
Contents

A The ASCII Code 901
A.1 ASCII Features 901

B Basics of Probability 905
B.1 Joint and Union of Events 909
B.2 Conditional Probability 909
B.3 Probability Distributions 913

C Curves That Fill Space 921
C.1 The Hilbert Curve 921
C.2 The Sierpiński Curve 922
C.3 Traversing the Hilbert Curve 926
C.4 Traversing the Peano Curve 930

D Data Structures 933
D.1 Arrays 934
D.2 Stacks and Queues 935
D.3 Lists 936
D.4 Trees 936
D.5 Graphs 940
D.6 Hashing 942
D.7 Hash Functions 943
D.8 Collision Handling 944

E Error Correcting Codes 947
E.1 First Principles 947
E.2 Voting Codes 949
E.3 Check Bits 950
E.4 Parity Bits 951
E.5 Hamming Distance and Error Detecting 952
E.6 Hamming Codes 954
E.7 The SEC-DED Code 956
E.8 Generating Polynomials 957

ii Contents

F Finite State Automata 959

G Gallery of Images 963

H Human Visual System 969

H.1 Color and the Eye 969
H.2 The HLS Color Model 972
H.3 The HSV Color Model 972
H.4 The RGB Color Model 974
H.5 Additive and Subtractive Colors 976
H.6 Complementary Colors 978
H.7 Human Vision 978
H.8 Luminance and Chrominance 980
H.9 Spectral Density 984
H.10 The CIE Standard 987
H.11 Halftoning 989
H.12 Dithering 991

I Introductory Mathematics 1003

I.1 Useful Sums 1003
I.2 Matrices 1004
I.3 Trigonometric Identities 1008
I.4 Vector Algebra 1009
I.5 Complex Numbers 1012
I.6 Convolution 1015
I.7 Voronoi Diagrams 1019
I.8 L Systems 1020
I.9 The Greek Alphabet 1024
I.10 Interpolating Polynomials 1025
Glossary 1033

Answers to Exercises 1057

Index 1103

The propositions of mathematics are devoid of all factual content;

they convey no information whatever on any empirical subject matter.

Carl G. Hempel, On the Nature of Mathematical Truth

A
The ASCII Code

Table A.1 shows the 128 ASCII codes. Each code is shown in both octal (leftmost
column and top row) and hexadecimal (rightmost column and either the top or bottom
rows). Octal numbers are typeset in italics, preceded by a quote (’). Hex numbers are
typeset in a fixed-width font, preceded by a double-quote ("). To find the code of a
character, substitute the code from the top or bottom row for the x. The octal code
of “A,” for example, is found by substituting the ’1 from the top row for the x in the
’10x from the left column. Thus, the code is octal 101 or binary 1000001. Similarly, the
hexadecimal code of “A” is a combination of "4x and ’1, i.e., it is "41.

� Exercise A.1: What is the hex code of “I”?

The first 32 codes (0–31) as well as the last one (DEL) are control characters. SP
(code 32) stands for a blank space. The other codes are for the letters, digits, and
punctuation marks.

A.1 ASCII Features

1. The first 32 codes, and also the last code, are the control characters. Those are char-
acters used in input/output and computer communications, and have no corresponding
graphics, i.e., they cannot be printed out. They are described in Table A.2.

2. The ASCII codes are arbitrary. The code of “A” is 4116, but there is no special
reason for assigning that particular value, and almost any other value would have served
as well. About the only rule for assigning codes is that the code of “B” should follow,
numerically, the code of “A.” Thus “B” has the code 4216, “C” has 4316, and so on.
The same is true for the lower-case letters and for the ten digits.

There is also a simple relationship between the codes of the upper- and lower-case
letters. The code of “a” is obtained from the code of “A” by setting the 7th bit to 1.

902 A. The ASCII Code

3. The parity bit in Table A.1 is always 0. The ASCII code does not specify the
value of the parity bit and any value can be used. Different computers use the ASCII
code with even parity, odd parity, no parity, or even a fixed parity of 1.

4. The code of the control character DEL is all ones (except the parity that is, as
usual, unspecified). This is a tradition from the old days of computing (and also from
telegraphy), when punched paper tape was an important medium for input/output.
When punching information on a paper tape, whenever the user noticed an error, they
would delete the bad character by pressing the DEL key on the keyboard. This worked
by backspacing the tape and punching a frame of all 1’s on top of the holes of the bad
character. When reading the tape, the tape reader would simply skip any frame of all
1’s.

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x NUL SOH STX ETX EOT ENQ ACK BEL
˝0x

0́1x BS HT LF VT FF CR SO SI
0́2x DLE DC1 DC2 DC3 DC4 NAK SYN ETB

˝1x
0́3x CAN EM SUB ESC FS GS RS US
0́4x SP ! " # $ % & ’

˝2x
0́5x () * + , - . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; < = > ?
1́0x @ A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x P Q R S T U V W

˝5x
1́3x X Y Z [\] ˆ _

1́4x ‘ a b c d e f g
˝6x

1́5x h i j k l m n o
1́6x p q r s t u v w

˝7x
1́7x x y z { | } ˜ DEL

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table A.1: The ASCII Code.

NUL (Null): No character, Used for filling in space in an I/O device when there are no characters.

SOH (Start of heading): Indicates the start of a heading on an I/O device. The heading may include
information pertaining to the entire record that follows it.

STX (Start of text): Indicates the start of the text block in serial I/O.

ETX (End of text): Indicates the end of a block in serial I/O. Matches a STX.

EOT (End of transmission): Indicates the end of the entire transmission in serial I/O.

ENQ (Enquiry): An enquiry signal typically sent from a computer to an I/O device before the start of
an I/O transfer, to verify that the device is there and is ready to accept or to send data.

ACK (Acknowledge): An affirmative response to an ENQ.

A.1 ASCII Features 903

BEL (Bell): Causes the I/O device to ring a bell or to sound a buzzer or an alarm in order to call the
operator’s attention.

BS (Backspace): A command to the I/O device to backspace one character. Not every I/O device can
respond to BS. A keyboard is a simple example of an input device that cannot go back to the previous
character. Once a new key is pressed, the keyboard loses the previous one.

HT (Horizontal tab): Sent to an output device to indicate a horizontal movement to the next tab stop.

LF (Line feed): An important control code. Indicates to the output device to move vertically, to the
beginning of the next line.

VT (Vertical tab): Commands an output device to move vertically to the next vertical tab stop.

FF (Form feed): Commands the output device to move the output medium vertically to the start of
the next page. some output devices, such as a tape or a plotter, do not have any pages and for them
the FF character is meaningless.

CR (Carriage return): Commands an output device to move horizontally, to the start of the line.

SO (Shift out): Indicates that the character codes that follow (until an SI is sensed), are not in the
standard character set.

SI (Shift in): Terminates a non-standard string of text.

DLE (Data link escape): Changes the meaning of the character immediately following it.

DC1–DC4 (Device controls): Special characters for sending commands to I/O devices. Their meaning
is not predefined.

NAK (Negative acknowledge): A negative response to an enquiry.

SYN (Synchronous idle): Sent by a synchronous serial transmitter when there is no data to send.

ETB (End transmission block): Indicates the end of a block of data in serial transmission. Is used to
divide the data into blocks.
CAN (Cancel): Tells the receiving device to cancel (disregard) the previously received block because
of a transmission error.
EM (End of medium): Sent by an I/O device when it has sensed the end of its medium. The medium
can be a tape, paper, card, or anything else used to record and store information.

SUB (Substitute): This character is substituted by the receiving device, under certain conditions, for
a character that has been received incorrectly (had a bad parity bit).

ESC (Escape): Alters the meaning of the immediately following character. This is used to extend the
character set. Thus ESC followed by an “X” may mean something special to a certain program.
FS (File separator):

GS (Group separator):

RS (Record separator):

US (Unit separator):

{The four separators on the left have no pre-

defined meaning in ASCII, except that FS is

the most general separator (separates large

groups) and US, the least general.

SP (Space): This is the familiar blank or space between words. It is non-printing and is therefore
considered a control character rather than a punctuation mark.

DEL (Delete): This is sent immediately after a bad character has been sent. DEL Indicates deleting
the preceding character (see note 4 earlier).

Table A.2: The ASCII Control Characters.

ASCII stupid question, get a stupid ANSI.

Anonymous

B
Basics of Probability

The key concept discussed here is that of the discrete random variable. Such a variable
X is defined by considering the results of a sequence of random events Ei. We associate
a real number xi with each event Ei, and define X as the set of all the different xis (a
random variable can also be continuous, but this case is not discussed here).

A simple example is the set of results of throwing a die. The results are numbers
between 1 and 6, obtained with equal probability. A more interesting example is the
result of throwing two dice. The result is a number between 2 and 12, but these are
obtained with different probabilities. A result of 2 can be obtained only if each die falls
on 1; thus, it has low probability. A result of 12, similarly, is also obtained with low
probability. A result of 6, however, is obtained when the two dice fall on (1,5), (2,4), or
(3,3), so it is much more common. A practical example is the pixels of an image. In an
image with 8-bit pixels, e.g., the value of a pixel is between 0 and 255, but not all values
occur with the same probability. Imagine two images, A, with a lot of red and B, with
mostly blue. The pixel distributions of those images form different random variables,
because a pixel with, say, value 112 may occur in A with a probability 0.01 and in B,
with probability 0.02.

� Exercise B.1: Consider the event of throwing three coins, where a coin can fall on a
head (H) or a tail (T). Let our random variable X be the number of coins that fall on
heads. List all the values of X and their probabilities.

It is clear that we can write X = (x1, p1, x2, p2 . . . , xn, pn) where xi are the different
values that X takes and pi is the probability of xi. The average (or mean) of X is
X = (1/n)

∑
xi.

The expected value, or expectation, of the variable X is denoted E(X) and is
defined as E(X) =

∑
pixi =

∑
xiP (X = xi). This is the sum of the possible values

xi of X, each weighted by its probability pi. The notation P (X = xi) should be read
“the probability that X will take the value xi.” If all the probabilities pi are the same

906 B. Basics of Probability

(pi = 1/n), then E(X) = X. In the case of three coins, the expected number of heads
is E(X) = X = (3 + 2 + 2 + 1 + 2 + 1 + 1 + 0)/8 = 3/2. We don’t expect, of course, any
individual event (throwing) to produce 1.5 heads, but this will be the number obtained
on average.

� Exercise B.2: What is the expected value of the random variable X that takes just
one value v?

Next we consider the two random variables X = (0, 20) and Y = (10, 10). In either
case, the expected value of the variable is 10. However, variable Y always equals 10,
whereas X never takes this value. This indicates that the expectation of a random
variable does not give enough information about it, and we should consider how far
the individual values xi are from the expectation E(X) (how far the individual values
deviate from the expected value). We thus want to derive an expression for the variance
of a random variable. Intuitively it seems that Y should have a zero variance, while the
variance of X should be nonzero.

The first method that comes to mind is to calculate the sum of the differences
[xi − E(X)]. This definition of the variance is simple, but also counterintuitive, since
it produces a zero in the case of X. Better results are obtained when the absolute
differences |xi − E(X)| are used, instead of the differences.

To understand why even this definition is not satisfactory, consider the case of n−1
values xi, perhaps the results of n−1 measurements of lengths, that are all in the range
[0, 10]. The expectation is also in this range. We now make the next measurement and
get the value xn = 1000. It makes sense to require that this single value, which is so
far from the other ones and from the expectation, should be given more weight in the
calculation of the variance. This is why the squares of the differences, instead of the
differences themselves, are used in the definition of the variance. If the expectation is
10, then a value xi = 5 contributes (5 − 10)2 = 25, but a value xi = 110 makes the
much bigger contribution of (110 − 10)2 = 10000.

This is why the variance of the random variable X is defined as (see also page 420)

Var(X) =
∑

pi[xi − E(X)]2.

If all the pi are identical, then pi = 1/n and the variance becomes

Var(X) =
1
n

∑
[xi − E(X)]2.

The standard deviation is another useful statistical measure. It is defined as the
square root of the variance.

The variance is a natural unit for measuring how a variable varies, but the standard
deviation is also useful because a random variable X has a dimension such as height or
weight. The dimension of the variance is the square of the dimension of the variable
(height squared or weight squared), so the variance and the random variable cannot be
used together in calculations (for example, they cannot be added or subtracted). The
standard deviation, however, has the dimension of the variable.

907

The standard deviation is a measure of the “radius” of the variable. If X has a
Gaussian distribution (Section B.3.1), 68% of its values will be within one standard
deviation of the mean, and 95% will be within two standard deviations.

The computer informed here that three spaces
accounted for eighty-one percent of variance.

— Michael Crichton, The Terminal Man

� Exercise B.3: The definition above implies Var(X) = E[(X − E(X))2]. Show that
Var(X) = E(X2) − [E(X)]2.

Bivariate observations are those in which values of two random variables, X and
Y , are taken. Such observations are referred to as “paired,” and pairing can occur in a
number of situations. The following are some examples:

1. When there are two different variables for each case (e.g., age and shoe size,
height and weight, sex and IQ, country’s infant mortality and average education).

2. When the same variable is measured for each case at two different times (e.g.,
reading level before training and reading level after, IQ at age 3 and IQ at age 6).

3. When the same or different variables are measured from related cases (e.g.,
father’s and son’s educational attainment, husband’s height and wife’s height; mother’s
anxiety and child’s security).

4. When the same or different variables are measured in unrelated cases at the
same time (for example, unemployment rate in city A and in city B in a given month).

The two variables can be independent or dependent. Imagine two persons living
in different areas, whose phone numbers (minus the area codes) are the same. We
intuitively feel that these persons’ heights are independent. On the other hand, the
incomes of two persons having similar phone numbers within the same area code may
be dependent (although perhaps just to a small degree), because such persons may live
close to each other, so there is a chance that they interact or even work together.

The question is how to measure the relation between two random variables. It is
easy to define independence. Two random variables X and Y are independent if

P (X = a, Y = b) = P (X = a)P (Y = b), for any a, b.

The covariance of two random variables is a measure of the linear relation between
them. The covariance indicates only the direction of the linear relation, not its strength.
It is defined as

COVxy =
∑

(xi − X)(yi − Y)
n − 1

.

The following simple Matlab code calculates the covariance matrix of a square matrix
where each column is a variable:

908 B. Basics of Probability

function xy=covarmat(x)
[m,n]=size(x);
xc=x-repmat(sum(x)/m,m,1); % subtract average
xy=xc’ * xc/(m-1);

A positive covariance indicates that the values of one variable increase as the values
of the other increase. A negative covariance indicates that the values of one variable
decrease as the values of the other increase. A zero covariance indicates that there is
no linear relation between the two variables; they are decorrelated. The precise value
of the covariance normally does not have any meaning because it depends on the units
of measurement of X and Y and on their variances. To actually measure the amount
of correlation between two variables we use the statistical measure of correlation. It is
defined as

R =
n

∑
xiyi −

∑
xi

∑
yi√

[n
∑

x2
i − (

∑
xi)2][n

∑
y2

i − (
∑

yi)2]
. (B.1)

It measures the linear relation between two paired variables. The values of R range
from −1 (perfect negative relation), to 0 (no relation), to +1 (perfect positive relation).

Assume that we have two arrays xi and yi of numbers, perhaps measurements of
the height and weight of a group of people. The correlation coefficient of the two arrays
is a measure of how well the variation of one of them (say, yi) can be predicted from the
variation of the other (xi). We can also consider xi and yi variables instead of arrays.
If we look at xi as the independent variable and at yi as the dependent variable, then
the correlation coefficient of the two variables is a measure of how well the variation of
the dependent variable can be predicted from the variation of the independent variable.

If yi = axi for every i (for some real a), then the variation of yi can easily and
accurately be predicted from that of xi and the correlation coefficient is 1 (or −1 if a
is negative). If y follows x (i.e., if xi+1 < xi implies that yi+1 < yi, and xi+1 > xi

implies that yi+1 > yi), then the correlation coefficient is a positive number. In the
opposite case (where xi+1 < xi implies yi+1 > yi, and xi+1 > xi implies yi+1 < yi), the
correlation coefficient is a negative number.

Variance is what any two statisticians are at.

— Unknown

B.1 Joint and Union of Events 909

B.1 Joint and Union of Events

We first discuss the probabilities of independent events. Those are events that do not
affect each other’s probabilities. An example is the throw of a die or of a coin. Each
outcome of a throw is independent of the preceding (and also of the following) throws.
Even when two dice are thrown together, the two outcomes are independent. We denote
the probability of outcome x by P (x). The joint probability P (x · y) of the independent
events x and y is the probability that one event will result in x and another event, in y.
This probability is simply the product of the individual probabilities. For example, if
the probability of having snow today (event A) is 25% and that of having snow tomorrow
(event B) is 40%, then the probability of having snow today and tomorrow, P (A ·B), is
the product 0.25×0.4 = 0.1, i.e., 10% (it is, of course, smaller than each of the individual
probabilities). The probability of the complement x̄ of an event x equals one minus the
probability of the event, P (x̄) = 1 − P (x). Thus, the probability of not having snow
today is 1 − 0.25 = 0.75.

Another important concept is the probability of the union of events. For example,
what is the probability of having snow today or tomorrow? To understand how this
is computed, consider the opposite case. The opposite of it snowing today or snowing
tomorrow is the case where it does not snow today (event Ā) and it does not snow
tomorrow (event B̄). The probability of this event is, of course, the joint probability
P (Ā · B̄), i.e., P (Ā)P (B̄), so we conclude that this joint event is the complement of
the union that we are looking for. Thus, we end up with P (A + B) = 1 − P (Ā · B̄) =
1 − P (Ā)P (B̄). In the snowing example the result is P (A + B) = 1 − P (Ā)P (B̄) =
1− (1− 0.25)(1− 0.4) = 1− 0.45 = 0.55. This result is greater than 25% and 40%, but
it is still a probability, i.e., in the range [0, 1].

� Exercise B.4: (For gamblers.) Calculate the probability of winning in the following
two games. In game A, the player rolls two dice up to 24 times and wins if he rolls a
double-six. In game B the player rolls a single die and wins if he gets a six in four rolls.
These winning probabilities were first calculated by Blaise Pascal, one of the founders
of modern probability theory, in 1654.

