
E
Error Correcting Codes

The problem of adding reliability to data has already been mentioned in Sec-
tion 2.12. This appendix discusses general methods for detecting and correcting
errors. Reliability is, in a sense, the opposite of data compression, since it is
achieved by increasing data redundancy. Nevertheless, many practical situations
call for reliable data, so a good data compression program should be able to use
codes for increased reliability, if necessary.

Every time information is transmitted, on any channel, it may get corrupted
by noise. In fact, even when information is stored in a storage device, it may
become bad, because no hardware is absolutely reliable. This also applies to non-
computer information. Speech sent on the air gets garbled by noise, wind, high
temperature, etc. Speech, in fact, is a good starting point for understanding the
principles of error-detecting and -correcting codes. Imagine a noisy cocktail party
where everybody talks simultaneously, on top of blaring music. We know that
even in such a situation it is possible to carry on a conversation, except that more
attention than usual is needed.

E.1 First Principles

What makes our language so robust, so immune to errors? There are two properties,
redundancy and context.

Our language is redundant because only a very small fraction of all possible
words are valid. A huge number of words can be constructed with the 26 letters
of English. Just the number of seven-letter words, e.g., is 267 ≈ 8.031 billion. Yet
only about 50,000 words are commonly used, and even the Oxford Dictionary lists
“only” about 500,000 words. When we hear a garbled word our brain searches
through many similar words, for the “closest” valid word. Computers are very
good at such searches, which is why redundancy is the basis for error-detecting and
error-correcting codes.

868 E. Error Correcting Codes

Our brains work by associations. This is why we humans excel in using the
context of a message to repair errors in the message. In receiving a sentence with
a garbled word or a word that doesn’t belong, such as “pass the thustard please,”
we first use our memory to find words that are associated with “thustard.” Then
we use our accumulated life experience to select, among many possible candidates,
the word that best fits in the present context. If we are on the freeway, we pass
the bastard in front of us; if we are at dinner, we pass the mustard (or custard).
Another example is the (corrupted) written sentence

if u cn rd ths u cn bcm a c prgmr!
which we can easily understand. Computers don’t have much life experience and
are notoriously bad at such tasks, which is why context is not used in computer
codes. In extreme cases, where much of the sentence is bad, even we may not be
able to correct it, and we may ask for a retransmission “say it again, Sam.”

The idea of using redundancy to add reliability to information is due to Claude
Shannon, the founder of information theory. It is not a trivial idea, since we are con-
ditioned against it. Most of the time, we try to eliminate redundancy in computer
data, in order to save space. In fact, all the data-compression methods discussed
here do just that.

Figure E.1 shows the stages that a piece of computer data may go through
when it is created, stored, transmitted, received, and used at the receiving end.

Source

Compress
(remove

redundancy)

Store
Encode

(add redundancy) Transmit

Noise

Use Data

Decompress

Decode
(check

redundant
information)

Figure E.1: Manipulating Information.

We discuss two approaches to reliable codes. The first approach is to duplicate
the code, which leads to the idea of voting codes; the second one uses check bits and
is based on the concept of Hamming distance.

E.2 Voting Codes 869

E.2 Voting Codes

The first idea that usually occurs, when one thinks about redundancy, is to duplicate
the message and send two copies. Thus if the code 110 has to be sent, one can send
110|110. A little thinking shows that this may, perhaps, be a good idea for error
detection, but not for error correction. If the receiver receives two different copies,
it cannot tell which one is good. What about triplicating the message? We can
send 110|110|110 and tell the receiver to decide which of the three copies is good
by comparing them. If all three are identical, the receiver assumes that they are
correct. Moreover, if only two are identical and the third one different, the receiver
assumes that the two identical copies are correct. This is the principle of voting
codes. If all three copies are different, the receiver at least knows that an error has
occurred, i.e., it can detect an error even though it cannot correct it.

