
Decorrelation in Statistics: The Mahalanobis Transformation

Added material to Data Compression: The Complete Reference

An image can be compressed if, and only if, its pixels are correlated. This is
mentioned many times in Chapter 4, as well as the fact that any image compression
method results in decorrelating the pixels. As a result, any transformation that
decorrelates values can be the basis for an image compression method. Several such
transformations are described in Section 4.4.

The topic of this document is the little-known Mahalanobis transformation,
used by statisticians to decorrelate two random variables. The discussion starts by
defining the square root of a matrix and the concept of a centring matrix. This
is followed by a review of the concepts of mean, variance, and covariance, in order
to derive relations that are needed later. The transformation and its inverse are
then introduced and Mathematica and Matlab codes for it are provided. A proof is
included, to show that this transformation really decorrelates the two variables.

Matrix Concepts. This short section shows (1) how a matrix A can be raised
to any rational power r/s and (2) the definition of the centring matrix H.

The spectral decomposition (also known as the Jordan decomposition) theorem
claims that any symmetric matrix A can be written as

A = ΓΛΓT ,

Where Λ is a diagonal matrix of the eigenvalues λi of A and Γ is an orthogonal
matrix whose columns are the standardized eigenvectors of A.

A corollary of this theorem is that if A is a nonsingular symmetric matrix, then
for any integer n

Λn = diag(λn
i ) and An = ΓΛnΓT .

In addition, if all the eigenvalues of A are positive, then any rational power Ar/s of
A (for integers s > 0 and r) can be defined as

Ar/s = ΓΛr/sΓT , where Λr/s = diag(λr/s
i ).

Two important special cases of this corollary are (we use the notation X ′ for a
transpose)

A1/2 = ΓΛ1/2Γ′, where Λ1/2 = diag(
√

λi), (1)

(this is the symmetric square root decomposition of A; it exists when λi ≥ 0) and

A−1/2 = ΓΛ−1/2Γ′, where Λ−1/2 = diag(1/
√

λi), (2)

(this matrix exists when λi > 0). Direct multiplication verifies that A1/2A1/2 = A
and A1/2A−1/2 = I.

The centring matrix H is defined as

H = I− 1
n
J, (3)
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where I is the identity matrix and J is a matrix of all 1’s. Direct multiplication
verifies that H is symmetric H = H′ and idempotent H2 = H.

Basic Statistical Concepts

The correlations discussed here are between random variables. The dictionary
definition of this term is “a variable whose values are random but whose statistical
distribution is known.”

Given a set of n random variables with p values each, we write them as the rows
of a data matrix Anp. As an example consider the heights, weights, and incomes
of p persons. There are p values for each of the 3 variables, so matrix A has three
rows and p columns. We don’t expect the columns to show any correlation, but
the rows may be correlated. It is known from experience that there is a strong
correlation between the height and weight of a person, but weak or no correlation
between height and income.

We denote the elements of A by aij where i = 1, 2, . . . , n and j = 1, 2, . . . , p.
Row i of A is denoted by ai∗ and column j is denoted by a∗j . The notation a′i∗
refers to row i written vertically, as a column (i.e., transposed).

The mean of random variable j (i.e., column j of A) is denoted by āj and is
given by the familiar expression

āj =
1
n

n∑
k=1

akj =
1
n
a∗j , j = 1, 2, . . . , p.

We arrange the individual means āj in the mean vector ā

ā =




ā1

ā2
...

āp


 =

1
n







a11

a21
...

an1


 +




a12

a22
...

an2


 + · · ·+




a1p

a2p

...
anp





 =

1
n

n∑
k=1

a′k∗ = A′ · 1, (4)

where 1 denotes a column of n 1’s.
The variance of the same variable is defined as

sjj =
1
n

n∑
k=1

(akj − āj)2, j = 1, 2, . . . , p. (5)

If all the values akj are close to the mean āj , the variance is small, indicating that
the variable does not vary much.

From the definition of the variance, we get a natural definition for the covari-
ance of variables i and j

sij =
1
n

n∑
k=1

(aki − āi)(akj − āj), i, j = 1, 2, . . . , p.

The covariance measures the association between the variables. If the two differences
aki − āi and akj − āj have the same sign (i.e., if both values aki and akj are above
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or both are below their averages), then the term (aki− āi)(akj − āj) is positive and
contributes toward increasing the covariance. If the two differences have opposite
signs, then their product is negative and it decreases the covariance. The covariance
of two variables is the basis for the definition of the correlation coefficient of the
variables.

The standard deviation is also an important statistical measure. It is defined
as the square root of the variance.

We denote by SA the p×p matrix whose elements are the covariances sij of the
columns of A. Equation (5) implies that

SA =
1
n

n∑
k=1

(ak∗ − ā)(ak∗ − ā)′ =
1
n

n∑
k=1

ak∗a′k∗ − ā ā′.

This can also be written

SA =
1
n
A′A− ā ā′ =

1
n

(
A′A− 1

n
A′JA

)
,

where J is a matrix of all 1’s. Using Equation (4) and the centring matrix H
[Equation (3)], we end up with the following compact expression for the covariance
matrix

SA =
1
n
A′HA. (6)

It can be shown that the eigenvalues of the covariance matrix SA are nonneg-
ative, so SA is a positive semi-definite matrix. In addition, if n ≥ p + 1, then the
eigenvalues of SA are normally all positive, and SA is a positive definite matrix.

The covariance sij expresses the amount of correlation between variables i
and j. Large positive values of sij mean strong positive correlation. Small values
mean no correlation, and negative values imply negative correlation. The Pearson
correlation coefficient Rij discussed later is based on sij .