B.2 Conditional Probability

Not all events are independent. When dealing with dependent events, we have to
calculate conditional probabilities. We usually ask the question: What is the probability
of event A given that event B has occurred? This is the conditional probability of A
(more precisely, the probability of A conditioned on B) and it is denoted by P (A|B).
The field of conditional probability is sometimes called Bayesian statistics, since it was
first developed by the Reverend Thomas Bayes [1702–1761], who came up with the basic
formula

P (A|B) =
P (A · B)

P (B)
. (B.2)

Example: Three cards are given. One is red on both sides, another is black on both
sides, and the third is red on one side and black on the other side. You pick up a card

910 B. Basics of Probability

without looking at it, place it on the table, then look at it. If you see a red side, what
is the probability of the other side also being red? This probability is conditional and
is denoted by P (Rup|Rdown). Equation (B.2) becomes

P (Rup|Rdown) =
P (Rup · Rdown)

P (Rdown)
.

The probability P (Rup · Rdown) is 1/3, since only one of the three cards has two red
sides. The probability P (Rdown) can be calculated as follows: We have three cards.
The probability of any card being picked up is 1/3. The probability that the first card
will be picked up and will have red down is (1/3)×1, since both its sides are red. The
probability that the second card will be picked up and will have red down is (1/3)×0,
since none of its sides is red. The probability that the third card will be picked up
and will have red down is (1/3)(1/2), since only one of its sides is red. Thus, the total
probability of picking a card and having red down is (1/3)(1 + 0 + 1/2) = 1/2.

The same result can be obtained by considering the events points in some event
space. The first card will have red down no matter what, so it contributes a point
(point 1, with probability 1/3) to the event space. The second card will never have red
down, no matter what. It contributes another point, point 2, also with probability 1/3,
to the event space. The third card will have red down if picked up in a certain way,
and red on top if picked up another way. It therefore contributes two points (points 3
and 4, with probability 1/6 each) to the event space. We are interested in points 1 and
3, whose probabilities are 1/3 and 1/6, that add up to 1/2. Equation (B.2) therefore
yields the conditional probability

P (Rup|Rdown) =
P (Rup · Rdown)

P (Rdown)
=

1/3
1/2

=
2
3
;

a nonintuitive result.

� Exercise B.5: Three companies A, B, and C are competing for a NASA contract to
develop a new space vehicle. Experts agree that the chances of A, B, and C to win the
contract are 2/5, 2/5, and 1/5, respectively. At a certain point company B withdraws
from the competition. What are the winning chances of A and C now?

Example: A family has two children, where a child can be a boy or a girl. If
nothing is known a priori about the children, then there are the four possibilities
(BB,GG, BG, GB), and the probability of having two boys is 1/4. What is the condi-
tional probability of the family having two boys, if it is known that one of the children is
a boy? Intuitively this knowledge eliminates the GG case and reduces the possibilities
to (BB, BG, GB), of which BB is what we are after. The conditional probability is
therefore

P (two boys|one boy) =
P (BB)

P (BB) + P (BG) + P (GB)
=

1
4

1
4 + 1

4 + 1
4

=
1
3
.

B.2 Conditional Probability 911

Using Bayesian statistics we have to calculate P (A|B) where A is the event of having
two boys and B is the event of having a boy. The quantity P (A ·B) is the probability of
having two boys and having a boy. Well, if a family has two boys, then it has a boy, so
looking at the three possibilities (BB, GG, BG), we find that P (A · B) = P (A) = 1/3.
The quantity P (B) is the probability of having a boy. It equals 2/3 because this event
makes up two of the three possibilities. Equation (B.2) yields

P (A|B) =
P (A · B)

P (B)
=

1/3
2/3

=
1
2
.

An important practical case is where an event A has certain alternatives Ai. In
such a case, Equation (B.2) can be generalized to

P (Ai|B) =
P (Ai · B)

P (A1 · B) + P (A2 · B) + · · · + P (An · B)

=
P (Ai)P (B|Ai)

P (A1)P (B|A1) + P (A2)P (B|A2) + · · · + P (An)P (B|An).

This is the well-known Bayes’ theorem, published posthumously by Thomas Bayes in
1763. It requires knowledge of the probabilities P (Ai) of the alternatives and of the
conditional probabilities P (B|Ai) of B relative to the alternatives. This theorem is used
by the QM coder to construct the probability estimation tables used by JPEG, JBIG,
and JBIG2 (see, for example, Table 2.70).

Example: A student has to select one science course among mathematics, physics,
chemistry, and biology. Based on his personal knowledge of the student, his advisor
figures that the probabilities that the student will select one of the four classes are
0.4, 0.3, 0.2, and 0.1, respectively (these probabilities add up to 1). The advisor does
not know what course was actually selected by the student, but at the end of the
semester, the advisor hears that the student got an A in the selected course. Based on
the difficulties of these courses, the advisor estimates the probabilities of the student’s
getting an A in mathematics, physics, chemistry, and biology to be 0.1, 0.2, 0.3, and 0.9,
respectively (these don’t have to add up to 1). Using Bayes’ theorem, the advisor can
now revise the original probabilities that the student will select one of the four courses.
The probability that the student has actually selected, for example, the mathematics
course is

P (selected math|got an A) =
0.4 · 0.1

0.4 · 0.1 + 0.3 · 0.2 + 0.2 · 0.3 + 0.1 · 0.9

=
4
25

= 0.16.

� Exercise B.6: Based on the fact that the student got an A, calculate the new proba-
bilities that the student has actually selected physics, chemistry, and biology.

Example: This is the well-known three prisoners problem. Tom, Dick, and Harry
are in prison. The next morning one of them is going to be executed and the other two
will be freed. They don’t know who the unlucky one is, but their guard knows. Close

912 B. Basics of Probability

to midnight, Tom asks the guard, “I don’t know who is going to be executed, but I do
know that either Dick or Harry is going to be freed. Please tell me which one because,
after all, it does not make any difference in my probability of being executed.” The
guard (an amateur statistician who never heard of Bayes) answers, “You now estimate
the probability of your being executed to be 1/3. If I told you that, say, Dick is going
to be freed, you would know that only you and Harry remain candidates for execution,
so the probability of your being executed would go up to 1/2 and you won’t sleep well
tonight.” The guard’s answer is simple but wrong, since it does not consider conditional
probability. The guard could have given Tom a name, such as Dick, but this knowledge
would not have changed Tom’s conditional probability of being executed. Here is the
analysis.

Without any prior knowledge, each prisoner has probability 1/3 of being executed
and probability 2/3 of being freed. We denote by A the event that Tom will be executed.
Clearly P (A) = 1/3. We want to calculate the conditional probability that Tom will be
executed, given that he was told by the guard that Dick would be freed. Event B is,
therefore, the guard’s telling Tom that Dick is going to be released. The subtle point
is that event B is not necessarily the release of Dick; it’s the guard’s telling Tom that
Dick is to be freed. The difference is easy to see by considering all the possible events
points in an event space. There are four such points, as follows:

Point 1: Harry is to be executed. In this case the guard tells Tom that Dick is to
be freed. Since each prisoner has probability 1/3 of being executed, the probability of
this point is 1/3.

Point 2: Dick is to be executed. In this case the guard tells Tom that Harry is to
be freed. The probability of this point is, again, 1/3.

Points 3 and 4: Tom is to be executed (with probability 1/3). In this case the
guard tells Tom that either Harry or Dick are going to go free. These are points 3 and
4, respectively, in the event space, each with a probability of 1/6.

The joint probability P (A ·B) that Tom will be executed and the guard says that
Dick will be freed is, therefore, the probability of point 4, or 1/6. The probability of
event B (the guard will say that Dick is to be released) is the sum of points 1 and 4,
or 1/3 + 1/6. The conditional probability that Tom will be executed, if the guard says
that Dick is going to be freed is, therefore,

P (A|B) =
P (A · B)

P (B)
=

1/6
1/3 + 1/6

= 1/3,

the same probability of Tom’s being executed without the guard’s saying anything.
(The author is indebted to J. Robert Henderson for pointing out this problem and

its solution.)
The conclusion is: Stay out of trouble, but if you are in it (trouble, i.e.) place your

trust in old Reverend Bayes.

B.3 Probability Distributions 913

B.3 Probability Distributions

Imagine an input stream where symbols have equal probabilities of occurrence. An
example may be an image consisting of N 8-bit pixels where each of the 256 possible
colors appears exactly N/256 times. We say that the colors in this image have a flat
distribution of values. The graph whose x-axis shows the 256 colors and whose y-axis
shows the number of times each color appears will be a horizontal line. Now imagine a
similar image, but with mostly green tones. There are many pixels with different shades
of green and few with any other colors. The same graph will be high for x values that
represent shades of green and low elsewhere. The distribution of colors in this image is
not flat.

The theory of symbiogenesis assumes that the most probable ex-
planation for improbably complex structures (living or otherwise)
lies in the association of less complicated parts. Sentences are eas-
ier to construct by combining words than by combining letters.
Sentences then combine into paragraphs, paragraphs combine into
chapters, and, eventually, chapters combine to form a book—highly
improbable, but vastly more probable than the chance of arriving
at a book by searching the space of possible combinations at the
level of letters or words.

—George B. Dyson, Darwin Among The Machines.

B.3.1 Gaussian Distribution

The Gaussian (also known as the Normal) distribution is an important statistical tool
used in many branches of science. It provides a good model for continuous distributions
that occur in many everyday situations. Examples are the following:

1. The distribution of peoples’ heights. Most people are of medium height. Few
are tall or short. Even fewer are very tall or very short. Practically no one is a giant
or a dwarf. Imagine a sample of people whose height is known. If the sample is large
enough and is not biased, the graph describing the number of people of height h as a
function of h will look very similar to Figure B.1.

2. The speed of gas molecules. The molecules of a gas are in constant motion. They
move randomly, collide with each other and with objects around them, and change their
velocities all the time. However, most molecules in a given volume of gas move at about
the same speed, and only a few move much faster or much slower than this speed. This
speed is related to the temperature of the gas. The higher this average speed, the hotter
the gas feels to us. (This example is asymmetric, since the minimum speed is zero, but
the maximum speed can be very high.)

3. Château Chambord in the Loire valley of France has a magnificent staircase,
designed by Leonardo da Vinci in the form of a double ramp spiral. Worn out by the
innumerable footsteps of generations of tourists, the marble tread of this staircase now
looks like an inverted normal distribution curve. It is worn mostly in the middle, were
most people tend to step, and the wear tapers off to either side from the center. This
staircase, and others like it, are physical embodiments of the abstract mathematical

914 B. Basics of Probability

concept of probability distribution.
4. Prime numbers are familiar to most people. They are attractive and important

to mathematicians because any positive integer can be expressed as a product of prime
numbers (its prime factors) in one way only. The prime numbers are thus the building
blocks from which all other integers can be constructed. It turns out that the number of
distinct prime factors is distributed normally. Few integers have just one or two distinct
prime factors, few integers have many distinct prime factors, while most integers have
a small number of distinct prime factors. This is known as the Erdős-Kac theorem.

m m+s

f(m+s)

Figure B.1: Gaussian (Normal) Distribution

The general features of the bell curve make intuitive sense, but why
it should have precisely the shape it does, which I can confidently
predict with the help of a few lines of grade school arithmetic,
and not some other shape—a little wider in the hip, say, or more
pointed, like a witch’s hat—that remains a mystery.

—Hans Christian von Baeyer, Maxwell’s Demon, 1998.

The Gaussian distribution with mean m and standard deviation s is defined as

f(x) =
1

s
√

2π
exp

{
−1

2

(
x − m

s

)2
}

.

This function has a maximum for x = m (i.e., at the mean), where its value is f(m) =
1/(s

√
2π). It is also symmetric about x = m, since it depends on x according to (x−m)2.

It has the general “bell” shape of Figure B.1. At x = m + s and x = m − s its value is

f(m ± s) =
1

s
√

2π
e−

1
2 ≈ 0.6065

s
√

2π
,

B.3 Probability Distributions 915

which means that at one standard deviation from the mean it has dropped to about 60%
of its maximum. At two standard deviations it drops to about 0.1353 of its maximum
value.

The total area under the normal curve is one unit. The area one standard deviation
from the mean equals ≈ 0.682. At two standard deviations it equals ≈ 0.9545 and at
three standard deviations it is ≈ 0.9973.

(The Gaussian distribution and the concept of standard deviation were discovered
and discussed by Abraham de Moivre in 1733, when he was 18.)

The precise shape of the curve depends on s. As s increases, the curve gets wider.
For small values of s the curve approaches a narrow spike of height 1/(s

√
2π) placed at

x = m.
When we talk about random numbers we usually mean numbers that are uniformly

distributed over a certain interval [a, b]. If we divide interval [a, b] into equal-size subin-
tervals, any of them would contain the same amount of random numbers. It is possible
to draw random numbers that have different distributions, such as Gaussian. When
we compute many random numbers that are normally (i.e., Gaussian) distributed with
mean m and standard deviation s, then count the amount y of these numbers in a small
subinterval [x, x + ε], plot (x, y) as a point, and repeat for many subintervals, we get
the normal distribution with mean m and standard deviation s.

Because of the very nature of the tables, it did not seem necessary
to proofread every page of the final manuscript in order to catch
random errors.

—A Million Random Digits With 100,000 Normal Deviates,
RAND Corp., 1955.

Here are two ways to compute random numbers that are normally distributed with
mean 0 and standard deviation 1.

1. Draw n uniformly-distributed random numbers Ri in the range [−a,+a] for any
real a and calculate their average (1/n)

∑
Ri. The average is the first of the normally-

distributed random numbers Ni. Repeat this process to get N2, N3, and so on. The
larger n, the closer to normal will be the distribution of these numbers. The reason
that the Ni are normally distributed is that it is rare for the average of Ri to be −a or
+a or close to these values, but it is common for it to be around 0. This is an aspect of
the law of large numbers that says: if Ri are random numbers of any distribution, then
the averages (1/n)

∑
Ri are normally distributed.

2. Method 1 above is simple but slow, since n should be large. The Polar method
(see [Knuth 81] Vol. 2, Sec. 3.4.1) is more efficient. Let U1 and U2 be two uniformly-
distributed random numbers in the range [0, 1]. We calculate two normally-distributed
random numbers X1, X2 by the following two simple steps:

Step 1. Compute V1 := 2U1 − 1, V2 := 2U2 − 1, and S := V 2
1 + V 2

2 .

Step 2. If S ≥ 1 go to step 1; else compute X1 := V1

√
−2 ln S

S , X2 := V2

√
−2 ln S

S .

Once a sequence Ni is obtained of normally-distributed random numbers with mean
0 and standard deviation 1, it is easy to convert them to normally-distributed random
numbers with mean m and standard deviation s. Just transform each Ni to m + Ni×s.

916 B. Basics of Probability

Assuming that a function Rnd(), which returns uniformly-distributed random num-
bers in the range [0, 1], is given. Gaussian random numbers with zero mean and a
standard deviation of one can be obtained by the following:

x:=0.0;
for i:=1 to 12 do x:=x+Rnd();
Gauss:=x-6.0;

B.3.2 Laplace Distribution

The Laplace probability distribution is similar to the normal (Gaussian) distribution,
but is narrower and sharply peaked. The general Laplace distribution with variance V
and mean m is given by

L(V, x) =
1√
2V

exp

(
−

√
2
V
|x − m|

)
.

Table B.2 shows some values for the Laplace distributions with m = 0 and V = 3, 4, 5,
and 1,000.

x

V 0 2 4 6 8 10
3: 0.408248 0.0797489 0.015578 0.00304316 0.00059446 0.000116125
4: 0.353553 0.0859547 0.020897 0.00508042 0.00123513 0.000300282
5: 0.316228 0.0892598 0.025194 0.00711162 0.00200736 0.000566605

1,000: 0.022360 0.0204475 0.018698 0.0170982 0.0156353 0.0142976

Table B.2: Some Values of the Laplace Distribution with V = 3, 4, 5, and 1,000.

The factor 1/
√

2V is included in the definition of the Laplace distribution in order
to scale the area under the curve of the distribution to 1.

� Exercise B.7: What is the indefinite integral of the Laplace distribution?

The Laplace distribution is used by the MLP image compression method (Sec-
tion 4.21).

B.3.3 Discrete Distributions

In many statistical experiments, the variable studied is continuous. It can take any
real value in a certain interval. Common examples are heights and weights of persons.
Naturally, the statistical distribution of a continuous variable is called a continuous
distribution. In certain experiments, however, the variable being studied can take only
certain values. Typical examples are the result of a coin or die toss, the number of
cows owned by each farmer in a village, a person’s age in years, and a person’s sex
(the latter has a nonnumeric value). Such experiments lead to discrete distributions.
The important discrete distributions are based on Bernoulli trials and experiments [first
studied by Jacob (Jacques) Bernoulli], so we start by discussing these concepts.

B.3 Probability Distributions 917

There is a story about two friends, who were classmates in high school, talking about
their jobs. One of them became a statistician and was working on population trends.
He showed a reprint to his former classmate. The reprint started, as usual, with
the Gaussian distribution, and the statistician explained to his former classmate the
meaning of the symbols for the actual population, for the average population, and
so on. His classmate was a bit incredulous and was not quite sure whether the
statistician was pulling his leg.

“How can you know that?” was his query. “And what is this symbol here?”
“Oh,” said the statistician, “this is π.”
“What is that?”
“The ratio of the circumference of the circle to its diameter.”
“Well now you are pushing your joke too far,” said the classmate, “surely the

population has nothing to do with the circumference of the circle.”
—Eugene P. Wigner, 1960

A Bernoulli trial is an event that has one of two results. We can call them success
and failure. A Bernoulli experiment is a succession of independent Bernoulli trials. Here
are some examples:

1. A researcher interviews many people and notes, perhaps among other things,
the sex of each. The result is a sequence of the form FFFMMFMMMMFFFMM... .

2. A boy goes to a party and tries to invite girls for a dance. Each invitation is a
Bernoulli trial because it results in either a success S or a failure F (she refuses). The
result of such an experiment is a sequence FFFF...FS. Notice that it normally ends with
the first success, then another experiment may start for the next dance.