To keep the analysis simple, let’s limit ourselves to just 1-bit errors. When the
three copies are received, the following cases are possible:

1. All three are identical. There are two subcases:
1a: All three are good. This is the normal case.
1b: All three have been corrupted in the same way. This is a rare case.

2. Two copies are identical, and the third one is different. Again, there are two
subcases:
2a: The two identical ones are good. This is the normal case.
2b: They are bad. This is, we hope, a rare case.

3. All three copies are different.

Using the principle of voting, we assume that the three identical copies in case
1 are good. In case 1a our assumption is correct, and in case 1b, it isn’t. Similarly,
in case 2a the receiver makes the right decision, and in case 2b, the wrong one. In
case 3, the receiver cannot correct the error, but at least it can detect one, so it
does not make a wrong decision.

The only cases where the receiver makes the wrong decision (where the principle
of voting does not work) are therefore 1b and 2b. A little thinking shows that the
probability of case 1b is much smaller than that of 2b. We will, therefore, try to
estimate the probability of case 2b and, if it is small enough, there would be no
need to worry about case 1b.

It is hard to calculate the probability of two copies being garbled in the same
way. We will, therefore, calculate the probability that one bit gets changed in two of
the three copies (either in the same or in different bit positions). If this probability
is small enough, there is no need to worry about case 2b, since its probability is
even lower.

We denote by p the probability that one bit will get corrupted in our trans-
missions. The probability that one bit will go bad in two of the three copies is(
3
2

)
p2 = 3p2. It is not simply p2, since it is possible to select two objects out of

three in
(
3
2

)
= three ways.

[The notation
(
m
n

)
is pronounced “m over n” and is defined as

m!
n!(m − n)!

.

870 E. Error Correcting Codes

It is the number of ways n objects can be selected out of a set of m objects.]
Let’s assume that p = 10−6 (on average, one error in a million bits transmitted)

and we want to send 108 bits. Without duplication we can expect 108×10−6 = 100
errors, an unacceptably high rate. With three copies sent, we have to send a total
of 3 × 108 bits, and the probability that two out of the three copies will go wrong
is 3 × 10−12. The expected number of errors is thus (3 × 108) × (3 × 10−12) =
9 × 10−4 = 0.0009 errors, a comfortably small number.

If higher reliability is needed, more copies can be sent. A code where each
symbol is duplicated and sent nine times is extremely reliable. Voting codes are thus
simple, reliable, and have only one disadvantage, they are too long. In practical
situations, sending nine, or even three, copies of each message may be prohibitively
expensive. This is why much research has been done in the field of coding in the
last 40 years and, today, many sophisticated codes are known that are more reliable
and shorter than voting codes.

E.3 Check Bits

In practice, error-detection and correction is usually done by means of check bits,
which are added to the original information bits of each word of the message. In
general, k check bits are appended to the original m information bits, to produce
a codeword of n = m + k bits. Such a code is referred to as an (n, m) code. The
codeword is then transmitted to the receiver. Only certain combinations of the
information bits and check bits are valid, in analogy to a natural language. The
receiver knows what the valid codewords are. If a non-valid codeword is received,
the receiver considers it an error. In Section E.7 we show that, by adding more
check bits, the receiver can also correct certain errors, not just detect them. The
principle of error correction is that, on receiving a bad codeword, the receiver selects
the valid codeword that is the “closest” to it.

Example: A set of 128 symbols needs to be coded. This implies m = 7. If we
select k = 4, we end up with 128 valid codewords, each 11 bits long. This is therefore
an (11, 7) code. The valid codewords are selected from a total of 211 = 2, 048
possible codewords, so there remain 2, 048−128 = 1, 920 non-valid codewords. The
big difference between the number of valid and non-valid codewords means that if
a codeword gets corrupted, chances are it will change to a non-valid one.

It may, of course, happen that a valid codeword gets changed, during trans-
mission, to another valid codeword. Our codes are thus not completely reliable, but
can be made more and more reliable by adding more check bits and by selecting
the valid codewords carefully. One of the basic theorems of information theory says
that codes can be made as reliable as desired by adding check bits, as long as n (the
size of a codeword) does not exceed the channel’s capacity.