The Transformation

The Mahalanobis decorrelation transformation is applied to the n rows of A.
Each row ak∗ is transformed to the row

zk∗ = S−1/2
A (ak∗ − ā), for k = 1, 2, . . . , n, (7)

where S−1/2
A is given by Equation (2). If SA is positive definite, then S−1/2

A is
symmetric positive definite. The proof below shows that the covariance matrix SZ

of the n vectors Z = (z1∗, z2∗, . . . , zn∗) is the identity matrix, implying that these
vectors are decorrelated. Figure 1a is simple Mathematica code to calculate this
transformation. Figure 1b, adapted from [Mahab 00], is Matlab code for the same
task.

An important point is that the transformation is reversible. This is since [from
Equations (1–2)] S−1/2

A is the inverse of S1/2
A . Equation (7) implies that the rows
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Needs["Statistics‘MultiDescriptiveStatistics‘"]
Clear[A,Z,S,S5,d1,d2];
A={{1,2,3},{2.1,4,6.5},{3,7,9},{4.4,8.2,12}};
(* Test data. The columns of A are correlated *)
S=CovarianceMatrix[A];
Llamda=DiagonalMatrix[1/Sqrt[Eigenvalues[S]]];
Ggama=Transpose[Eigenvectors[S]];
(* Eigenvectors are the COLUMNS of Ggama *)
S5=Ggama.Llamda.Transpose[Ggama]; (* S^{-1/2} *)
S-Inverse[S5.S5]; (* Test. Should be all zeros *)
{d1,d2}=Dimensions[A]; (* # of rows & columns of A *)
Z=Array[0,{d1,d2}]; (* Construct null matrix Z *)
Do[Z[[i]]=S5.(A[[i]]-Mean[A]), {i,d1}]
(* Construct d1 rows of Z *)
Mean[Z] (* All zeros *)
Variance[Z] (* All 1’s, so Z is standardized *)
CovarianceMatrix[Z] (* The identity matrix,

so Z is decorrelated! *)

Figure 1. (a) Mathematica code for the Mahalanobis Transformation

clear
x=[1 2 3 4; 4 3 2 2; 4 6 7 5; 9 8 2 1];
s=cov(x); % empirical covariance
[eigvec,eigval]=eig(s); % spectral decomposition
eigval=diag(eigval);
tmp=sort([eigval,eigvec],1);
% sort by eigenvalues (col. 1) ascending
tmp=flipud(tmp); % Flip to get descending sort
eigval=tmp(:,1);
[r,c]=size(tmp);
eigvec=tmp(:,2:c)’;
eigval % eigenvalues
eigvec % eigenvectors
sqrt(eigval)
eigval1=1./sqrt(eigval) % computes lambda to the power -1/2
eigval1=diag(eigval1) % makes diagonal matrix from lambda2
s2=eigvec*eigval1*eigvec’ % computes s to the power -1/2
x=x-mean(x) % corrects for mean
z=x*s2 % Mahalanobis transformation
mean(z) % show mean of z
cov(z) % show empirical covariance of z

Figure 1. (b) Matlab code for the Mahalanobis Transformation
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of A can be reconstructed by

ak∗ = S1/2
A zk∗ + ā, for k = 1, 2, . . . , n.

Proof of Decorrelation

Step 1. From the definition of Z [Equation (7)] and from the fact that S−1/2
A

is symmetric (and thus equals its transpose) we get

Z = H·A·S−1/2
A ,

where H is the centring matrix [Equation (3)].
Step 2. We apply the properties of the centring H to show

SZ
∗=

1
n
Z′HZ

=
1
n

(S−1/2
A A′H′)H(HAS−1/2

A )

= S−1/2
A (

1
n
A′HA)S−1/2

A

∗= S−1/2
A SAS−1/2

A = S1/2
A S−1/2

A = I.

[The two equalities marked with “∗” employ Equation (6).] End of proof.

The Academy admits, then, that divinity and human-
ity are identical, or at least correlative; but the ques-
tion now is in what consists this correlation: such is
the meaning of the problem of certainty, such is the
object of social philosophy.

Joseph-Pierre Proudhon The Philosophy of Misery
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Prasanta Chandra Mahalanobis [1893–1972]

One of the greatest scientists of 20th century India, P. C. Mahalanobis has been
described as a “renaissance man and scientist.” Born in 1893, he graduated with
honors in Physics from Presidency College, Calcutta in 1912. He went to England
in 1915 and completed the Tripos in Mathematics and Physics from King’s College,
Cambridge. He then left England and spent his entire career in Calcutta. He
became interested in statistics, and personally established the widespread use of
this science in India.

His greatest scientific achievement
was (in 1927) the D2 statistic, that be-
came known as the “Mahalanobis Dis-
tance.” He was also an administrator
and his greatest achievement in this field
was the establishment, in 1931, of the
Indian Statistical Institute (ISI), one of
the best centers for statistical research
and practical work in the world. He had
close relationships with important statis-
ticians such as R. A. Fisher and Karl
Pearson, and managed to attract many
world-class scientists to the institute. The
“professor,”—as he was referred to by ev-
eryone in the Institute,—and his wife, Nir-
mal Kumari, poured in all they possessed
to establish the Institute on a firm foot-
ing. In 1959, the Institute was declared
an “Institution of National Importance”
by an act of the Indian Parliament.

In 1957, Mahalanobis became the
Honorary President of the International
Statistical Institute, and was elected a fel-
low of the American Statistical Associa-
tion in 1961. Throughout his career he
received many other academic honors and
awards. He received the highest national
honor, Padma Vibhushan, from the Pres-
ident of India in 1968.

[Rudra 96] is a biography of P. C. Mahalanobis.