3. A travelling salesman goes door to door trying to sell an item. Each try is a
Bernoulli trial, and the full experiment may consist of all the tries of one day.

Two important statistical distributions that are defined in terms of Bernoulli trials
and experiments are the binomial and geometric distributions. They are the topics of
the next two sections.

B.3.4 Binomial Distribution

A set of N Bernoulli trials is performed and the number S of successes is counted. It
can be between 0 and N , so it depends on N . It is also clear that S depends on the
probability ps of success. For a given N , a low ps will result in a small S and a large ps

will result in S close to N . It is easy to figure out the distribution by concentrating on a
specific value of N . We arbitrarily choose N = 5 and try to determine the probabilities
of 1 success in 5 trials, 2 successes in 5 trials, and so on. One success in 5 trials occurs in
the five experiments SFFFF, FSFFF, FFSFF, FFFSF, and FFFFS. The probability of each of
these experiments is ps×p4

f (where pf = 1−ps is the probability of a failure), so the total
probability is p(1) = 5ps×p4

f . Similarly, to compute the probability of two successes
in 5 trials we multiply the probability of one such experiment p2

s×p3
f by the number

of ways to choose two items from five items without repetitions (without choosing the
same item more than once).

918 B. Basics of Probability

In general, it is possible to select k objects out of n in
(
n
k

)
ways where this notation

is pronounced “n over k” and is defined as

n!
k!(n − k)!

.

It is related to the binomial theorem (Equation (I.3)), which is why this statistical
distribution is termed binomial. Thus, the probability of S successes in N Bernoulli
trials is

p(S) =
(

N

S

)
pS

s pN−S
f . (B.3)

Example: If the probability of selling an item is 0.2 and the salesman knocks on
10 doors in one day, then the probability of selling S items is

p(S) =
(

10
S

)
0.2S×0.810−S .

For the 11 S values 0 through 10, the probabilities are 0.11, 0.27, 0.30, 0.20, 0.09, 0.03,
0.01, 0.00, 0.00, 0.00, and 0.00 with a maximum at S = 2. The Matlab code for this
computation is

base=10;
N=factorial(base);
for s=0:base,
(0.2^s)*(0.8^(base-s))*N/(factorial(base-s)*factorial(s))
end

The binomial distribution can be extended beyond Bernoulli trials to cases where a
trial may have more than two results. The result of asking a girl to dance, for example,
may be yes, no, or uncertain. If the probabilities of these answers are py, pn, and
pu, respectively, then the probability of receiving a yes answers, b no answers, and c
uncertain responses is

p(a, b, c) =
(a + b + c)!

a!b!c!
pa

ypb
npc

u.

This is a trinomial distribution and its extension to any multinomial distribution is
obvious.

B.3.5 Geometric Distribution

The random variable of this distribution is the number of Bernoulli trials up to and
including the first success. Recalling our example of a party, the boy may ask girls
for a dance until the first success, so his N -trial Bernoulli experiments always result
in sequences of the form FF...FS (where there may be no F’s). Equation (B.3) tells
us that the probability of this event is p(N) = psp

N−1
f or, equivalently ps(1 − ps)N−1,

and this is the geometric distribution. The reason for its name is that this distribution
satisfies p(N +1) = (1−ps)p(N), and this is similar to a geometric sequence where each
element ai+1 is a multiple q of its predecessor ai.

B.3 Probability Distributions 919

The mean µ of the geometric distribution is 1/ps. If the probability of a girl saying
yes is ps = 0.1, then our boy will have to ask, on average, 1/0.1 = 10 girls to dance
befoe he will hear the first yes.

The statistical law of large numbers is related to this distribution. Suppose the boy
fails to obtain a dancing partner in his first N Bernoulli trials. The probability of success
in trial N + 1 is ps, as is the probability of success in trial N + 2 and in any subsequent
trials. However, we know from long experience that if he continues to ask, sooner or
later he will receive a yes answer. Therefore, the probability of success in trial N + 1 or
trial N + 2 or. . . is 1. We thus conclude that the probability of success in more than N
trials equals the probability of failure in the first N trials, i.e., p(> N) = pN

f = (1−ps)N .

B.3.6 Poisson Distribution

If the number of occurrences of an event x per unit (unit of time, length, area, volume,
or whatever) is, on average, a real positive number λ, then the actual number of such
occurrences is a discrete random variable X with a Poisson distribution. Examples are
(1) the number of cars passing a fixed point in a 1 minute interval, (2) the number of
calls received by a switchboard operator during an hour.

In order for a discrete random variable to obey the Poisson distribution, the fol-
lowing requirements must be met:

1. the length of the observation period is fixed in advance.
2. the events occur at a constant average rate.
3. the number of events occurring in disjoint intervals are statistically independent.
The probability that X will take a value x is

P (X = x) =
λxe−λ

x!
, for x = 0, 1, . . . ,∞,

and the distribution function is

P (X ≤ x) =
x∑

i=0

λie−λ

i!
.

The mean and the variance of the Poisson distribution both equal λ.

The theory of probability is at bottom nothing

but common sense reduced to calculus.

Laplace, Pierre Simon de [1749–1827]

Socrates took poisson

Unknown

920 B. Basics of Probability

Siméon Denis Poisson [1781–1840]

Originally intended by his parents to study medicine, Poisson instead shifted
to mathematics. He published his first book, on finite differences, at age 18.

Poisson taught at the École Polytechnique from 1802. In 1808 he became
an astronomer at the Bureau des Longitudes. In 1809 he was appointed chair of
pure mathematics in the newly established Faculté des Sciences.

His most important works are on definite integrals, Fourier series, probabil-
ity theory, and mechanics.

In 1837 he published an important work on probability where he introduced
the Poisson distribution. This distribution describes the probability that a ran-
dom event will occur in a time or space interval under the conditions that the
probability of the event occurring is very small, but the number of trials is very
large, so that the event actually occurs a few times.

His important text Traité de mécanique was published in 1811 and again in
1833. This book was the standard work on mechanics for many years.

The mathematician Guglielmo Libri said of him: His only passion has been
science: he lived and is dead for it.

One of Poisson’s best known quotations is: Life is good for only two things,
discovering mathematics and teaching mathematics.

C
Curves That
Fill Space

A space-filling curve completely fills up part of space by passing through every point in
that part. It does that by changing direction repeatedly. We will only discuss curves
that fill up part of the two-dimensional plane, but the concept of a space-filling curve
exists for any number of dimensions.

� Exercise C.1: Show an example of a space-filling curve in one dimension.

Several such curves are known and all are defined recursively. A typical definition
starts with a simple curve C0, shows how to use it to construct another, more complex
curve C1, and defines the final, space-filling curve as the limit of the sequence of curves
C0, C1,

C.1 The Hilbert Curve

(This discussion is based on the approach of [Wirth 76].) Perhaps the most familiar of
these curves is the Hilbert curve, discovered by the great mathematician David Hilbert
in 1891. The Hilbert curve [Hilbert 91] is the limit of a sequence H0, H1, H2 . . . of curves,
some of which are shown in Figure C.1. They are defined by the following:

0. H0 is a single point.
1. H1 consists of four copies of (the point) H0, connected with three straight

segments of length h at right angles to each other. Four orientations of this curve,
labeled 1, 2, 3, and 4, are shown in Figure C.1a.

2. The next curve, H2, in the sequence is constructed by connecting four copies of
different orientations of H1 with three straight segments of length h/2 (shown in bold

922 C. Curves That Fill Space

2

1 3

4 1 2

23

(a) (b) (c)

Figure C.1: Hilbert Curves of Orders 1, 2, and 3

in Figure C.1b). Again there are four possible orientations of H2, and the one shown is
#2. It is constructed of orientations 1223 of H1, connected by segments that go to the
right, up, and to the left. The construction of the four orientations of H2 is summarized
in Table C.2.

Drawing this curve is thus done recursively. A procedure to draw orientation #4
of Hi is shown in Figure C.3. It makes four recursive calls to draw the four curves of
order i− 1, and draws straight segments between the calls, to connect them (the names
A, B, C, and D are used instead of 1, 2, 3, and 4).

Figure C.4 is a complete Pascal program for Hn, compiled by the MetrowerksTM

Macintosh Pascal compiler. Notice how the main program determines the initial values
of the starting point (x, y) of the curve, and the segment size h. Variable h0 defines the
size, in pixels, of the square containing the curve, and should be a power of 2.

Curve H3 is shown in Figure C.1c. The particular curve shown is orientation 1223
of H2.

Figures C.5, C.6 and C.7 show the Hilbert curves of orders 4, 5 and 6. It is easy
to see how fast these curves become extremely complex.

C.2 The Sierpiński Curve

Another well-known space-filling curve is the Sierpiński curve. Figure C.8 shows curves
S1 and S2, and Sierpiński has proved [Sierpiński 12] that the limit of the sequence
S1, S2, . . . is a curve that passes through every point of the unit square [0, 1] × [0, 1].

To construct this curve, we need to figure out how S2 is constructed out of four
copies of S1. The first thing that comes to mind is to follow the construction method
used for the Hilbert curve, i.e., to take four copies of S1, eliminate one edge in each,
and connect them. This, unfortunately, does not work, since the Sierpiński curve is
very different from the Hilbert curve. It is closed, and it has one orientation only.
A better approach is to start with four parts that constitute four orientations of one
open curve, and connect them with straight segments. The segments are shown dashed
in Figure C.8. Notice how Figure C.8a is constructed of four orientations of a basic,

C.2 The Sierpiński Curve 923

1: 2 ↑ 1 → 1 ↓ 4
2: 1 → 2 ↑ 2 ← 3
3: 4 ↓ 3 ← 3 ↑ 2
4: 3 ← 4 ↓ 4 → 1

Table C.2: The Four Orientations of H2.

PROCEDURE D(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN
A(i-1); x:=x-h; MoveTo(x,y);
D(i-1); y:=y-h; MoveTo(x,y);
D(i-1); x:=x+h; MoveTo(x,y);
C(i-1);
END;

END (*A*);

Figure C.3: A Recursive Procedure

PROGRAM Hilbert; (* A Hilbert curve *)
USES ScreenIO, Graphics;

CONST LB = 5; Width = 630; Height = 430;
(* LB=left bottom corner of window *)
n=6; (* n is the order of the curve*)
h0=8; (* h0 should be a power of 2 *)

VAR h,x,y,x0,y0: INTEGER;

PROCEDURE B (i: INTEGER); FORWARD;
PROCEDURE C (i: INTEGER); FORWARD;
PROCEDURE D (i: INTEGER); FORWARD;

PROCEDURE A(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

D(i-1); x:=x-h; MoveTo(x,y);
A(i-1); y:=y-h; MoveTo(x,y);
A(i-1); x:=x+h; MoveTo(x,y);
B(i-1);
END;

END (*A*);

PROCEDURE B(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

C(i-1); y:=y+h; MoveTo(x,y);
B(i-1); x:=x+h; MoveTo(x,y);
B(i-1); y:=y-h; MoveTo(x,y);
A(i-1);
END;

END (*B*);

PROCEDURE C(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

B(i-1); x:=x+h; MoveTo(x,y);
C(i-1); y:=y+h; MoveTo(x,y);
C(i-1); x:=x-h; MoveTo(x,y);
D(i-1);
END;

END (*C*);

PROCEDURE D(i: INTEGER);
BEGIN
IF i>0 THEN BEGIN

A(i-1); y:=y-h; MoveTo(x,y);
D(i-1); x:=x-h; MoveTo(x,y);
D(i-1); y:=y+h; MoveTo(x,y);
C(i-1);
END;

END (*D*);

BEGIN (* Main *)
OpenGraphicWindow
(LB,LB,Width,Height,’Hilbert curve’);

SetMode(paint);
h:=h0; x0:=h DIV 2; y0:=x0; h:=h DIV 2;
x0:=x0+(h DIV 2); y0:=y0+(h DIV 2);
x:=x0+400; y:=y0+350; SetPen(x,y);
A(n);

ScBOL;
ScWriteStr
(’Hit a key & close window to quit’);

ScFreeze;
END.

Figure C.4: Pascal Program for a Hilbert Curve of Order i

924 C. Curves That Fill Space

1 24

3 2 4 3 2 4 3 2

1 2 4 1 3 3 1 2

2 4 2 4 1 1 3 2

3 3 3 3 2 4 1 2

1 1 1 1 2 4 3 2

2 4 2 4 3 3 1 2

3 2 4 3 1 1 3 2

22 11 4

Figure C.5: Hilbert Curve of Order 4

Figure C.6: Hilbert Curve of Order 5

C.2 The Sierpiński Curve 925

Figure C.7: Hilbert Curve of Order 6

(a) (b)

Figure C.8: Sierpiński Curves of Orders 1 and 2

926 C. Curves That Fill Space

three-part curve connected by four short, dashed segments. Figure C.8b is similarly
constructed of four orientations of a complex, 15-part curve, connected by the same
short, dashed segments. If we denote the four basic curves A, B, C, and D, then the
basic construction rule of the Sierpiński curve is S: A↘B↙C↖D↗, and the recursion
rules are:

A: A↘B→→D↗A
B: B↙C ↓ ↓ A ↘B
C: C↖D←←B↙C
D: D↗A ↑ ↑ C ↖D (C.1)

Figure C.9 shows the five Sierpiński curves of orders 1 through 5 superimposed on
each other. They were drawn by the Pascal program of Figure C.10.

� Exercise C.2: Figure I.6 shows three iterations of the Peano space-filling curve, de-
veloped in 1890. Use the techniques developed earlier for the Hilbert and Sierpiński
curves, to describe how the Peano curve is constructed. (Hint: The curves shown are
P1, P2, and P3. The first curve, P0 in this sequence is not shown.)

C.3 Traversing the Hilbert Curve

Space-filling curves are used in image compression (Section 4.32), which is why it is
important to develop methods for a fast traversal of such a curve. Two approaches,
both table-driven, are illustrated here for traversing the Hilbert curve.

The first approach [Cole 86] is based on the observation that the Hilbert curve Hi

is constructed of four copies of its predecessor Hi−1 placed at different orientations.
A look at Figures C.1, C.5, C.6, and C.7 should convince the reader that Hi consists
of 22i nodes connected with straight segments. The node numbers thus go from 0 to
22i − 1 and require 2i bits each. In order to traverse the curve we need a function that
will compute the coordinates (x, y) of a node i from the node number i. The (x, y)
coordinates of a node in Hi are i-bit numbers.

A look at Figure C.5 shows how successive nodes are initially located at the bottom
left quadrant, and then move to the bottom right quadrant, the top right quadrant, and
finally the top left one. This figure shows orientation #2 of the curve, so we can say that
this orientation of Hi traverses quadrants 0, 1, 2, and 3, where quadrants are numbered(
3 2
0 1

)
. It is now clear that the two leftmost bits of a node number determine its quadrant.

Similarly, the next pair of bits in the node number determine its subquadrant within
the quadrant, but here we run into the added complication that each subquadrant is
placed at a different orientation in its quadrant. This approach thus uses Table C.11 to
determine the coordinates of a node from its number.

As an example, we compute the xy coordinates of node 109 (the 110th node) of
orientation #2 of H4. The H4 curve has 22·4 = 256 nodes, so node numbers are 8 bits
each, and 109 = 011011012. We start with Table C.11(1). The 2 leftmost bits of the
node number are 01, and table (1) tells us that the x coordinate start with 1, the y
coordinate, with 0, and we should continue with table (1). The next pair of bits is 10,

C.3 Traversing the Hilbert Curve 927

Figure C.9: Sierpiński Curves of Orders 1–5.

and table (1) tells us that the next bit of x is 1, the next bit of y is 1, and we should
stay with table (1). The third pair of bits is 11, so table (1) tells us that the next bit of
x is 0, the next bit of y is 1, and we should move to table (4). The last pair of bits is
01, and table (4) tells us to append 1 and 0 to the coordinates of x and y, respectively.
The coordinates are thus x = 1101 = 13, y = 0110 = 6, as can be verified directly from
Figure C.5 (the small circle).

It is also possible to transform a pair of coordinates (x, y), each in the range [0, 2i−
1], to a node number in Hi by means of Table C.12.

928 C. Curves That Fill Space

program Sierpinski;

USES ScreenIO, QuickDraw;

PROCEDURE SierpinskiP(size,number:word);
(* Adapted from Wirth, 2nd ed, p.115 *)

VAR
H, x, y: INTEGER;

PROCEDURE B (level: word); FORWARD;
PROCEDURE C (level: word); FORWARD;
PROCEDURE D (level: word); FORWARD;

PROCEDURE A (level: word);
BEGIN
IF level > 0 THEN
BEGIN
A(level-1); Line(H,-H);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1); Line(2*H,0);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1); Line(H,H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1)
END
END {A};

PROCEDURE B (level: word);
BEGIN
IF level > 0 THEN
BEGIN
B(level-1); Line(-H,-H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1); Line(0,-2*H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1); Line(H,-H);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1)
END
END {B};

PROCEDURE C (level: word);
BEGIN
IF level > 0 THEN
BEGIN
C(level-1); Line(-H,H);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1); Line(-2*H,0);
IF ScTellInput()>0 THEN BEGIN END;
B(level-1); Line(-H,-H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1)
END
END {C};

PROCEDURE D (level: word);
BEGIN
IF level > 0 THEN
BEGIN
D(level-1); Line(H,H);
IF ScTellInput()>0 THEN BEGIN END;
A(level-1); Line(0,2*H);
IF ScTellInput()>0 THEN BEGIN END;
C(level-1); Line(-H,H);
IF ScTellInput()>0 THEN BEGIN END;
D(level-1)
END
END {D};

VAR
level: WORD;
BEXIT : BOOLEAN;

BEGIN (* SierpinskiP *)
level := 0;
H := size DIV 4;
x := 2 * H;
y := 3 * H;
BEXIT := FALSE;

REPEAT
level := level + 1;; x := x - H;;
H := H DIV 2; y := y + H;;
MoveTo (x, y);
A (level); Line (H, -H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
B (level); Line (-H, -H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
C (level); Line (-H, H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
D (level); Line (H, H);
IF ScTellInput()>0 THEN BEXIT:=TRUE;
IF level = number THEN BEXIT:=TRUE;
UNTIL BEXIT;

END {SierpinskiP};

VAR
ch: CHAR;
prop: termProp;

BEGIN
ScOpenWindow(10, 10, 400, 400);
ScGetProp (prop);
prop. showCurs := FALSE;
ScSetProp(prop); (*Hide alpha cursor*)
ScClear;
SierpinskiP(400,1);ScBeep (1);ScFreeze;
SierpinskiP(400,2);ScBeep (1);ScFreeze;
SierpinskiP(400,3);ScBeep (1);ScFreeze;
SierpinskiP(400,4);ScBeep (1);ScFreeze;
SierpinskiP(400,5);ScBeep (1);ScFreeze;
ScClose;
END {Sierpinski}.