It is important to understand the meaning of the word “error” in data trans-
mission. When a codeword is received, the receiver always receives n bits, but some
of them may be bad. A bad bit does not disappear, nor does it change into some-
thing other than a bit. A bad bit simply changes its value, either from 0 to 1, or
from 1 to 0. This makes it relatively easy to correct the bit. The code should tell
the receiver which bits are bad, and the receiver can then easily correct those bits
by inverting them.

E.4 Parity Bits 871

In practice, bits may be sent on a wire as voltages. A binary 0 may, e.g., be
represented by any voltage in the range 3–25 volts. A binary 1 may similarly be
represented by the voltage range of −25v to −3v. Such voltages tend to drop over
long lines, and have to be amplified periodically. In the telephone network there is
an amplifier (a repeater) every 20 miles or so. It looks at every bit received, decides
whether it is a 0 or a 1 by measuring the voltage, and sends it to the next repeater as
a clean, fresh pulse. If the voltage has deteriorated enough in passage, the repeater
may make a wrong decision when sensing it, which introduces an error into the
transmission. At present, typical transmission lines have error rates of about one in
a billion, but under extreme conditions—such as in a lightning storm, or when the
electric power suddenly fluctuates—the error rate may suddenly increase, creating
a burst of errors.

E.4 Parity Bits

A parity bit can be added to a group of m information bits to complete the total
number of 1 bits to an odd number. Thus the (odd) parity of the group 10110 is 0,
since the original group plus the parity bit would have an odd number (3) of ones.
Even parity can also be used, and the only difference between odd and even parity
is that, in the case of even parity, a group of all zeros is valid, whereas, with odd
parity, any group of bits with a parity bit added cannot be all zeros.

Parity bits can be used to design simple, but not very efficient, error-correcting
codes. To correct 1-bit errors, the message can be organized as a rectangle of
dimensions (r − 1) × (s − 1). A parity bit is added to each row of s − 1 bits, and
to each column of r − 1 bits. The total size of the message (Table E.2a) becomes
s × r.

0 1 0 0 1
1 0 1 0 0
0 1 1 1 1
0 0 0 0 0
1 1 0 1 1

0 1 0 0 1

(a)

0 1 0 0 1
1 0 1 0
0 1 0
0 0
1

(b)

Table E.2: Parity Bits.

If only one bit gets bad, a check of all s− 1 + r − 1 parity bits will discover it,
since only one of the s − 1 parities and only one of the r − 1 ones will be bad.

The overhead of a code is defined as the number of parity bits divided by the
number of information bits. The overhead of the rectangular code is, therefore,

(s − 1 + r − 1)
(s − 1)(r − 1)

≈ s + r

s × r − (s + r)
.

A similar, slightly more efficient, code is a triangular configuration, where the
information bits are arranged in a triangle, with the parity bits at the diagonal

872 E. Error Correcting Codes

(Table E.2b). Each parity bit is the parity of all the bits in its row and column. If
the top row contains r information bits, the entire triangle has r(r+1)/2 information
bits and r parity bits. The overhead is thus

r

r(r + 1)/2
=

2
r + 1

.

It is also possible to arrange the information bits in a number of two-dimensional
planes, to obtain a three-dimensional cube, three of whose six outer surfaces are
made up of parity bits.

It is not obvious how to generalize these methods to more than 1-bit error
correction.

Symbol code1 code2 code3 code4 code5 code6 code7

A 0000 0000 001 001001 01011 110100 110
B 1111 1111 010 010010 10010 010011 0
C 0110 0110 100 100100 01100 001101 10
D 0111 1001 111 111111 10101 101010 111
k: 2 2 1 4 3 4

Table E.3: Code Examples With m = 2.

E.5 Hamming Distance and Error Detecting

Richard Hamming developed the concept of distance, in the 1950s, as a general way
to use check bits for error detection and correction.

