P3 + 2(t− 2)P4.

They satisfy Pt
1(1) = Pt

2(1) = P2 −P1, and Pt
2(2) = Pt

3(2) = P3 −P2.
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a={{4,4,0},{1,6,1},{0,4,4}}/8;
{p10,p11,p12}=a.{p00,p01,p02};
{p12,p13,p14}=a.{p01,p02,p03};
{p20,p21,p22}=a.{p10,p11,p12};
{p22,p23,p24}=a.{p11,p12,p13};
{p24,p25,p26}=a.{p12,p13,p14};
{p30,p31,p32}=a.{p20,p21,p22};
{p32,p33,p34}=a.{p21,p22,p23};
{p34,p35,p36}=a.{p22,p23,p24};
{p36,p37,p38}=a.{p23,p24,p25};
{p38,p39,p310}=a.{p24,p25,p26};
Simplify[(p36+4 p37+p38)/6]

Figure Ans.27: Mathematica Code For Exercise 4.100.

4.103: For the curve of Figure 4.85c, the knot vector is

(−3,−2,−1, 0, 1, 1, 1, 2, 3, 4, 5, 6).

The range of the parameter t is from t3 = 0 to t8 = 3 and we obtain the blending
functions by direct calculations (only the last group Ni4 of blending functions is shown):

N04(t) =
t− t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1− t)3 for t ∈ [0, 1),

N14(t) =
t− t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
12

(11t3 − 15t2 − 3t + 7) for t ∈ [0, 1),

N24(t) =
t− t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

1
4
(−7t3 + 3t2 + 3t + 1) for t ∈ [0, 1),

N34(t) =
t− t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

{
t3 for t ∈ [0, 1),
(2− t)3 for t ∈ [1, 2),

N44(t) =
t− t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

1
4

{
(7t3 − 39t2 + 69t− 37) for t ∈ [1, 2),
(3− t)3 for t ∈ [2, 3),

N54(t) =
t− t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
12

{
(−11t3 + 51t2 − 69t + 29) for t ∈ [1, 2),
(7t3 − 57t2 + 147t− 115) for t ∈ [2, 3),

N64(t) =
t− t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t− 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),

N74(t) =
t− t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t− 2)3 for t ∈ [2, 3).

This group of blending functions can now be used to construct the five spline
segments

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3