Figure C.10: A Pascal Program for Sierpiński Curves of Orders 1–5.

C.3 Traversing the Hilbert Curve 929

Bit Next Bit Next Bit Next Bit Next
pair x y table pair x y table pair x y table pair x y table
00 0 0 2 00 0 0 1 00 1 1 4 00 1 1 3
01 1 0 1 01 0 1 2 01 0 1 3 01 1 0 4
10 1 1 1 10 1 1 2 10 0 0 3 10 0 0 4
11 0 1 4 11 1 0 3 11 1 0 2 11 0 1 1

(1) (2) (3) (4)

Table C.11: Coordinates of nodes in Hi.

xy Int. Next xy Int. Next xy Int. Next xy Int. Next
pair pair table pair pair table pair pair table pair pair table
00 00 2 00 00 1 00 10 3 00 10 4
01 11 4 01 01 2 01 01 3 01 11 1
10 01 1 10 11 3 10 11 2 10 01 4
11 10 1 11 10 2 11 00 4 11 00 3

(1) (2) (3) (4)

Table C.12: Node Numbers in Hi.

� Exercise C.3: Use Table C.12 to compute the node number of the H4 node whose
coordinates are (13, 6).

The second approach to Hilbert curve traversal uses Table C.2. Orientation #2 of
the H2 curve shown in Figure C.1(b) is traversed in order 1223. The same orientation
of the H3 curve of Figure C.1(c) is traversed in 2114 1223 1223 4332, but Table C.2 tells
us that 2114 is the traversal order for orientation #1 of H2, 1223 is the traversal for
orientation #2 of H2, and 4332 is for orientation #3. The traversal of orientation #2 of
H3 is thus also based on the sequence 1223. Similarly, orientation #2 of H4 is traversed
(Figure C.5) in the order

1223 2114 2114 3441 2114 1223 1223 4332
2114 1223 1223 4332 3441 4332 4332 1223,

which is reduced to 2114 1223 1223 4332, which in turn is reduced to the same sequence
1223.

The idea is therefore to create the traversal order for orientation #2 of Hi by
starting with the sequence 1223 and recursively expanding it i−1 times, using Table C.2.

� Exercise C.4: (Easy.) Show how to apply this method to traversing orientation #1 of
Hi.

A MATLAB function hilbert.m to compute the traversal of the curve is available
at [Matlab 99]. It has been written by Daniel Leo Lau (lau@ece.udel.edu). The call

930 C. Curves That Fill Space

hilbert(4) produces the 4×4 matrix

5 6 9 10
4 7 8 11
3 2 13 12
0 1 14 15

.

C.4 Traversing the Peano Curve

The Peano curves P0, P1, and P2 of Figure Ans.43 have 1, 32, and 34 nodes, respectively.
In general, Pn has 32n nodes, numbered 0, 1, 2, . . . , 32n−1. This suggests that the Peano
curve [Peano 90] is somehow based on the number 3, in contrast to the Hilbert curve,
which is based on 2. The coordinates of the nodes vary from (0, 0) to (n − 1, n − 1). It
turns out that there is a correspondence between the node numbers and their coordinates
[Cole 85], which uses base-3 reflected Gray codes (Section 4.2.1)

A reflected Gray code [Gray 53] is a permutation of the i-digit integers such that
consecutive integers differ by one digit only. Here is one way to derive these codes for
binary numbers. Start with i = 1. There are only two 1-bit digits, namely, 0 and 1,
and they differ by 1 bit only. To get the RGC for i = 2 proceed as follows:

1. Copy the sequence (0, 1).
2. Append (on the left or on the right) a 0 bit to the original sequence and a bit

of 1 to the copy. The result is (00, 01), (10, 11).
3. Reflect (reverse) the second sequence. The result is (11, 10).
4. Concatenate the two sequences to get (00, 01, 11, 10).
It is easy to see that consecutive numbers differ by one bit only.

� Exercise C.5: Follow the rules above to get the binary RGC for i = 3.

Notice that the first and last numbers in an RGC also differ by one bit. RGCs
can be created for any number system using the following notation and rules: Let
a = a1a2 · · · am be a non-negative, base-n integer (i.e., 0 ≤ ai < n). Define the quantity
pj = (

∑j
i=1 ai) mod 2, and denote the base-n RGC of a by a′ = b1b2 · · · bm. The digits

bi of a′ can be computed by

b1 = a1; bi =




ai if pi−1 = 0;
Odd n

n − 1 − ai if pi−1 = 1.

ai if ai−1 is even;
Even n

n − 1 − ai if ai−1 is odd.

i = 2, 3, . . . , m.

[Note that (a′)′ = a for both even and odd n.] For example, the RGC of the sequence
of base-3 numbers (trits) 000, 001, 002, 010, 011, 012, 020, 021, 022, 100, 101. . . is 000,
001, 002, 012, 011, 010, 020, 021, 022, 122, 121. . . .

The connection between Peano curves and RGCs is: Let a be a node in the peano
curve Pm. Write a as a ternary (base-3) number with 2m trits a = a1a2 · · · a2m. Let a′ =

C.4 Traversing the Peano Curve 931

b1b2 · · · b2m be the RGC equivalent of a. Compute the two numbers x′ = b2b4b6 · · · b2m

and y′ = b1b3b5 · · · b2m−1. The number x′ is the RGC of a number x, and similarly for
y′. The two numbers (x, y) are the coordinates of node a in Pm.

Bibliography

Backus, J. W. (1959) “The Syntax and Semantics of the Proposed International Algebraic
Language,” in Proceedings of the International Conference on Information processing, pp. 125–
132, UNESCO.

Chomsky, N. (1956) “Three Models for the Description of Language,” IRE Transactions on
Information Theory 2(3):113–124.

Cole, A. J. (1985) “A Note on Peano Polygons and Gray Codes,” International Journal of
Computer Mathematics 18:3–13.

Cole, A. J. (1986) “Direct Transformations Between Sets of Integers and Hilbert Polygons,”
International Journal of Computer Mathematics 20:115–122.

Gray, Frank (1953) “Pulse Code Communication,” United States Patent 2,632,058, March 17.

Hilbert, D. (1891) “Ueber Stetige Abbildung Einer Linie auf ein Flachenstuck,” Math. Annalen
38:459–460.

Lindenmayer, A. (1968) “Mathematical Models for Cellular Interaction in Development,” Jour-
nal of Theoretical Biology 18:280–315.

Matlab (1999) is URL http://www.mathworks.com/.

Naur, P. et al. (1960) “Report on the Algorithmic Language ALGOL 60,” Communications of
the ACM 3(5):299–314, revised in Communications of the ACM 6(1):1–17.

Peano, G. (1890) “Sur Une Courbe Qui Remplit Toute Une Aire Plaine,” Math. Annalen
36:157–160.

Sierpiński, W. (1912) “Sur Une Nouvelle Courbe Qui Remplit Toute Une Aire Plaine,” Bull.
Acad. Sci. Cracovie Serie A:462–478.

Sagan, Hans (1994) Space-Filling Curves, New York, Springer Verlag.

Wirth, N. (1976) Algorithms + Data Structures = Programs, Englewood Cliffs, NJ, Prentice-
Hall, 2nd Ed.

All letters come and go—L is here to stay.

Grzegorz Rozenberg

D
Data Structures

A computer program is a set of instructions (or statements) that specify operations on
data items. Sometimes, data items are independent and each is stored separately in
memory. In such a case, each item becomes a variable in the program and is given a
name. A set of data items may, however, be related, and such items should be stored
together in memory as a data structure. Examples are:

1. A data base with information about people. Each element of the data base may
consist of a name (first, middle, and last), an identifying number, an address, and other
data such as age, salary, or title. The name may be stored in an array. The identification
number becomes an integer variable, the address is stored in another array, and so on.
These arrays and variables are then grouped to become one node in a linked list.

2. A matrix of numbers, such as the quantization matrices used in certain image
compression methods. Such numbers can be stored in a two-dimensional array.

Arrays and lists are examples of data structures. Two things should be described
in a data structure, the way data items are related, and the operations that the pro-
gram should be able to perform on the structure and on the data items. Examples
of operations are inserting/deleting an item, replacing an item, searching for an item,
and increasing/decreasing the size of the structure. Once the programmer knows how
the data items are related and what operations are needed, the data structure can be
designed. Data structures are sometimes simple, such as an array, a stack, or a list, but
they can get very complex, since one structure may combine lists, stacks, hash tables,
and arrays in a complex way.

The main data structure described in this chapter is the hash table, but we start
with a short survey of some basic data structures.

934 D. Data Structures

D.1 Arrays

The array is a common, useful, and important data structure. Intuitively, we can think
of an array as a set of consecutive memory locations grouped under one name, where
each individual location is accessed by its index. While this is a practical description
of arrays, it is not a good definition, since it defines this data structure by means of its
actual representation in memory. A more formal definition is

An array is a set of pairs (index, value).
This defines an array as a mapping from the set of indexes to the set of values.

In principle, the index can be any data type, but in practice it is normally an
integer. In the old FORTRAN programming language the first array element has index
1. In the C language the first index is 0, and in Pascal the programmer can specify
the first array index. Most programming languages require the size of all arrays to be
static, i.e., the size of an array cannot be changed at run time.

A program may use many data items, and storing them in an array is convenient,
since the programmer has to memorize just one name, the name of the array, for all
these items. However, each item stored in an array has an index, and the programmer
either has to memorize the indexes, use an application where it is not necessary to
memorize each index, or search the array for any particular item.

An important feature of arrays is that they can have more than one dimension.
A two-dimensional array A[m, n] is a matrix. Similarly, a three-dimensional array
A[l, m, n] is a three-dimensional matrix. Alternatively, we can think of it as a one-
dimensional array of l elements, each a matrix of dimensions m×n.

Even though a two-dimensional array can be considered a matrix, it is physically
stored in memory as a set of consecutive locations. The array can be stored in memory
row by row or column by column. Figure D.1 shows that in the former case, an array
item A[i, j] in an m×n array is stored in location (i−1)n+ j from the start of the array
(assuming that row and column indexes start at 1).

(i−1)n

start of row ifirst i−1 rows

element i,j

j

Figure D.1: Position of Array Element A[i, j]

� Exercise D.1: Assume that an array A of dimensions m×n is stored in memory column
by column and that row and column indexes start at 0. What is the distance, in memory,
of array element A[i, j] from the first array element A[0, 0]?

A simple example of the use of an array is storing the n + 1 coefficients of a
polynomial of degree n in an array of size n + 2 or longer (see Equation (I.19) for the
definition of a polynomial). In this case the programmer implicitly knows what’s in
each array location.

D.2 Stacks and Queues 935

� Exercise D.2: Why should the array size be n + 2 and not n + 1?

D.2 Stacks and Queues

The stack is also a common data structure. Intuitively we think of a stack as a container
open at one end. The only operations on a stack are insertion and deletion (commonly
referred to as push and pop, respectively), and they are done from the open end. Fig-
ure D.2a shows how three data items are pushed into an empty stack and how the only
item that can be popped out is the last that was pushed in. This is why a stack is
sometimes referred to as a LIFO (last-in first-out) structure. The stack is normally
implemented as an array, but because of the way it is used, the program needs to keep
track of only one item, the top one (i.e., the last one in), at any given time. The program
therefore maintains a pointer called top of stack that points at that data item.

(a)

A A

B

A

B

A

B

C

(b)

A A A

B B B

C C C

D D D

Figure D.2: Stack and Queue

A queue is a data structure where the only item that can be removed is the oldest
one. A queue is therefore based on the FIFO (first-in first-out) principle. Figure D.2b
shows a queue during four insertions and three deletions. It is obvious that these
operations move the data from the start to the end of the queue, which is why the
circular queue (discussed in Section 3.3.1) is a more useful data structure than the
linear queue.

936 D. Data Structures

Figure D.3: Linked Lists

D.3 Lists

A list (or a linked list) is a data structure made of nodes that point to each other. A
node may be a single variable, an array, a stack, another list, or any other structure,
but the main feature of lists is the use of pointers. This makes it easy to control the
size of the list dynamically. A programming language may include statements such as
get_node (to construct a new node from the pool of available storage) and put_node
(to return the storage used by a node to that pool). Figure D.3 shows several ways to
organize lists. A list can be singly-linked or doubly-linked, it can be cyclical, and the
list elements may themselves be lists.

A queue may be implemented as a linked list. Inserting a new item is done by
creating a new node and adding it to the list. Deleting an item is done by deleting the
first (oldest) node.

D.4 Trees

A tree can be loosely defined as a data structure consisting of nodes connected with
directed edges, where all the nodes are connected, there are no cycles, and one node is
considered special. This node is called the root of the tree. Figure D.4a shows such a
structure where any of the nodes can be considered the root. Notice the dashed edge.
Including this edge in the structure would introduce a cycle, and thus change it from
a tree to a general graph. Figure D.4b shows the same structure with node a chosen
as the root and the remaining nodes rearranged to form the familiar shape of a tree. If
there are edges leading directly from a node a to nodes b, c, and d, then the three nodes
are called the children of a and a is their parent. If a node does not have any children,
it is a leaf. A node that is neither a leaf nor the root is an interior node. The depth (or
level) of a node is the length of the path from the root to the node. The root itself has

D.4 Trees 937

depth zero. The height of a tree is the largest depth (or, alternatively, one less than the
number of levels of the tree). Figure D.4b shows that each node in a tree is the root of
a subtree (which may be empty).

(a)

(c) (d)

(e)

(b)

a

a

a

b c
d e f

g h

(f)

a

b c
d e f

g h

Figure D.4: Various Trees

In a typical practical implementation, a node a is a short array containing a data
item and pointers. In most cases the array contains 1, 2, or 3 pointers, each pointing
to the start of a linked list. The first pointer may point to a list containing nodes that
are siblings of a (notice that the root does not have any siblings). The second pointer
may point to a list containing nodes that are children of a (if a is a leaf, this pointer
is null), and the third pointer may point to the parent of a (a null pointer, if a is the
root). This way it is possible to travel in the tree to the right (from a to its next sibling
on the right), down (from a to its first child), and up (from a to its parent). Such a tree
may also change dynamically, with nodes being added, deleted, and modified.

Sometimes, it is useful to add another component (or field) to the array, with a
code marking the node as either existing or deleted. This way a node can be effectively
deleted from the tree by setting this field to “deleted,” without having to actually
delete it and change pointers. This technique is called “lazy deletion” and is useful
in applications where there is no need to return deleted nodes to the pool of available
storage.

938 D. Data Structures

If a node can have just a few children, it may be possible to implement the entire
tree in an array, without any pointers. The simplest example is a complete binary tree,
where the two children of node a are stored in locations 2a and 2a + 1 and the parent
of a can be found at array location �a/2� (this is discussed in Section 2.15).

� Exercise D.3: Can a ternary tree be implemented in this way?

A binary tree can be complete, skewed, or anything in between. This is illustrated
by Figure D.4c,d,e.

An important operation on a tree is a traversal. A traversal follows pointers in such
a way that each node of the tree is visited once. There are four types of tree traversals:

Post-order. All the children of a node are visited, then the node itself is visited.
This is done recursively by the two recursive calls postorder(L); postorder(R); (where
L and R are the two children of the root), followed by visit(root). The post-order
traversal of the tree of Figure D.4e is (((D, E), B), (((G, H), F), C)), A.

Pre-order: Visit a node, then all its children.
In-order: This is for binary tree traversal. Visit the left subtree of a node, then the

node, then its right subtree.
Level-order: Visit all the nodes of level L, then proceed to level L + 1.

� Exercise D.4: Show the pre-order, in-order, and level-order traversals of the tree of
Figure D.4e.

A tree traversal is normally done recursively, except that level-order traversal uses
a queue instead of a stack.

In a simple implementation, each node of a binary tree has two pointers, for its
left and right children. It is obvious that not all the pointers are used. For example,
in the binary tree of Figure D.4e there are 9 unused pointers (8 in the leaves and one
in node C). Such unused pointer fields can be used for extra pointers called threads.
One way to define threads is to find a node A with an unused field of a right child, and
to store in this field a pointer to the successor of A in inorder traversal. The resulting
three threads of the tree of Figure D.4e are shown in Figure D.4f. Obviously, threads
can be defined differently and can be very useful in special applications, where the tree
has to be traversed or searched in nonstandard ways. The price of adding the threads
is an extra bit (a flag) in each node A, indicating whether an ordinary pointer to the
right child, or a thread is stored in A.

Imagine an interior node a in a binary tree. It has two children, l and r, that are
the roots of the left and right subtrees of a, respectively. If l has the largest data value
in its subtree, and r satisfies the same thing for its subtree, then the binary tree is called
a heap.

A binary search tree is an important type of tree. In such a tree all nodes in the left
subtree of node a have data values that are smaller than the data value of a. Similarly,
all the nodes in the right subtree of a have data values larger than a. If the data are not
numbers, the relations “less than” and “greater than” have to defined. Binary search
trees are described and used in Section 3.4. The main use of such a tree is quick search.
Searching for a node in a binary search tree takes at most H steps, where H is the
height of the tree.

D.4 Trees 939

Imagine a binary search tree that starts empty. When nodes are inserted into the
tree, it grows. The order in which the nodes are inserted determines the shape of the
tree. If the nodes being inserted have random data values, the resulting tree will be
balanced, i.e., very similar to a complete tree. Its height will be approximately log2 n
where n is the number of nodes. Searching such a binary search tree with a million
nodes takes at most 20 steps. If, on the other hand, the new nodes have monotonous
data values (ascending or descending), the tree will end up being skewed. Its height
(and thus the maximum search time) will be n.