To illustrate this concept, we start with a simple example involving just four
symbols A, B, C, and D. Only 2 information bits are required, but the codes of
Table E.3 add some check bits, for a total of 3–6 bits per symbol. code1 is simple.
Its four codewords were selected from the 16 possible 4-bit numbers, and are not the
best possible ones. When the receiver receives one of them, say, 0111, it assumes
that there is no error and the symbol received is D. When a non-valid codeword
is received, the receiver signals an error. Since code1 is not the best possible, not
every error is detected. Even if we limit ourselves to single-bit errors, this code is
not very good. There are 16 possible single-bit errors in our 4-bit codewords and,
of those, the following 4 cannot be detected: A 0110 changed during transmission
to 0111, a 0111 changed to 0110, a 1111 corrupted to 0111, and a 0111 garbled to
1111. The error detection rate is thus 12 out of 16, or 75%. In comparison, code2

does a much better job; it can detect every single-bit error.

� Exercise E.1: Prove the above statement.

We therefore say that the four codewords of code2 are sufficiently distant from
each other. The concept of distance of codewords is, fortunately, easy to define.

E.5 Hamming Distance and Error Detecting 873

(a)

000 100

010
110

00

0 1

10

01 11

001
101

011 111

(b) (d)(c)

xxx0

xxx1

Figure E.4: Cubes of Various Dimensions and Corner Numbering.

Definitions: (1) Two codewords are a Hamming distance d apart if they differ
in exactly d of their n bits and (2) a code has a Hamming distance of d if every pair
of codewords in the code is, at least, a Hamming distance d apart.

These definitions have a simple geometric interpretation. Imagine a hypercube
in n-dimensional space. Each of its 2n corners can be numbered by an n-bit number
(Figure E.4), such that each of the n bits corresponds to one of the n dimensions.
In such a cube, points that are directly connected have a Hamming distance of 1,
points with a common neighbor have a Hamming distance of 2, etc. If a code with
a Hamming distance of 2 is needed, only points that are not directly connected
should be selected as valid codewords.

The reason code2 can detect all single-bit errors is that it has a Hamming
distance of 2. The distance between valid codewords is 2, so a 1-bit error always
changes a valid codeword into a non-valid one. When two bits go bad, a valid
codeword is moved to another codeword at distance 2. If we want that other
codeword to be non-valid, the code must have at least distance 3.

In general, a code with a Hamming distance of d+1 can detect all d-bit errors.
code3 has a Hamming distance of 2 and thus can detect all 1-bit errors even though
it is short (n = 3).

� Exercise E.2: Find the Hamming distance of code4.

It is now obvious that we can increase the reliability of our transmissions to
any desired level, but this feature does not come free. As always, there is a tradeoff,
or a price to pay, in the form of the overhead. Our codes are much longer than
m bits per symbol because of the added check bits. A measure of the price is
n/m = (m+k)/m = 1+k/m, where the quantity k/m is called the overhead of the
code. In the case of code1 the overhead is 2 and, in the case of code3, it is 3/2.

Example: A code with a single check bit, which is a parity bit (even or odd).
Any single-bit error can easily be detected, since it creates a non-valid codeword.
Such a code therefore has a Hamming distance of 2. code3 above uses a single, odd,
parity bit.

Example: A 2-bit error-detecting code for the same four symbols (see code4).

874 E. Error Correcting Codes

It must have a Hamming distance of 4, and one way of generating it is to duplicate
code3.

E.6 Hamming Codes

The principle of error-correcting codes is to separate the codes even farther by
adding more redundancy (more check bits). When an invalid codeword is received,
the receiver corrects the error by selecting the valid codeword that is closest to the
one received. code5 has a Hamming distance of 3. When one of its four codewords
has a single bit changed, it is 1-bit distant from the original one, but is still 2
bits distant from any of the other codewords. Thus, if there is only one error, the
receiver can always correct it. The receiver does that by comparing every codeword
received to the list of valid codewords. If no match is found, the receiver assumes
that a 1-bit error has occurred, and it corrects the error by selecting the codeword
that is closest to the one received.