Binary search trees are commonly used in applications that require many searches,
so it is desirable to find a way to keep such a tree as close to balanced as possible,
regardless of the order of node insertions. The AVL tree (named for its two developers,
Adelson-Velskii and Landis) is such a data structure. Each node in an AVL tree has
a balance factor, defined as the height of its left subtree minus the height of its right
subtree. This balance factor is allowed to take only the three values 0, 1, and −1, i.e.,
the heights of the two subtrees of any node may differ by at most 1.

When the balance factor of a node becomes greater than 1, we say that the node is
“out of balance on the left;” when it becomes less than −1, we say it is “out of balance
on the right.” These situations are immediately corrected, and the node brought back
into balance. An AVL tree is a special case of a height-balanced binary tree, a structure
defined by:

1. An empty binary tree is height balanced.
2. A nonempty binary tree is height balanced if its left and right subtrees are height

balanced with balance factors of 0, 1, or −1.

An AVL tree is a height-balanced binary search tree, a special case of a height-
balanced binary tree. Figure D.5a shows an example of an AVL tree that illustrates
one important attribute of these trees, namely they don’t have to be complete. The
leaves of an AVL tree don’t have to be on the same level or even on adjacent levels.
However, it can be shown that an AVL tree is not very different from a complete binary
tree because its height can be at most

√
2 log2 n. An AVL tree is created either empty

of with 1 node, so initially it is height-balanced. It is kept height-balanced after each
insertion and deletion by special adjustments (called rotations) that restore the balance.
The details can be found in texts on data structures.

o
(20, 30)

(8, 10, 15) (24, 27)

(31, 33) (40, 44) (51, 53, 60, 74)

(35, 49)j u
f m

n

x
v y

r

s
z

(a) (b)

Figure D.5: (a) An AVL Tree. (b) A B-Tree

940 D. Data Structures

The last type of tree to be mentioned here is the B-tree. This is an important type
of tree because it is used by many operating systems to maintain the file directory of
a disk. The growth of a B-tree is especially controlled to keep it well-balanced, leading
to fast searches, but a B-tree, in spite of its name, is not a binary tree.

A node in a B-tree can have several children, and it is this property, together with
the tree being well-balanced, that makes it a natural candidate for a disk directory. The
following extreme example shows why. Imagine a tree where each node can have 100
children. If the tree has a height of 4, it can contain up to

1 + 100 + 1002 + 1003 = 1, 010, 101

nodes. One node among more than a million can be found in at most four steps! The
price for this is, of course, a complex node structure, allowing for up to 100 children.
In a disk directory each node is kept on the disk as a block. The size of a disk block
varies, but is typically a few hundred bytes. Therefore, a block has room for much
information in the form of keys, pointers, and flags. At the same time, a disk access
is much slower than memory access, so finding an item in the directory should involve
as few disk accesses as possible. Once the disk is accessed, an entire block is read into
memory. In memory, the block can be searched and its data processed quickly.

A node in a B-tree contains a count field, a pointer to a list of entries (records to
be searched, where each record has a key and possibly some other data), and a pointer
to a list of branches. The lists of entries and branches must be ordered, but they can be
any ordered structures, such as linked lists, arrays, or binary search trees. The count
field m contains the number of entries (m) and the number of branches (m + 1).

Figure D.5b shows a simple B-tree. Only the list of entries is shown, and for each
entry only the key is shown. This is enough to understand how the tree is searched.
The root contains keys 20 and 30. This means that branch 0 from the root leads to an
entry list for all entries with keys that are less than 20. Branch 1 from the root leads
to an entry list for all entries with keys in the range [20, 30) and branch 2 leads to the
list for entries with keys ≥ 30. To search for 34, for example, we start at the root, take
branch 2 (since 33 ≥ 30), then branch 0 (since 33 < 35). We arrive at the node with
entry list (31, 33) and take branch 2 (since 33 ≥ 35). This brings us to a null node,
which is how we discover that key 34 is not in the tree.

D.5 Graphs

A graph is a general data structure consisting of nodes (or vertices) and edges (or
arcs) connecting them. The graph is a general structure because not all nodes have to
be connected and no node has to be special (such as the head or root of the graph).
Figure D.6 shows examples of graphs. A graph may even consist of several, disconnected
units. Edges may be directed or undirected, and may have labels (indicating weights or
costs) associated with them. The main operations on graphs are the following:

1. Construct an empty graph g.

D.5 Graphs 941

2. Insert a node a into an existing graph g.
3. Construct an edge e between nodes a and b of graph g.
4. Delete a node a from g. All the edges adjacent to the node should also be

deleted.
5. Delete edge e between nodes a and b of graph g.
6. Determine whether graph g is empty.
7. Construct a list of all edges adjacent to node a of g.
8. Traverse graph g (i.e., visit each node once).
9. Find the minimum-cost path that leads from node a to node b in g.

There may be other, specialized operations for specific applications.
In an undirected graph, an edge between a and b is adjacent to both nodes. In a

directed graph, an edge from a to b is said to be “adjacent from a” and “adjacent to b.”

(c)

a a

(d)

7

2

38

86

121

3
49

212
12

90

11

(a)

a

(b)

a

Figure D.6: Various Graphs

942 D. Data Structures

D.6 Hashing

A hash table is a data structure allowing for fast insertions, searches, and deletions of
data items. The table itself is just an array H, and the principle of hashing is to define
a function h such that h(k) produces an index to array H, where k is the key of a
data item. The following examples illustrate the meaning of the terms “data item” and
“key.”

1. The LZRW1 method (Section 3.11), uses hashing to store pointers. The method
uses the first three characters in the look-ahead buffer as a key which is hashed into a
12-bit number I used to index the hash table, an array of 212 = 4, 096 pointers. The
actual data stored in each location of the LZRW1 hash table is a pointer.

2. Virtually all computer languages use variables. A variable provides a name for
a value that will be stored in memory, in a certain address A, when the program is
eventually executed. When the program is compiled, each variable has two attributes,
its name N (a string of characters assigned by the programmer) and its memory address
A, assigned by the compiler. The compiler uses a hash table to store all the information
about variables. The data item in this example is the address A of a variable; the key
is the variable’s name N . The compiler reads the name from the program source file,
hashes it, finds it in the hash table, and retrieves the address in order to compile the
current instruction. If the variable is not found in the hash table, it is assigned an
address, and both the name and address are stored in the table (in principle, only the
address need be stored, but the name is also stored because of collisions; see below).

The hash function h takes as argument a key, which may be a number or a string.
It scrambles or hashes the bits of the key to produce an index to array H. In practice
the array size is normally 2n, so the result produced by h should be an n-bit num-
ber. Hashing is a good data structure, since any operation on the hash table, adding,
searching, or deleting, can be done in one step, regardless of the table size. The only
problem is collisions. In most applications it is possible for two distinct keys k1 and
k2 to get hashed to the same index, i.e., h(k1) = h(k2) for k1 �= k2. Example 2 above
makes it easy to understand the reason for this. Assuming variable names of five letters,
there may be 265 = 11, 881, 376 variable names. Any program would use just a small
percentage of this number, perhaps a few hundred or a few thousand names. The size
of the hash table thus doesn’t have to exceed a few thousand entries, and hashing 11.8
million names into a few thousand index values must involve many collisions.

� Exercise D.5: How many names are possible if a name consists of exactly eight letters
and digits?

Terminology: Two different keys that hash to the same index are called synonyms.
If a hash table of size 2n contains m keys out of a set of M possible ones, then m/M is
the density of the table, and α = m/2n is its loading factor.

D.7 Hash Functions 943

D.7 Hash Functions

A hash function should be easy to compute and should minimize collisions. The function
should make use of all the bits of the key, such that changing even one bit would normally
(although not always) produce a different index. An ideal hash function should also
produce indexes that are uniformly distributed (invoking the function many times with
random keys should produce each index the same number of times). A function that
produces, e.g., index 118 most of the time is obviously biased and leads to collisions.
The function should also assume that many keys may be similar. In the case of variable
names, e.g., programmers sometimes assign names such as “A1”, “A2”, “A3” to variables.
A hash function that uses just the leftmost bits of a key would produce the same index for
such names, leading to many collisions. Following are some examples of hash functions
used in practice.

Mid-Square: The key k is considered an integer, it is squared and the middle n
bits of k2 extracted to become the index. Squaring k has the advantage that the middle
bits of k2 depend on all the bits of k. Thus, two keys differing by one bit would tend
to produce different indexes. A variation, suitable for large keys, is to divide the bits of
the original key into several groups, add all the groups, square the result, and extract
its middle n bits.

The keys “A1”, “A2”, and “A3”, e.g., become the 16-bit numbers

01000001|00110001, 01000001|00110010, and 01000001|00110011.

After squaring and extracting the middle 8 bits, the resulting indexes are 158, 166, and
175, respectively.

Modulo: h(k) = k mod m. The result is the remainder of the integer division
k/m, a number in the interval [0, m− 1]. In order for the result to be a valid index, the
hash table size should be m. The value of m is critical and should be selected carefully.
If m is a power of 2, say, 2i, then the remainder of k/m is simply the i rightmost bits
of k. This would be a very biased hash function. If m is even, then the remainder of
k/m has the same parity as k (it is odd when k is odd and even when k is even). This
again is a bad choice for m, since it produces a biased hash function that maps odd
keys to odd locations of H and even keys to even locations. If p is a prime number
evenly dividing m then keys that are permutations of each other (e.g., “ABC”, “ACB”,
and “CBA”) may often be mapped to indexes that differ by p or by a multiple of p, again
causing non-uniform distribution of the keys.

It can be shown that the modulo hash function achieves best results when m is a
prime number that does not evenly divide 8a ± b where a and b are small numbers. In
practice, good choices for m are composite numbers whose prime divisors are > 20.

Folding: This function is suitable for large keys. The bits constituting the key are
divided into several groups, which are then added. The middle n bits of the sum are
extracted to become the index. A variation is reverse folding where every other group
of bits is reversed before being added.

944 D. Data Structures

No, no. Look, here’s the hash on the side because I didn’t know
how much you took.

—Amy Wright as Shelley in Stardust Memories (1980)

D.8 Collision Handling

When an index i is produced by the hash function h(k), the software using hashing
should first check H[i] for a collision. There must, therefore, be a way for the software
to tell whether entry H[i] is empty or occupied. Initializing all entries of H to zero is
normally not enough, since zero may be a valid data item. A simple approach is to have
an additional array F , of size 2n/8 bytes, where each bit is associated with an entry
of H. Each bit of F acts as a flag indicating whether the corresponding entry of H is
empty or not. The entire array F is initially set to zeros, indicating that all entries of
H are empty. When the software decides to insert a data item in H[i] it has to find
the bit in F that corresponds to entry i and check it. The software should therefore
calculate j = �i/8�, k = i − 8j, and check bit k of byte F[j]. If the bit is zero, entry
H[i] is empty and can be used for a new data item. The bit then has to be set, which
is done by using k to select one of the eight masks
00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000

and logically OR it with F [j]. If the bit is 1, entry H[i] is already occupied, and this is a
collision. The software should be able to check and tell whether entry H[i] contains the
data item d that corresponds to key k. This is why the keys have to be saved, together
with the data items, in the hash table.

What should the software do in case of a collision? The simplest thing is to check
entries A[H(i + 1)], A[H(i + 2)],. . . , A[H(2n − 1)], A[H(0)], A[H(1)]. . .until an empty
entry is found or until the search reaches entry A[H(i − 1)]. In the latter case the
software knows that the data item is not in the table (if this was a search for an item)
or that the table is full (if this was an attempt to insert a new item in the table). This
process is called linear search. Searching for a data item, which in principle should take
one step, can now, because of collisions, take up to 2n steps. Experience also shows that
a linear search causes occupied entries in the table to cluster, which is intuitively easy
to understand. If the hash function is not ideal and hashes many keys to, say, index 54,
then table entries 54, 55,. . .will quickly fill up, creating a cluster. Clusters also tend to
grow and merge, creating even larger clusters and thereby increasing the search time. A
theoretical analysis shows that the expected number of steps needed to locate an item
when linear search is used is (2 − α)/(2 − 2α), where α is the loading factor (percent
full of the table). For α = 0.5 we can expect 1.5 steps on the average, but for α = 0.75
the expected number of steps rises to 2.5, and for α = 0.9 it become 5.5. It is clear
that when linear search is used, the loading factor should be kept low (perhaps below
0.6–0.7). If more items need to be added to the table, a good solution is to declare a
new table, twice as large as the original one, transfer all items from the old table to the
new one (using a new hash function), and delete the old table.

D.8 Collision Handling 945

Dinner was at one o’clock; and on Monday, Tuesday, and
Wednesday it consisted of beef, roast, hashed, and minced, and
on Thursday, Friday, and Saturday of mutton. On Sunday they
ate one of their own chickens.

—W. Somerset Maugham, Of Human Bondage

A more sophisticated method of handling collisions is quadratic search. Assume
that H is an array of size N . When entry H[i] is found to be occupied, the software
checks entries H[(i ± j2) mod N] where 0 ≤ j ≤ (N − 1)/2. It can be shown that if N
is a prime number of the form 4j + 3 (where j is an integer) quadratic search will end
up examining every entry of H.

A third way to treat collisions is to rehash. The software should have a choice of
several hashing functions h1, h2, If i = h1(k) and H[i] is occupied, the software
should calculate i = h2(k) then try the new H[i]. Still another way is to generate
an array R of N pseudo-random numbers in the range [0, N − 1] where each number
appears once. If entry H[i] is occupied, the software should set i = (i + R[i]) mod N
and try the new H[i].

It is possible to design a perfect hash function that, for a given set of data items, will
not have any collisions. This makes sense for sets of data that never change. Examples
are indexes of the Bible, the works of Shakespeare, or any data written on a CD-ROM.
The size N of the hash table should, in such a case, be normally larger than the number
of data items. It is also possible to design a minimal perfect hash function where the
hash table size equals the size of the data (i.e., no entries remain empty after all data
items have been inserted). See [Czech 92], [Fox 91], and [Havas 93] for details on these
special hash functions.

Bibliography

Czech, Z. J., et al. (1992) “An Optimal Algorithm for Generating Minimal Perfect Hash Func-
tions,” Information Processing Letters 43:257–264.

Fox, E. A. et al. (1991) “Order Preserving Minimal Perfect Hash Functions and Information
Retrieval,” ACM Transactions on Information Systems 9(2):281–308.

Havas, G. et al. (1993) Graphs, Hypergraphs and Hashing in Proceedings of the Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG’93), Berlin, Springer-
Verlag.

“Why,” said he, “a magician could call up a lot of genies, and

they would hash you up like nothing before you could say Jack

Robinson. They are as tall as a tree and as big around as a church.”

Mark Twain, The Adventures Of Huckleberry Finn

E
Error Correcting Codes

The problem of adding reliability to data has already been mentioned in Section 2.12.
This appendix discusses general methods for detecting and correcting errors. Reliability
is, in a sense, the opposite of data compression, since it is achieved by increasing data
redundancy. Nevertheless, many practical situations call for reliable data, so a good data
compression program should be able to use codes for increased reliability, if necessary.

Every time information is transmitted, on any channel, it may get corrupted by
noise. In fact, even when information is stored in a storage device, it may become
bad, because no hardware is absolutely reliable. This also applies to non-computer
information. Speech sent on the air gets garbled by noise, wind, high temperature,
etc. Speech, in fact, is a good starting point for understanding the principles of error-
detecting and -correcting codes. Imagine a noisy cocktail party where everybody talks
simultaneously, on top of blaring music. We know that even in such a situation it is
possible to carry on a conversation, except that more attention than usual is needed.

E.1 First Principles

What makes our language so robust, so immune to errors? There are two properties,
redundancy and context.

Our language is redundant because only a very small fraction of all possible words
are valid. A huge number of words can be constructed with the 26 letters of English.
Just the number of seven-letter words, e.g., is 267 ≈ 8.031 billion. Yet only about 50,000
words are commonly used, and even the Oxford Dictionary lists “only” about 500,000
words. When we hear a garbled word our brain searches through many similar words,
for the “closest” valid word. Computers are very good at such searches, which is why
redundancy is the basis for error-detecting and error-correcting codes.

948 E. Error Correcting Codes

Our brains work by associations. This is why we humans excel in using the context
of a message to repair errors in the message. In receiving a sentence with a garbled
word or a word that doesn’t belong, such as “pass the thustard please,” we first use our
memory to find words that are associated with “thustard.” Then we use our accumu-
lated life experience to select, among many possible candidates, the word that best fits
in the present context. If we are on the freeway, we pass the bastard in front of us; if we
are at dinner, we pass the mustard (or custard). Another example is the (corrupted)
written sentence

if u cn rd ths u cn bcm a c prgmr!
which we can easily understand. Computers don’t have much life experience and are
notoriously bad at such tasks, which is why context is not used in computer codes. In
extreme cases, where much of the sentence is bad, even we may not be able to correct
it, and we may ask for a retransmission “say it again, Sam.”

The idea of using redundancy to add reliability to information is due to Claude
Shannon, the founder of information theory. It is not a trivial idea, since we are condi-
tioned against it. Most of the time, we try to eliminate redundancy in computer data,
in order to save space. In fact, all the data-compression methods discussed here do just
that.

Figure E.1 shows the stages that a piece of computer data may go through when
it is created, stored, transmitted, received, and used at the receiving end.

Source

Compress
(remove

redundancy)

Store
Encode

(add redundancy) Transmit

Noise

Use Data

Decompress

Decode
(check

redundant
information)

Figure E.1: Manipulating Information

We discuss two approaches to reliable codes. The first approach is to duplicate the
code, which leads to the idea of voting codes; the second one uses check bits and is based
on the concept of Hamming distance.

E.2 Voting Codes 949

E.2 Voting Codes

The first idea that usually occurs, when one thinks about redundancy, is to duplicate the
message and send two copies. Thus if the code 110 has to be sent, one can send 110|110.
A little thinking shows that this may, perhaps, be a good idea for error detection, but
not for error correction. If the receiver receives two different copies, it cannot tell which
one is good. What about triplicating the message? We can send 110|110|110 and tell
the receiver to decide which of the three copies is good by comparing them. If all
three are identical, the receiver assumes that they are correct. Moreover, if only two
are identical and the third one different, the receiver assumes that the two identical
copies are correct. This is the principle of voting codes. If all three copies are different,
the receiver at least knows that an error has occurred, i.e., it can detect an error even
though it cannot correct it.

To keep the analysis simple, let’s limit ourselves to just 1-bit errors. When the
three copies are received, the following cases are possible:

1. All three are identical. There are two subcases:
1a: All three are good. This is the normal case.
1b: All three have been corrupted in the same way. This is a rare case.

2. Two copies are identical, and the third one is different. Again, there are two
subcases:
2a: The two identical ones are good. This is the normal case.
2b: They are bad. This is, we hope, a rare case.

3. All three copies are different.

Using the principle of voting, we assume that the three identical copies in case 1
are good. In case 1a our assumption is correct, and in case 1b, it isn’t. Similarly, in
case 2a the receiver makes the right decision, and in case 2b, the wrong one. In case 3,
the receiver cannot correct the error, but at least it can detect one, so it does not make
a wrong decision.

The only cases where the receiver makes the wrong decision (where the principle
of voting does not work) are therefore 1b and 2b. A little thinking shows that the
probability of case 1b is much smaller than that of 2b. We will, therefore, try to
estimate the probability of case 2b and, if it is small enough, there would be no need to
worry about case 1b.

It is hard to calculate the probability of two copies being garbled in the same way.
We will, therefore, calculate the probability that one bit gets changed in two of the
three copies (either in the same or in different bit positions). If this probability is small
enough, there is no need to worry about case 2b, since its probability is even lower.

We denote by p the probability that one bit will get corrupted in our transmissions.
The probability that one bit will go bad in two of the three copies is

(
3
2

)
p2 = 3p2. It is

not simply p2, since it is possible to select two objects out of three in
(
3
2

)
= three ways.

[The notation
(
m
n

)
is pronounced “m over n” and is defined as

m!
n!(n − m)!

.

950 E. Error Correcting Codes

It is the number of ways n objects can be selected out of a set of m objects.]
Let’s assume that p = 10−6 (on average, one error in a million bits transmitted) and

we want to send 108 bits. Without duplication we can expect 108 × 10−6 = 100 errors,
an unacceptably high rate. With three copies sent, we have to send a total of 3 × 108

bits, and the probability that two out of the three copies will go wrong is 3 × 10−12.
The expected number of errors is thus (3 × 108) × (3 × 10−12) = 9 × 10−4 = 0.0009
errors, a comfortably small number.

If higher reliability is needed, more copies can be sent. A code where each symbol
is duplicated and sent nine times is extremely reliable. Voting codes are thus simple,
reliable, and have only one disadvantage, they are too long. In practical situations,
sending nine, or even three, copies of each message may be prohibitively expensive.
This is why much research has been done in the field of coding in the last 40 years and,
today, many sophisticated codes are known that are more reliable and shorter than
voting codes.

E.3 Check Bits

In practice, error-detection and correction is usually done by means of check bits, which
are added to the original information bits of each word of the message. In general,
k check bits are appended to the original m information bits, to produce a codeword
of n = m + k bits. Such a code is referred to as an (n, m) code. The codeword is
then transmitted to the receiver. Only certain combinations of the information bits and
check bits are valid, in analogy to a natural language. The receiver knows what the
valid codewords are. If a non-valid codeword is received, the receiver considers it an
error. In Section E.7 we show that, by adding more check bits, the receiver can also
correct certain errors, not just detect them. The principle of error correction is that, on
receiving a bad codeword, the receiver selects the valid codeword that is the “closest”
to it.

Example: A set of 128 symbols needs to be coded. This implies m = 7. If we select
k = 4, we end up with 128 valid codewords, each 11 bits long. This is therefore an (11, 7)
code. The valid codewords are selected from a total of 211 = 2, 048 possible codewords,
so there remain 2, 048 − 128 = 1, 920 non-valid codewords. The big difference between
the number of valid and non-valid codewords means that if a codeword gets corrupted,
chances are it will change to a non-valid one.

It may, of course, happen that a valid codeword gets changed, during transmission,
to another valid codeword. Our codes are thus not completely reliable, but can be made
more and more reliable by adding more check bits and by selecting the valid codewords
carefully. One of the basic theorems of information theory says that codes can be made
as reliable as desired by adding check bits, as long as n (the size of a codeword) does
not exceed the channel’s capacity.

It is important to understand the meaning of the word “error” in data transmission.
When a codeword is received, the receiver always receives n bits, but some of them may
be bad. A bad bit does not disappear, nor does it change into something other than a
bit. A bad bit simply changes its value, either from 0 to 1, or from 1 to 0. This makes it

E.4 Parity Bits 951

relatively easy to correct the bit. The code should tell the receiver which bits are bad,
and the receiver can then easily correct those bits by inverting them.

In practice, bits may be sent on a wire as voltages. A binary 0 may, e.g., be repre-
sented by any voltage in the range 3–25 volts. A binary 1 may similarly be represented
by the voltage range of −25v to −3v. Such voltages tend to drop over long lines, and
have to be amplified periodically. In the telephone network there is an amplifier (a
repeater) every 20 miles or so. It looks at every bit received, decides whether it is a
0 or a 1 by measuring the voltage, and sends it to the next repeater as a clean, fresh
pulse. If the voltage has deteriorated enough in passage, the repeater may make a
wrong decision when sensing it, which introduces an error into the transmission. At
present, typical transmission lines have error rates of about one in a billion, but under
extreme conditions—such as in a lightning storm, or when the electric power suddenly
fluctuates—the error rate may suddenly increase, creating a burst of errors.

E.4 Parity Bits

A parity bit can be added to a group of m information bits to complete the total number
of 1 bits to an odd number. Thus the (odd) parity of the group 10110 is 0, since the
original group plus the parity bit would have an odd number (3) of ones. Even parity
can also be used, and the only difference between odd and even parity is that, in the
case of even parity, a group of all zeros is valid, whereas, with odd parity, any group of
bits with a parity bit added cannot be all zeros.

Parity bits can be used to design simple, but not very efficient, error-correcting
codes. To correct 1-bit errors, the message can be organized as a rectangle of dimensions
(r − 1)× (s− 1). A parity bit is added to each row of s− 1 bits, and to each column of
r − 1 bits. The total size of the message (Table E.2a) becomes s × r.

0 1 0 0 1
1 0 1 0 0
0 1 1 1 1
0 0 0 0 0
1 1 0 1 1

0 1 0 0 1

(a)

0 1 0 0 1
1 0 1 0
0 1 0
0 0
1

(b)

Table E.2: Parity Bits.

If only one bit gets bad, a check of all s− 1+ r− 1 parity bits will discover it, since
only one of the s − 1 parities and only one of the r − 1 ones will be bad.

The overhead of a code is defined as the number of parity bits divided by the
number of information bits. The overhead of the rectangular code is, therefore,

(s − 1 + r − 1)
(s − 1)(r − 1)

≈ s + r

s × r − (s + r)
.

952 E. Error Correcting Codes

A similar, slightly more efficient, code is a triangular configuration, where the infor-
mation bits are arranged in a triangle, with the parity bits at the diagonal (Table E.2b).
Each parity bit is the parity of all the bits in its row and column. If the top row contains
r information bits, the entire triangle has r(r + 1)/2 information bits and r parity bits.
The overhead is thus

r

r(r + 1)/2
=

2
r + 1

.

It is also possible to arrange the information bits in a number of two-dimensional
planes, to obtain a three-dimensional cube, three of whose six outer surfaces are made
up of parity bits.

It is not obvious how to generalize these methods to more than 1-bit error correc-
tion.

Symbol code1 code2 code3 code4 code5 code6 code7

A 0000 0000 001 001001 01011 110100 110
B 1111 1111 010 010010 10010 010011 0
C 0110 0110 100 100100 01100 001101 10
D 0111 1001 111 111111 10101 101010 111
k: 2 2 1 4 3 4

Table E.3: Code Examples With m = 2.

E.5 Hamming Distance and Error Detecting

Richard Hamming developed the concept of distance, in the 1950s, as a general way to
use check bits for error detection and correction.

To illustrate this concept, we start with a simple example involving just four sym-
bols A, B, C, and D. Only 2 information bits are required, but the codes of Table E.3
add some check bits, for a total of 3–6 bits per symbol. code1 is simple. Its four code-
words were selected from the 16 possible 4-bit numbers, and are not the best possible
ones. When the receiver receives one of them, say, 0111, it assumes that there is no
error and the symbol received is D. When a non-valid codeword is received, the receiver
signals an error. Since code1 is not the best possible, not every error is detected. Even if
we limit ourselves to single-bit errors, this code is not very good. There are 16 possible
single-bit errors in our 4-bit codewords and, of those, the following 4 cannot be detected:
A 0110 changed during transmission to 0111, a 0111 changed to 0110, a 1111 corrupted
to 0111, and a 0111 garbled to 1111. The error detection rate is thus 12 out of 16, or
75%. In comparison, code2 does a much better job; it can detect every single-bit error.

� Exercise E.1: Prove the above statement.

We therefore say that the four codewords of code2 are sufficiently distant from each
other. The concept of distance of codewords is, fortunately, easy to define.

E.5 Hamming Distance and Error Detecting 953

(a)

000 100

010
110

00

0 1

10

01 11

001
101

011 111

(b) (d)(c)

xxx0

xxx1

Figure E.4: Cubes of Various Dimensions and Corner Numbering

Definitions: (1) Two codewords are a Hamming distance d apart if they differ in
exactly d of their n bits and (2) a code has a Hamming distance of d if every pair of
codewords in the code is, at least, a Hamming distance d apart.

These definitions have a simple geometric interpretation. Imagine a hypercube
in n-dimensional space. Each of its 2n corners can be numbered by an n-bit number
(Figure E.4), such that each of the n bits corresponds to one of the n dimensions. In
such a cube, points that are directly connected have a Hamming distance of 1, points
with a common neighbor have a Hamming distance of 2, etc. If a code with a Hamming
distance of 2 is needed, only points that are not directly connected should be selected
as valid codewords.

The reason code2 can detect all single-bit errors is that it has a Hamming distance
of 2. The distance between valid codewords is 2, so a 1-bit error always changes a valid
codeword into a non-valid one. When two bits go bad, a valid codeword is moved to
another codeword at distance 2. If we want that other codeword to be non-valid, the
code must have at least distance 3.

In general, a code with a Hamming distance of d + 1 can detect all d-bit errors.
code3 has a Hamming distance of 2 and thus can detect all 1-bit errors even though it
is short (n = 3).

� Exercise E.2: Find the Hamming distance of code4.

It is now obvious that we can increase the reliability of our transmissions to any
desired level, but this feature does not come free. As always, there is a tradeoff, or a price
to pay, in the form of the overhead. Our codes are much longer than m bits per symbol
because of the added check bits. A measure of the price is n/m = (m+k)/m = 1+k/m,
where the quantity k/m is called the overhead of the code. In the case of code1 the
overhead is 2 and, in the case of code3, it is 3/2.

Example: A code with a single check bit, which is a parity bit (even or odd). Any
single-bit error can easily be detected, since it creates a non-valid codeword. Such a
code therefore has a Hamming distance of 2. code3 above uses a single, odd, parity bit.

Example: A 2-bit error-detecting code for the same four symbols (see code4). It

954 E. Error Correcting Codes

must have a Hamming distance of 4, and one way of generating it is to duplicate code3.

E.6 Hamming Codes

The principle of error-correcting codes is to separate the codes even farther by adding
more redundancy (more check bits). When an invalid codeword is received, the receiver
corrects the error by selecting the valid codeword that is closest to the one received.
code5 has a Hamming distance of 3. When one of its four codewords has a single bit
changed, it is 1-bit distant from the original one, but is still 2 bits distant from any of
the other codewords. Thus, if there is only one error, the receiver can always correct
it. The receiver does that by comparing every codeword received to the list of valid
codewords. If no match is found, the receiver assumes that a 1-bit error has occurred,
and it corrects the error by selecting the codeword that is closest to the one received.

In general, when d bits go wrong in a codeword C1, it turns into an invalid codeword
C2 at a distance d from C1. If the distance between C2 and the other valid codewords
is at least d + 1, then C2 is closer to C1 than it is to any other valid codeword. This is
why a code with a Hamming distance of d + (d + 1) = 2d + 1 is needed to correct all
d-bit errors.

How are the codewords selected? The problem is to select a good set of 2m code-
words out of the 2n possible ones. The first approach uses brute force. It is easy to
write a computer program that will examine all the possible sets of 2m codewords, and
select one that has the right distance. The problems with this approach are: (1) The
time and storage required at the receiving end to verify and correct the codes received
and (2) the amount of time it takes to examine all the possible sets of codewords.

1. The receiver must have a list of all the 2n possible codewords. For each codeword
it must have a flag indicating whether it is valid and, if not, which valid codeword is
the closest to it. Every codeword received has to be searched and located in this list in
order to verify it.

2. In the case of four symbols, only four codewords need be selected. For code1

and code2, they had to be selected from among 16 possible numbers, which can be done
in

(
16
4

)
= 7, 280 ways. It is possible to write a simple program that will systematically

examine sets of four codewords until it finds a set with the required distance. In the case
of code4, the four codewords had to selected from a set of 64 numbers, which can be done
in

(
64
4

)
= 635, 376 ways. It is still possible to write a program that will systematically

explore all the possible codeword selections for this case. In practical cases, however,
where sets with hundreds of symbols are involved, the number of possibilities in selecting
sets of codewords is too large even for the fastest computers to handle comfortably.

Clearly, a clever algorithm is needed, to select the best codewords, and to verify
them on the fly, as they are being received. The transmitter should use the algorithm
to generate the codewords when they have to be sent, and the receiver should use it
to check them when they are received. The approach described here is due to Richard
Hamming. In Hamming’s codes [Hamming 86] the n bits of a codeword are indexed
from 1 to n. The check bits are those with indexes that are powers of 2. Thus bits b1,

E.6 Hamming Codes 955

b2, b4, b8, . . . are check bits, and b3, b5, b6, b7, b9, . . . are information bits. The index
of each information bit can be written as the sum of the indexes of certain check bits.
Thus b7 can be written as b1+2+4 and is, therefore, used in determining the values of
check bits b1, b2, b4. The check bits are simply parity bits. The value of b2, e.g., is the
parity (odd or even) of b3, b6, b7, b10, . . . etc., since 3 = 2 + 1, 6 = 2 + 4, 7 = 2 + 1 + 4,
10 = 2 + 8,

Example: A 1-bit error-correcting code for the set of symbols A, B, C, and D.
It must have a Hamming distance of 2d + 1 = 3. Two information bits are needed to
code the four symbols, so they must be: b3 and b5. The parity bits are therefore b1, b2,
and b4. Since 3 = 1 + 2 and 5 = 1 + 4, the 3 parity bits are defined as b1 is the parity
of bits b3 and b5, b2 is the parity of b3, and b4 is the parity of b5. This is how code5 of
Table E.3 was constructed.

Example: A 1-bit error-correcting code for a set of 256 symbols. It must have
a Hamming distance of 2d + 1 = 3. Eight information bits are required to code the
256 symbols, so they must be b3, b5, b6, b7, b9, b10, b11, and b12. The parity bits are,
therefore, b1, b2, b4, and b8. The total size of the code is 12 bits. The following relations
define the 4 parity bits:
3 = 1 + 2, 5 = 1 + 4, 6 = 2 + 4, 7 = 1 + 2 + 4, 9 = 1 + 8, 10 = 2 + 8, 11 = 1 + 2 + 8, and
12 = 4 + 8.
They imply that b1 is the parity of b3, b5, b7, b9, and b11.

� Exercise E.3: What are the definitions of the other parity bits?

� Exercise E.4: Construct a 1-bit error-correcting Hamming code for 16-bit codes (m =
16).

A common question at this point is how the number of parity bits is determined.
The answer is that it is determined implicitly. We know that m data bits are needed,
and we also know that bits b1, b2, b4, b8, . . . should be the parity bits. We thus allocate
the first m bits of the set b3, b5, b6, b7, b9, b10, b11, . . . to the data, and this implicitly
determines the number of parity bits needed.

What is the size of a general Hamming code? The case of a 1-bit error-correcting
code is easy to analyze. Given a set of 2m symbols, 2m valid codewords are needed.
We are looking for the smallest k required to construct codewords of size m + k and
Hamming distance 3. The 2m valid codewords should be selected from a total of 2n

numbers (where n = m + k), such that each codeword consists of m information bits
and k check bits.

Since we want any single-bit error in a codeword to be corrected, such an error
should not take us too far from the original codeword. A single-bit error takes us to a
codeword at distance 1 from the original one. As a result, all codewords at distance 1
from the original codeword should be non-valid. Each of the original 2m codewords is
n bits long and thus has n codewords at distance 1 from it. They should be declared
non-valid. This means that the total number of codewords needed (valid plus non-valid)
is 2m+n2m = (1+n)2m. This number has to be selected from the 2n available numbers,
so we end up with the relation (1 + n)2m ≤ 2n. Since 2n = 2m+k, we get 1 + n ≤ 2k or
k ≥ log2(1 + n). The following table illustrates the meaning of this relation for certain
values of m.

956 E. Error Correcting Codes

n: 4 7 12 21 38 71
k: 2 3 4 5 6 7
m = n − k: 2 4 8 16 32 64
k/m: 1 .75 .5 .31 .19 .11

There is a geometric interpretation that provides another way of obtaining the same
result. We imagine 2m spheres of radius one tightly packed in our n-dimensional cube.
Each sphere is centered on one of the corners and encompasses all its immediate corner
neighbors. The volume of a sphere is defined as the number of corners it includes, which
is 1 + n. The spheres are tightly packed, but they don’t overlap, so their total volume
is (1 + n)2m, and this should not exceed the total volume of the cube, which is 2n.