In general, when d bits go wrong in a codeword C1, it turns into an invalid
codeword C2 at a distance d from C1. If the distance between C2 and the other
valid codewords is at least d+1, then C2 is closer to C1 than it is to any other valid
codeword. This is why a code with a Hamming distance of d + (d + 1) = 2d + 1 is
needed to correct all d-bit errors.

How are the codewords selected? The problem is to select a good set of 2m

codewords out of the 2n possible ones. The first approach uses brute force. It is
easy to write a computer program that will examine all the possible sets of 2m

codewords, and select one that has the right distance. The problems with this
approach are: (1) The time and storage required at the receiving end to verify and
correct the codes received and (2) the amount of time it takes to examine all the
possible sets of codewords.

1. The receiver must have a list of all the 2n possible codewords. For each
codeword it must have a flag indicating whether it is valid and, if not, which valid
codeword is the closest to it. Every codeword received has to be searched and
located in this list in order to verify it.

2. In the case of four symbols, only four codewords need be selected. For code1

and code2, they had to be selected from among 16 possible numbers, which can
be done in

(
16
4

)
= 7, 280 ways. It is possible to write a simple program that will

systematically examine sets of four codewords until it finds a set with the required
distance. In the case of code4, the four codewords had to selected from a set of 64
numbers, which can be done in

(
64
4

)
= 635, 376 ways. It is still possible to write a

program that will systematically explore all the possible codeword selections for this
case. In practical cases, however, where sets with hundreds of symbols are involved,
the number of possibilities in selecting sets of codewords is too large even for the
fastest computers to handle comfortably.

Clearly, a clever algorithm is needed, to select the best codewords, and to
verify them on the fly, as they are being received. The transmitter should use the
algorithm to generate the codewords when they have to be sent, and the receiver
should use it to check them when they are received. The approach described here
is due to Richard Hamming. In Hamming’s codes [Hamming 86] the n bits of a
codeword are indexed from 1 to n. The check bits are those with indexes that are

E.6 Hamming Codes 875

powers of 2. Thus bits b1, b2, b4, b8, . . . are check bits, and b3, b5, b6, b7, b9, . . . are
information bits. The index of each information bit can be written as the sum of
the indexes of certain check bits. Thus b7 can be written as b1+2+4 and is, therefore,
used in determining the values of check bits b1, b2, b4. The check bits are simply
parity bits. The value of b2, e.g., is the parity (odd or even) of b3, b6, b7, b10, . . .
etc., since 3 = 2 + 1, 6 = 2 + 4, 7 = 2 + 1 + 4, 10 = 2 + 8,

Example: A 1-bit error-correcting code for the set of symbols A, B, C, and
D. It must have a Hamming distance of 2d + 1 = 3. Two information bits are
needed to code the four symbols, so they must be: b3 and b5. The parity bits are
therefore b1, b2, and b4. Since 3 = 1 + 2 and 5 = 1 + 4, the 3 parity bits are defined
as b1 is the parity of bits b3 and b5, b2 is the parity of b3, and b4 is the parity of b5.
This is how code5 of Table E.3 was constructed.

Example: A 1-bit error-correcting code for a set of 256 symbols. It must have
a Hamming distance of 2d + 1 = 3. Eight information bits are required to code the
256 symbols, so they must be b3, b5, b6, b7, b9, b10, b11, and b12. The parity bits
are, therefore, b1, b2, b4, and b8. The total size of the code is 12 bits. The following
relations define the 4 parity bits:
3 = 1 + 2, 5 = 1 + 4, 6 = 2 + 4, 7 = 1 + 2 + 4, 9 = 1 + 8, 10 = 2 + 8, 11 = 1 + 2 + 8,
and 12 = 4 + 8.
They imply that b1 is the parity of b3, b5, b7, b9, and b11.