The case of a 2-bit error-correcting code is similarly analysed. Each valid codeword
should define a set that includes itself, the n codewords at distance 1 from it, and the
set of

(
n
2

)
codewords at distance 2 from it, a total of

(
n
0

)
+

(
n
1

)
+

(
n
2

)
= 1+n+n(n−1)/2.

Those sets should be non-overlapping, which implies the relation

(
1+n+n(n−1)/2

)
2m ≤ 2n ⇒ 1+n+n(n−1)/2 ≤ 2k ⇒ k ≥ log2

(
1+n+n(n−1)/2

)
.

In the geometric interpretation we again imagine 2m spheres of radius 2 each. Each
sphere centered around a corner and containing the corner, its n immediate neighbors,
and its

(
n
2

)
second place neighbors (corners differing from the center corner by 2 bits).

E.7 The SEC-DED Code

However, even though we can estimate the length of a 2-bit error-correcting Hamming
code, we don’t know how to construct it! The best that can be done today with
Hamming codes is single-error-correction combined with double-error-detection. An
example of such a SEC-DED code is code6. It was created by simply adding a parity
bit to code5.

� Exercise E.5: Table E.3 contains one more code, code7. What is it?

The receiver checks the SEC-DED code in two steps. In step 1, the single parity bit
is checked. If it is bad, the receiver assumes that a 1-bit error occurred, and it uses the
other parity bits, in step 2, to correct the error. It may happen, of course, that three
or even five bits are bad, but the simple SEC-DED code cannot detect such errors.

If the single parity is good, then there are either no errors, or two bits are bad. The
receiver switches to step 2, where it uses the other parity bits to distinguish between
these two cases. Again, there could be four or six bad bits, but this code cannot handle
these cases.

The SEC-DED code has a Hamming distance of 4. In general, a code for c-bit error
correction and d-bit error detection should have a distance of c + d + 1.

E.8 Generating Polynomials 957

E.8 Generating Polynomials

There are many approaches to the problem of developing codes for more than 1-bit error
correction. They are, however, more complicated than Hamming’s method, and require
a background in group theory and Galois fields. In this section we briefly sketch one
such approach, using the concept of a generating polynomial.

We use the case m = 4 for illustration. Sixteen codewords are needed, which can
be used to code any set of 16 symbols. We know from the discussion above that, for
1-bit error correction, 3 parity bits are needed, bringing the total size of the code to
n = 7. Here is an example of such a code:
0000000 0001011 0010110 0011101 0100111 0101100 0110001 0111010
1000101 1001110 1010011 1011000 1100010 1101001 1110100 1111111

Note that it has the following properties:

The sum (modulo 2) of any two codewords equals another codeword. This implies
that the sum of any number of codewords is a codeword. The 16 codewords above thus
form a group under this operation.
(Addition and subtraction modulo-2 is done by 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1,
1− 0 = 0− 1 = 1. The definition of a group should be reviewed in any text on algebra.)

Any circular shift of a codeword is another codeword. This code is thus cyclic.

It has a Hamming distance of 3, as required for 1-bit error correction.
Interesting properties! The 16 codewords were selected from the 128 possible ones by
means of a generator polynomial. The idea is to look at each codeword as a polynomial,
where the bits are the coefficients. Here are some 7-bit codewords associated with
polynomials of degree 6.

1 0 0 1 1 1 1
x6 +x3 +x2 +x +1

0 1 1 0 0 1 0
x5 +x4 +x

0 1 0 0 1 1 1
x5 +x2 +x +1

The 16 codewords above have been selected by finding the degree-6 polynomials that
are evenly divisible (modulo 2) by the generating polynomial x3 + x + 1. For example,
the third codeword ‘0100111’ in the table corresponds to the polynomial x5 +x2 +x+1,
which is divisible by x3 + x + 1 because x5 + x2 + x + 1 = (x3 + x + 1)(x2 + 1).

To understand how such polynomials can be calculated, let’s consider similar op-
erations on numbers. Suppose we want to know the largest multiple of 7 that is ≤ 30.
We divide 30 by 7, obtaining a remainder of 2, and then subtract the 2 from the 30,
getting 28. Similarly with polynomials. Let’s start with the 4 information bits 0010,
and calculate the remaining 3 parity bits. We write 0010ppp, which gives us the poly-
nomial x4. We divide x4 by the generating polynomial, obtaining a remainder of x2 +x.

958 E. Error Correcting Codes

Subtracting that remainder from x4 gives us something that will be evenly divisible by
the generating polynomial. The result of the subtraction is x4 +x2 +x, so the complete
codeword is 0010110.

Any generating polynomial can get us the first two properties. To get the third
property (the necessary Hamming distance), the right generating polynomial should be
used, and it can be selected by examining its roots. This topic is outside the scope of
this book, but it is discussed in any text on error-correcting codes. A common example
of a generating polynomial is CRC (Section 3.27).

Bibliography

Hamming, Richard (1950) “Error Detecting and Error Correcting Codes,” Bell Systems Tech-
nical Journal 29:147–160, April.

Hamming, Richard (1986) Coding and Information Theory, 2nd Ed., Englewood Cliffs, NJ,
Prentice-Hall.

Lin, Shu (1970) An Introduction to Error Correcting Codes, Englewood Cliffs, NJ, Prentice-
Hall.

Errors using inadequate data are much

less than those using no data at all.

Charles Babbage (1792–1871)

Give me fruitful error any time, full of seeds, bursting with its

own corrections. You can keep your sterile truth for yourself.

Wilfredo Pareto (1848–1923)

F
Finite State Automata

A finite automaton (FA, also called a finite-state automaton or a finite-state machine)
is a mathematical tool used to describe processes involving inputs and outputs. An FA
can be in one of several states and can switch between states depending on symbols
that it inputs. Once it settles in a state, it reads the next input symbol, performs some
computational task associated with the new input, outputs a symbol, and switches to
a new state depending on the input. Notice that the new state may be identical to
the current state. Figure F.2a shows an example of an FA with four states labeled 1
through 4. The input consists of a string of symbols from the alphabet abc and the
output is a string of symbols from mnpq. The FA starts in state 1. If it inputs an a, it
stays in state 1 and outputs an m. If it inputs a b, it switches to state 2 and outputs
a p. Notice that this particular FA can get “stuck” if it happens to be in a state that
does not tell it what to do with a certain input. This will happen, for example, with
the input string “abbc...”, since the c will be input while the FA is in state 4, where
it expects an a. We say that “abbc...” is not accepted by the FA. The edges of the
graph are labeled by pairs (input, output).

Figure F.2b shows an example of a two-state FA that can be used to add binary
numbers. The FA starts in state 1 (no carry) and inputs a pair of bits. If the pair is 11,
the FA outputs a 0 and switches to state 2 (carry), where the next pair of bits is input
and is added to a carry bit of 1. Table F.1 shows the individual steps in adding the two
6-bit numbers 14 and 23 (these are actually 5-bit numbers, but the simple design of this
FA requires that an extra 0 bit be appended to the left end of every number). Since
adding numbers is done from right to left, the six columns of the table should also be
read in this direction.

Figure F.2c shows an example of a three-state FA where each edge is labeled by
an input symbol and a probability, but no output. The diagram illustrates an FA that
inputs a stream of bits where the first bit has a 50% probability of being a 0 or a 1, and

960 F. Finite State Automata

Step: 6 5 4 3 2 1
14: 0 0 1 1 1 0
23: 0 1 0 1 1 1
Input: 00 01 10 11 11 01
Initial state: 2 2 2 2 1 1
Output (37): 1 0 0 1 0 1
Final state: 1 2 2 2 2 1

Table F.1: Adding 14 and 23.

1 2

34

a,m

a,n

b,n
c,p

b,p

a,q

(b)

Start

Start

1
11,0

01,1

10,1

00,0

10,0

11,1

00,1 01,0
2

(a)

(c)

0 1

s

0,50% 1,50%

0,40% 1,60%

1,33%

0,67%

Start
1 2

34

0

00

0

0

1

1

(d)

Figure F.2: Examples of FAs

each consecutive bit is likely to be identical to its predecessor. A zero follows another
zero with a probability of 2/3, and a one follows a one with a probability of 3/5. This
FA does not produce any outputs, but any practical FA should, of course, do something
(i.e., produce some output).

In general, an FA is fully defined by specifying the following:

1. The set of states S.
2. The alphabet A of the input and output symbols.
3. A function f : S×A → S×A. An example is f(X, j) = (Y, i) meaning, if the

current state is X and the next input is j, switch to state Y and output i.
4. The initial state S0.

961

Mathematically, an FA is a quartet (S, A, f, S0).
An FA is normally deterministic (DFA), since for every state and input there is

just one output and one next state. However, there can also be nondeterministic FA,
denoted by NFA. Figure F.2d shows an example. When a zero is input in state 2, the
NFA can transit to either state 3 or state 4. NFAs are useful in proving theorems and
also in the theory of languages and the theory of computations. Following the states
and inputs, it is trivial to verify that the input string “10101010. . . ” is accepted by the
NFA of Figure F.2d (it alternates between states 1, 2, and 4), as are the strings 100
and 101, but the string 1000 is not accepted. It should be noted that every DFA is an
NFA.

� Exercise F.1: Is the string “1001010010. . . ” accepted by the NFA of Figure F.2d?

The set of all input strings accepted by an FA is called the language of the FA. It
can be shown that the languages accepted by finite automata are the languages denoted
by regular expressions, so we conclude this short chapter by defining regular expressions.
We start by illustrating the concepts of concatenation and closure.

Let L1 = (10, 1) and L2 = (011, 11) be two sets of symbols (binary strings).
The concatenation of L1 and L2 is denoted by L1L2 and is the set of strings that
are concatenations of 10 (or 1) and 011 (or 11). Thus, L1L2 = (10011, 1011, 111).
The closure of a set L of symbols is denoted by L∗. It is the set of all strings
made of symbols from L (including the empty set). Thus, if L = (10, 11), then
L∗ = ((), 10, 11, 1010, 1011, 1110, 1111, . . .), where the empty pair of parentheses de-
notes the empty set. If L is a set of symbols, then the regular expressions over L are
defined recursively as follows:

1. The empty symbol is a regular expression.
2. The empty set () is a regular expression.
3. For each s ∈ L, the set (s) is a regular expression.
4. If r and s are regular expressions, then (r + s) (union of sets), (rs) (set concate-

nation), and (r∗) (set closure) are regular expressions.
Finite automata are used by several compression methods, among them WFA (Sec-

tion 4.34) and dynamic Markov coding (Section 8.8).
[Hopcroft and Ullman 79] is a detailed introduction to FAs and their properties.

Bibliography

Hopcroft, John E. and Jeffrey D. Ullman (1979) Introduction to Automata Theory, Languages,
and Computation, Reading, MA, Addison-Wesley.

CAT, n. A soft, indestructible automaton provided by nature to

be kicked when things go wrong in the domestic circle.

Ambrose Bierce.The Devil’s Dictionary

G
Gallery of Images

New data compression methods that are developed and implemented have to be tested.
Testing different methods on the same data makes it possible to compare their perfor-
mance both in compression efficiency and speed. This is why there are standard collec-
tions of test data such as the Calgary Corpus and the Canterbury Corpus (mentioned
in the Preface), and the ITU-T set of eight training documents for fax compression
(Section 2.13.1).

The need for standard test data has also been felt in the field of image compression,
and there currently exist collections of still images commonly used by researchers and im-
plementors in this field. Three of the four images shown here, namely “lena,” “mandril,”
and “peppers” are arguably the most well-known of them. They are continuous-tone
images, although “lena” has some features of a discrete-tone image.

Each image is accompanied by a detail, showing individual pixels. It is easy to see
why the “peppers” image is continuous-tone. Adjacent pixels that differ much in color
are fairly rare in this image. Most neighbor pixels are very similar. In contrast, the
“mandril” image, even though natural, is a bad example of a continuous-tone image.
The detail (showing part of the right eye and the area around it) shows that many pixels
differ considerably from their immediate neighbors because of the animal’s facial hair in
this area. This image compresses badly under any compression method. However, the
nose area, with mostly blue and red, is continuous-tone. The “lena” image is mostly
pure continuous-tone, especially the wall and the bare skin areas. The hat is good
continuous-tone, whereas the hair and the plume on the hat are bad continuous-tone.
The straight lines on the wall and the curved parts of the mirror are features of a
discrete-tone image.

The “lena” image is widely used by the image processing community, in addition
to being popular in image compression. Because of the interest in it, its origin and
history have been researched and are well documented. This image is part of the Play-

964 G. Gallery of Images

Figure G.1: Lena and Detail

boy centerfold for November, 1972. It features the Swedish playmate Lena Soderberg
(née Sjooblom) and it was discovered, clipped, and scanned in the early 1970s by an
unknown researcher at the University of Southern California for use as a test image for
his image compression research. It has since become the most important, well-known,
and commonly-used image in the history of imaging and electronic communications. As
a result, Lena is currently considered by many the First Lady of the Internet. Playboy,
which normally prosecutes unauthorized users of its images, has found out about the
unusual use of one of its copyrighted images, but decided to give its blessings to this
particular “application.”

Lena herself currently lives and works in Sweden. She was told of her “fame” in
1988, was surprised and amused by it, and was invited to attend the 50th Anniversary
IS&T (the society for Imaging Science and Technology) conference in Boston in May,
1997. At the conference she autographed her picture, posed for new pictures (one is
available on the internet) and gave a presentation (about herself, not image compres-
sion).

The three images are widely available for downloading on the internet.

Figure G.5 shows a typical discrete-tone image, with a detail shown in Figure G.6.
Notice the straight lines and the text, where certain characters appear several times (a
source of redundancy). This particular image has few colors, but in general, a discrete-
tone image may have many colors.

G. Gallery of Images 965

Figure G.2: Mandril and Detail

Figure G.3: The RGB Cube

Figure G.4: Peppers and Detail

966 G. Gallery of Images

The village of Lena, Illinois is located approximately 9 miles west
of Freeport, Illinois and 50 miles east of Dubuque, Iowa. We are
on the edge of the rolling hills of Northwestern Illinois and only 25
miles south of Monroe, Wisconsin. The current population of Lena
is approximately 2800 souls engaged in the farming business.

From http://www.lena.il.us/welcome.htm

G. Gallery of Images 967

Figure G.5: A Discrete-Tone Image

Figure G.6: A Discrete-Tone Image (Detail)

An ounce of image is worth a pound of performance.

Anonymous

H
Human Visual System

Image and video compression deal with large quantities of data, and one way to achieve
good compression of images is to lose some of this data. The data loss must be done
selectively and the guiding principle is to lose data for which the human visual system
is not sensitive. This requires a detailed knowledge of color, its representations, and
the way the eye perceives it. The hardware used to display color is also an important
consideration in any computer application that uses color. The CRT (Section 6.1.1)
is currently a common output device. It displays color by means of light emitting
phosphors, but those cannot reproduce pure spectral colors. Color printers use various
inks (in the form of liquid, wax, or powder) to mix colors on paper, and they suffer from
the same shortcoming. Printers, CRTs, LCD displays, and all other output devices have
their limitations and work best when using certain color representations. This appendix
is an introduction to color, its representations, and the way the eye perceives color.

Some of the ideas and results presented here were developed by the International
Committee on Illumination (Commission Internationale de l’Éclairage, or CIE), an in-
ternational organization with a long history of illuminating various aspects of light and
illumination.

H.1 Color and the Eye

We rarely find ourselves in complete darkness. In fact, most of the time we are flooded
with light. This is why people get used to having light around and, as a result, they
only rarely ask themselves what is light?

The best current explanation is that light can be understood (or interpreted) in
two different ways, as a wave, or as a stream of particles. The latter interpretation
sees light as a stream of massless particles, called photons, moving at a constant speed.

970 H. Human Visual System

The most important attribute of a photon is its frequency, since the photon’s energy is
proportional to it. Photons are useful in physics to explain a multitude of phenomena
(such as the interaction of matter and light). In computer graphics, the most important
property of light is its color, which is why we use the former interpretation and we
consider light to be a wave.

What “waves” (or undulates) in light is the electric and magnetic fields. When a
region of space is flooded with light, those fields change periodically as we move from
point to point in space. If we stay at one point, the fields also change periodically with
time. Visible light is thus a (small) part of the electromagnetic spectrum (Figure H.1)
which includes radio waves, ultraviolet, infrared, X-rays, and other types of radiation.

Visible light

Freq.

(cycle/sec.)Wavelength

(nm)

AM radio FM radio
and TV

microwave infrared ultraviolet X-rays
gamma rays

104 106 108 1010
1012 1014 1016 1018 1020

1013 1011 109
107 105 103 101 10-1 10-3

Figure H.1: The Electromagnetic Spectrum

The most important properties of a wave are its frequency f , its wavelength λ, and
its speed. Light moves, obviously, at the speed of light (in vacuum, it is c ≈ 3×1010cm/s).
The three quantities are related by fλ = c. It is important to realize that the speed
of light depends on the medium in which it moves. As light moves from vacuum to air
to glass, it slows down (in glass, the speed of light is about 0.65c). Its wavelength also
decreases, but its frequency remains constant. Nevertheless, it is customary to relate
colors to the wavelength and not to the frequency. Since visible light has very short
wavelengths, a convenient unit is the nanometer (1 nm=10−9 m).

Visible light ranges from about 400 nm to about 700 nm and the color is deter-
mined by the wavelength. A wavelength of 420 nm, for example, corresponds to pure
violet, while 620 nm is perceived by the eye as pure red. Using special lasers, it is pos-
sible to create pure (monochromatic) light consisting of one wavelength (Figure H.2a).
Most light sources, however, output light that is a mixture of several (or even many)
wavelengths, normally with one wavelength dominating (Figures H.2b and H.12).

The colors of the spectrum that are most visible to the human eye are (Figure H.7)
violet (390–430), blue-violet (460–480), cyan, green (490–530), yellow (550–580), orange
(590–640), and red (650–800).

White light is a mixture of all wavelengths, but what is gray light? It turns out
that the wavelength of light is not its only important attribute. The intensity is another

H.1 Color and the Eye 971

attribute that should be considered. Gray light is a mixture of all wavelengths, but at
a low intensity. When doing computer graphics, the main problem is how to specify the
precise color of each pixel to the hardware. In many real-life situations, it is sufficient to
say “I think I would like a navy blue suit,” but computer hardware requires, of course,
a much more precise specification. It, therefore, comes as a surprise to discover that
color can be completely specified by just three parameters. Their meanings depend on
the particular color model used. The RGB model is popular in computer graphics. In
the printing industry, the CMYK model is normally used. Many artists use the HLS
model. These models are discussed below.