� Exercise E.3: What are the definitions of the other parity bits?

� Exercise E.4: Construct a 1-bit error-correcting Hamming code for 16-bit codes
(m = 16).

A common question at this point is how the number of parity bits is determined.
The answer is that it is determined implicitly. We know that m data bits are
needed, and we also know that bits b1, b2, b4, b8, . . . should be the parity bits. We
thus allocate the first m bits of the set b3, b5, b6, b7, b9, b10, b11, . . . to the data, and
this implicitly determines the number of parity bits needed.

What is the size of a general Hamming code? The case of a 1-bit error-
correcting code is easy to analyze. Given a set of 2m symbols, 2m valid codewords
are needed. We are looking for the smallest k required to construct codewords of
size m + k and Hamming distance 3. The 2m valid codewords should be selected
from a total of 2n numbers (where n = m + k), such that each codeword consists
of m information bits and k check bits.

Since we want any single-bit error in a codeword to be corrected, such an error
should not take us too far from the original codeword. A single-bit error takes us
to a codeword at distance 1 from the original one. As a result, all codewords at
distance 1 from the original codeword should be non-valid. Each of the original 2m

codewords is n bits long and thus has n codewords at distance 1 from it. They should
be declared non-valid. This means that the total number of codewords needed (valid
plus non-valid) is 2m + n2m = (1 + n)2m. This number has to be selected from
the 2n available numbers, so we end up with the relation (1 + n)2m ≤ 2n. Since
2n = 2m+k, we get 1 + n ≤ 2k or k ≥ log2(1 + n). The following table illustrates
the meaning of this relation for certain values of m.

876 E. Error Correcting Codes

n: 4 7 12 21 38 71
k: 2 3 4 5 6 7
m = n − k: 2 4 8 16 32 64
k/m: 1 .75 .5 .31 .19 .11

There is a geometric interpretation that provides another way of obtaining
the same result. We imagine 2m spheres of radius one tightly packed in our n-
dimensional cube. Each sphere is centered on one of the corners and encompasses
all its immediate corner neighbors. The volume of a sphere is defined as the number
of corners it includes, which is 1+n. The spheres are tightly packed, but they don’t
overlap, so their total volume is (1 + n)2m, and this should not exceed the total
volume of the cube, which is 2n.

The case of a 2-bit error-correcting code is similarly analysed. Each valid
codeword should define a set that includes itself, the n codewords at distance 1 from
it, and the set of

(
n
2

)
codewords at distance 2 from it, a total of

(
n
0

)
+

(
n
1

)
+

(
n
2

)
=

1+n+n(n−1)/2. Those sets should be non-overlapping, which implies the relation

(
1+n+n(n−1)/2

)
2m ≤ 2n ⇒ 1+n+n(n−1)/2 ≤ 2k ⇒ k ≥ log2

(
1+n+n(n−1)/2

)
.

In the geometric interpretation we again imagine 2m spheres of radius 2 each.
Each sphere centered around a corner and containing the corner, its n immediate
neighbors, and its

(
n
2

)
second place neighbors (corners differing from the center

corner by 2 bits).

E.7 The SEC-DED Code

However, even though we can estimate the length of a 2-bit error-correcting Ham-
ming code, we don’t know how to construct it! The best that can be done today with
Hamming codes is single-error-correction combined with double-error-detection. An
example of such a SEC-DED code is code6. It was created by simply adding a parity
bit to code5.

� Exercise E.5: Table E.3 contains one more code, code7. What is it?

The receiver checks the SEC-DED code in two steps. In step 1, the single
parity bit is checked. If it is bad, the receiver assumes that a 1-bit error occurred,
and it uses the other parity bits, in step 2, to correct the error. It may happen, of
course, that three or even five bits are bad, but the simple SEC-DED code cannot
detect such errors.

If the single parity is good, then there are either no errors, or two bits are bad.
The receiver switches to step 2, where it uses the other parity bits to distinguish
between these two cases. Again, there could be four or six bad bits, but this code
cannot handle these cases.

The SEC-DED code has a Hamming distance of 4. In general, a code for c-bit
error correction and d-bit error detection should have a distance of c + d + 1.

E.8 Generating Polynomials 877

E.8 Generating Polynomials

There are many approaches to the problem of developing codes for more than 1-bit
error correction. They are, however, more complicated than Hamming’s method,
and require a background in group theory and Galois fields. In this section we
briefly sketch one such approach, using the concept of a generating polynomial.

We use the case m = 4 for illustration. Sixteen codewords are needed, which
can be used to code any set of 16 symbols. We know from the discussion above
that, for 1-bit error correction, 3 parity bits are needed, bringing the total size of
the code to n = 7. Here is an example of such a code:
0000000 0001011 0010110 0011101 0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000 1100010 1101001 1110100 1111111
Note that it has the following properties:

The sum (modulo 2) of any two codewords equals another codeword. This
implies that the sum of any number of codewords is a codeword. The 16 codewords
above thus form a group under this operation.
(Addition and subtraction modulo-2 is done by 0+0 = 1+1 = 0, 0+1 = 1+0 = 1,
1 − 0 = 0 − 1 = 1. The definition of a group should be reviewed in any text on
algebra.)

Any circular shift of a codeword is another codeword. This code is thus cyclic.

It has a Hamming distance of 3, as required for 1-bit error correction.
Interesting properties! The 16 codewords were selected from the 128 possible ones
by means of a generator polynomial. The idea is to look at each codeword as a
polynomial, where the bits are the coefficients. Here are some 7-bit codewords
associated with polynomials of degree 6.

1 0 0 1 1 1 1
x6 +x3 +x2 +x +1

0 1 1 0 0 1 0
x5 +x4 +x

0 1 0 0 1 1 1
x5 +x2 +x +1

The 16 codewords above have been selected by finding the degree-6 polynomials
that are evenly divisible (modulo 2) by the generating polynomial x3 + x + 1. For
example, the third codeword ‘0100111’ in the table corresponds to the polynomial
x5 + x2 + x + 1, which is divisible by x3 + x + 1 because x5 + x2 + x + 1 =
(x3 + x + 1)(x2 + 1).

To understand how such polynomials can be calculated, let’s consider similar
operations on numbers. Suppose we want to know the largest multiple of 7 that is
≤ 30. We divide 30 by 7, obtaining a remainder of 2, and then subtract the 2 from
the 30, getting 28. Similarly with polynomials. Let’s start with the 4 information
bits 0010, and calculate the remaining 3 parity bits. We write 0010ppp, which gives
us the polynomial x4. We divide x4 by the generating polynomial, obtaining a

878 E. Error Correcting Codes

remainder of x2 + x. Subtracting that remainder from x4 gives us something that
will be evenly divisible by the generating polynomial. The result of the subtraction
is x4 + x2 + x, so the complete codeword is 0010110.

Any generating polynomial can get us the first two properties. To get the
third property (the necessary Hamming distance), the right generating polynomial
should be used, and it can be selected by examining its roots. This topic is outside
the scope of this book, but it is discussed in any text on error-correcting codes. A
common example of a generating polynomial is CRC (Section 3.23).

Bibliography

Hamming, Richard (1950) “Error Detecting and Error Correcting Codes,” Bell Systems
Technical Journal 29:147–160, April.

Hamming, Richard (1986) Coding and Information Theory, 2nd Ed., Englewood Cliffs,
NJ, Prentice-Hall.

Lin, Shu (1970) An Introduction to Error Correcting Codes, Englewood Cliffs, NJ, Prentice-
Hall.

Errors using inadequate data are much

less than those using no data at all.

Charles Babbage (1792–1871)

Give me fruitful error any time, full of seeds, bursting with its

own corrections. You can keep your sterile truth for yourself.

Wilfredo Pareto (1848–1923)