Figure H.2b shows a simplified diagram of light smeared over the entire range of
visible wavelengths, with a spike at about 620 nm (red), where it has a much higher
intensity. This light can be described by specifying its hue, saturation, and luminance.
The hue of the color is its dominant wavelength—620 nm in our example. The luminance
is related to the intensity of the light. It is defined as the total power included in the
spectrum and it is proportional to the area under the curve, which is L = (700−400)A+
B(D −A). The saturation is defined as the percentage of the luminance that resides in
the dominant wavelength. In our case, it is B(D − A)/L. When there is no dominant
wavelength (i.e., when D = A or B = 0), the saturation is zero and the light is white.
Large saturation means either large D−A or small L. In either case, there is less white
in the color and we see more of the red hue. Large saturation therefore corresponds to
pure color.

460 620

S(λ)

400 620 700

A

D

B

S(λ)

λ

(a) (b)

λ

Figure H.2: (a) Pure Colors. (b) A Dominant Wavelength

972 H. Human Visual System

H.2 The HLS Color Model

This model was introduced in 1978 by Tektronics, aiming for an intuitive way to specify
colors. The name stands for hue, lightness, and saturation. Lightness (or value) refers
to the amount of black in the color. It controls the brightness of the color. Maximum
lightness always creates white, regardless of the hue. Minimum lightness results in black.
Saturation (or chroma) refers to the amount of white in the color. It controls the purity
or vividness of the color. Low saturation means more white in the color, resulting in a
pastel color. Very low saturation results in a washed-out color. For a pure, vivid color,
the saturation should be maximum. The achromatic colors black, white, and gray have
zero saturation and differ in their values.

The HLS model is summarized in the double cone of Figure H.3. The vertical axis
corresponds to L (lightness). It starts at zero (black) at the bottom and ends at one
(white) at the top. The distance from the central axis corresponds to S (saturation).
All points on the axis have zero saturation, so they correspond to shades of gray. Points
farther away from the axis have more saturation; they correspond to more vivid colors.
The H parameter (hue) corresponds to the hue of the color. This parameter is measured
as an angle of rotation around the hexagon.

H.3 The HSV Color Model

The HSV model also uses hue, saturation, and value (lightness). It is summarized in
the cone of Figure H.4. This is a single cone where the value V, which corresponds to
lightness, goes from 0 (black) at the bottom, to 1 (white) at the flat top. The S and H
parameters have the same meanings as in the double HLS cone.

It’s the weird color-scheme that freaks me. Every time you try to oper-
ate one of these weird black controls, which are labeled in black on a black
background, a small black light lights up black to let you know you’ve done it!

— Mark Wing-Davey (as Zaphod Beeblebrox) in The Hitchhiker’s Guide
to the Galaxy (1981).

H.3 The HSV Color Model 973

White

Red

YellowGreen

Cyan

Blue Magenta

Black S

L

0.5

1.0

H

Figure H.3: The HLS Double Hexcone

YellowGreen

Cyan Red

MagentaBlue

Black S

V

H

White

Figure H.4: The HSV Hexcone

974 H. Human Visual System

H.4 The RGB Color Model

A primary hue is a color in a color model that cannot be made from the other colors
used in that model. Primary hues serve as a basis for mixing and creating all other
colors in the color model. Any color created by mixing two primary hues in a color
model is a secondary hue in that model.

In the RGB color model, the three primaries are Red, Green, and Blue. They can
be combined, two at a time to create the secondary hues. Magenta (pinkish hue) is
(R+B), cyan (bluish hue) is (B+G), and yellow is (R+G). There are two reasons for
using the red, green, and blue colors as primaries: (1) the cones in the eye are very
sensitive to these colors (Figure H.7) and (2) adding red, green, and blue can produce
many colors (although not all colors, see discussion of RGB color gamut on page 989).

The RGB color model is useful in computer graphics because of the way color CRTs
work. They creates different colors by light emitted from phosphors of different types.
The colors are then mixed in the eye of the observer, creating the impression of a perfect
mixture. Assuming a range of [0, 255] for each RGB color component, here are some
examples of mixed colors:

red = (255, 0, 0), magenta = (255, 0, 255), white = (255, 255, 255),
50% gray = (127, 127, 127), light gray = (25, 25, 25).

H.4.1 The RGB Cube

The color gamut of a color model is the entire range of colors that can be produced
by the model. The color gamut of the RGB model can be summarized in a diagram
shaped like a cube (Figures H.5 and G.3). Every point in the cube has three coordinates
(r, g, b)—each in the range [0, 1]—which give the intensities of red, green, and blue of
the point. Small values, close to (0, 0, 0), mean a dark shade, whereas anything close
to (1, 1, 1) is very bright. Point (1, 1, 1) itself corresponds to pure white. Point (1, 0, 0)
corresponds to red and point (0, 1, 0) corresponds to green. Therefore, point (1, 1, 0)
describes a mixture of red and green, that is, yellow.

The RGB cube is useful because coordinates of points in it can readily be translated
into values stored in the color lookup table of the computer.

� Exercise H.1: (Easy.) What colors correspond to the diagonal line connecting the
black and white corners of the RGB cube?

H.4 The RGB Color Model 975

r

b

g

blue

cyan
black

red
green

magenta

yellow

white

Figure H.5: The RGB Cube

blue

cyan black

green

magenta

yellow

(minus red) red

(minus blue)

(minus green)

Figure H.6: RGB and CMYK Relationships

For example, the human eye and its controlling software im-
plicitly embody the false theory that yellow light consists of a
mixture of red and green light (in the sense that yellow light
gives us the same sensation as a mixture of red light and green
light does). In reality, all three types of light have different
frequencies and cannot be created by mixing light of other fre-
quencies. The fact that a mixture of red and green light appears
to us to be yellow light has nothing whatever to do with the
properties of light, but is a property of our eyes. It is a result
of a design compromise that occurred at some time during our
distant ancestors’ evolution.

—David Deutsch, The Fabric Of Reality

976 H. Human Visual System

H.5 Additive and Subtractive Colors

To create a mixture of several colors, we sometimes have to add them and sometimes
have to subtract them. Imagine a white wall in a dark room. There is no light for the
wall to reflect, so it looks black. We now shine red light on it. Since the wall is white
(reflects all colors), it will reflect the red light and will look red. The same is true for
green light. If we now shine both red and green colors on the wall, it will reflect both,
which our brain interprets as yellow. We say that in this case the colors are added.

To understand the concept of subtracting colors, imagine a white sheet of paper
in a bright environment. The paper reflects all colors, so it looks white. If we want to
paint a certain spot red, we have to cover it with a chemical (red paint) that absorbs
all colors except red. We say that the red paint subtracts the green and blue from the
original white reflection, so the spot now reflects just red light. Similarly, if we want
a yellow spot, we have to use yellow paint, which is a substance that absorbs blue and
reflects red and green.

We conclude that in the case where we shine white light on a reflecting surface,
we have to subtract colors in order to get the precise color that we want. In the case
where we shine light of several colors on such a surface, we have to add colors to get
any desired mixture.

The various colours that may be obtained by the mixture of other colours, are
innumerable. I only propose here to give the best and simplest modes of prepar-
ing those which are required for use. Compound colours, formed by the union
of only two colours, are called by painters virgin tints. The smaller the number
of colours of which any compound colour is composed, the purer and the richer
it will be. They are prepared as follows:

—Daniel Young, 1861, Young’s Translation of Scientific Secrets

H.5.1 Subtractive Color Models

There are two such models: painter’s pigments and printing pigments.
Painter’s Pigments: The primary colors of this color model are red, yellow,

and blue. They were chosen because past artists believed that they were pure colors,
containing no traces of any other colors. These three primaries can be mixed, two
at a time, to produce the secondaries purple (R+B), green (B+Y), and orange (Y+R).
Mixing equal amounts of all three primaries subtracts all colors and, hence, yields black.

Printing Pigments: This color model is also known as process color and is the
result of development in color ink and printing processes. The three primaries are
magenta, yellow, and cyan. The three secondaries are blue (M+C), red (M+Y), and
green (C+Y). Mixing equal amounts of all three primaries should yield black, but,
because of the properties of real inks, this black is normally not dark enough. In practice,
true black is included in this model as an artificial fourth primary (also because black
ink is cheaper). It is used when grayscale or black printing is required. The model is
therefore sometimes called CMYK (K for black, to avoid confusion with blue) and color
printing is known as the four-color process. Figure H.6 shows the relationships between
the three CMY primaries and their secondaries.

H.5 Additive and Subtractive Colors 977

Because of the particular primaries and secondaries of the CMY model there is a
simple relationship between it and the RGB model. The relation is

(r, g, b) = (1, 1, 1) − (c, m, y).

This relationship shows that, for example, increasing the amount of cyan in a color,
reduces the amount of red.

Traditional color printing uses color separation. The first step is to photograph the
original image through different color filters. Each filter separates a primary color from
the multi colored original. A blue filter separates the yellow parts of the original and
creates a transparency with those parts printed in black and white. A red filter separates
the cyan parts and a green filter separates the magenta parts. Another transparency
is prepared, with the black parts. Each of the four transparencies is then converted
to a halftone image (Section H.11) and the four images become masters for the final
printing. They are placed in different stages of the printing machine and, as the paper
moves through the machine, each stage adds halftone dots of colored ink to the paper.
The result is a picture made of four halftone grids, each in one of the CMYK colors.
The grids are not superimposed on the paper, but are printed offset. The eye sees dots
colored in the four primaries, and the brain creates a mixed color that depends on the
number of halftone dots of each primary.

When such a color print is held close to the eye, the individual dots in the four colors
can be seen. Today, there are dye sublimation printers that mix wax of different dyes
inside the printer to create a drop of wax of the right color which is then deposited on the
paper. No halftoning is used. The result is a picture in vivid colors, but these printers
are currently too expensive for home use. For more information on color printing and
the CMYK model, see [Stone et al. 88].

To simplify the task of editors and graphics designers, several color standards have
been developed. Instead of figuring out the ratios of CMYK, the graphics designer looks
at a table that has many color samples, selects one, and uses its name to specify it to the
printer. One such standard in common use today is the PANTONE matching system.
It is described in [Pantone 91].

� Exercise H.2: A surface has a certain color because of its ability to absorb and reflect
light. A surface that absorbs most of the light frequencies appears dark; a surface
that reflects most frequencies appears bright. What colors are absorbed and what are
reflected by a yellow surface?

Blueness doth express trueness.
— Ben Jonson

978 H. Human Visual System

H.6 Complementary Colors

The concept of complementary colors is based on the idea that two colors appear psycho-
logically harmonious if their mixture produces white. Imagine the entire color spectrum.
The sum of all the colors produces white. If we subtract one color, say, blue, the sum
of the remaining colors produces the complementary color, yellow. Blue and yellow are
thus complementary colors (a dyad) in an additive color model. Other dyads are green
and magenta, red and cyan, yellow-orange and cyan-blue, cyan-green and red-magenta,
and yellow-green and blue-violet.

Subtractive Complementary Colors: These are based on the idea that two
colors look harmonious if their mixture yields a shade of gray. The subtractive dyads
are a yellow and violet, red and green, blue and orange, yellow-orange and blue-violet,
blue-green and red-orange, and yellow-green and red-violet.

Complementary colors produce strong visual contrast, which creates a feeling of
color vibrations or activity.

� Exercise H.3: Is there such a thing as additive color triads?

H.7 Human Vision

We see light that enters the eye and falls on the retina, where there are two types of
photosensitive cells. They contain pigments that absorb visible light and hence give us
the sense of vision. One type is the rods, which are numerous, are spread all over the
retina, and respond only to light and dark. They are very sensitive and can respond
to a single photon of light. There are about 110,000,000 to 125,000,000 rods in the eye
[Osterberg 35]. The other type is the cones, located in one small area of the retina (the
fovea). They number about 6,400,000, are sensitive to color, but require more intense
light, in the order of hundreds of photons. Incidentally, the cones are very sensitive to
red, green, and blue (Figure H.7), which is one reason why CRTs use these colors as
primaries. There are three types of cones. The A cones are sensitive to red light. The
B cones are sensitive to green light (a little more than the A cones), and the C cones
are sensitive to blue light, but their sensitivity is about 1/30 that of the A or B cones.

The trichromatic theory of color vision says that light of a given wavelength stim-
ulates each of the three types of cones in a different way, and it is the ratio of those
stimuli, not their absolute values, that creates the sensation of color in the brain. As
a result, any light intensity and background illumination that happen to produce the
same ratio of stimuli will seem to have the same color. This theory explains why any
color representation uses three parameters.

Each of the light sensors in the eye, rods and cones, sends a light sensation to the
brain that is essentially a pixel, and the brain combines these pixels to a continuous
image. The human eye is, thus, similar to a digital camera. Once this is realized, we
naturally want to compare the resolution of the eye to that of a modern digital camera.
Current digital cameras have from 300,000 sensors (for a cheap camera) to about six
million sensors (for a high-quality one).

H.7 Human Vision 979

RG

B

0

.02

.04

.06

.08

.10

.12

.14

.16

.18

.20

400 440 480 520 560 600 640 680
wavelength (nm)

F
ra

ct
io

n
of

 l
ig

ht
 a

bs
or

be
d

by
 e

ac
h

ty
pe

 o
f
co

ne

Figure H.7: Sensitivity of the Cones

Thus, the eye features a much higher resolution, but its effective resolution is even
higher when we consider that the eye can move and refocus itself about three to four
times a second. This means that in a single second, the eye can sense and send to the
brain about half a billion pixels. Assuming that our camera takes a snapshot once a
second, the ratio of the resolutions is about 100.

Certain colors—such as red, orange, and yellow—are psychologically associated
with heat. They are considered warm and cause a picture to appear larger and closer
than it really is. Other colors—such as blue, violet, and green—are associated with cool
things (air, sky, water, ice) and are therefore called cool colors. They cause a picture to
look smaller and farther away.

Color

Colors, like features, follow the changes of the emotions.
— Pablo Picasso
There is no blue without yellow and without orange.
— Vincent Van Gogh

980 H. Human Visual System

H.8 Luminance and Chrominance

The RGB and other color representations discussed earlier have one important draw-
back, they are not based on the human visual system. We know that the three types of
cones in the eye are sensitive to green and (a little less) to red, and are less sensitive to
blue. It is also known that the eye can best resolve small spatial details in the middle
of the visible spectrum, which is green, and is poorest in this respect in the blue. This
is important to an image compression algorithm, since it means that there is no need to
preserve small details in blue regions of an image, but small green details are important
and should be preserved.

It turns out that a color representation based on the two quantities luminance and
chrominance can take advantage of these features more than the RGB representation.
Luminance is a quantity that is closely related to the brightness of a light source as
perceived by the eye. It is defined as proportional to the light energy emitted by the
light source per unit area. Chrominance is related to the way the eye perceives hue and
saturation.

One important aspect of the human visual system is that the perceptual response
L∗ of the eye to a light source with luminance Y is not linear but is proportional to
Y 1/3. Specifically, the CIE has found that

L∗ =
{

116(Y/Yn)1/3 − 16, if Y/Yn > 0.008856,
903.3(Y/Yn), otherwise,

where the quantity L∗ is called lightness and Yn is the white reference luminance (see
the discussion of illuminant white in Section H.10). The region Y/Yn ≤ 0.008856
corresponds to low values of Y (very dark) and is not important.

In addition to this feature (or problem) of the human visual system, the CRT itself
is the source of another, physical, problem. It turns out that the intensity I of the light
emitted by a CRT depends nonlinearly on the voltage V that is fed to the electron gun.
The relation is I = V γ , where the voltage V is assumed to be in the range [0, 1], and
γ (gamma) is a real number, typically in the range [2, 3]. Thus, the light intensity is a
function somewhere between the square and the cube of the voltage.

It is one of life’s many lucky coincidences that these two features cancel each other
out. The two relations L∗ = 116(Y/Yn)1/3 − 16 and I = V γ imply that the lightness
perceived by the eye is proportional to the voltage fed to the CRT if γ is 3 or close to
3. Figure H.8 shows the plots of x2 and x(1/2) (and also x3 and x(1/3)). It is easy to see
how adding two such plots produces a straight line (i.e., linear dependence).

It should be stressed that this nonlinear behavior of the CRT is not caused by
the phosphor but stems from the properties of the electron gun (the cathode). Since
most CRTs are similar electrically, the value of gamma for a particular CRT depends
mainly on its brightness and contrast settings. CRT users should therefore adjust their
monitor’s gamma with the intensity and contrast controls, using special test patterns.
Figure H.9 is such a pattern where the goal is to find the bar where the brightnesses
of the top and bottom parts match. This should be done from a distance of 6–10 feet.
Some people find it more comfortable to look for the bar where the line in the middle

H.8 Luminance and Chrominance 981

0.2 0.4 0.6 0.8 1

3

1/3
1/2

2

0.2

0.4

0.6

0.8

1

Figure H.8: Plots of xγ and x1/γ For γ = 2, 3

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Figure H.9: A Gamma Test Pattern

disappears, or almost so. Once that bar is found, the gamma of the display is known
and experts recommend to adjust it to between 2.2 and 2.5.

We turn now to the important (and confusing) concept of gamma correction. We
have just stated that the lightness perceived by the eye is proportional to the voltage
fed to the CRT. Obviously we have to make sure that the voltage fed to the CRT is
proportional to the light intensity seen by the video camera. The light sensor in the
video camera (typically CCD) also has a gamma value and outputs a voltage V of
the form V = Iγ where I is the intensity “seen” by the sensor. This is why an extra
circuit is built into the camera, that corrects for the nonlinear behavior of the sensor
by changing V ← V 1/γ and outputs a voltage V that is proportional to the intensity of
the light falling on the sensor. Figure H.10 shows a block diagram of a video camera
and a television receiver.

982 H. Human Visual System

Camera

Microphone Audio

Display Speaker
Video

Antenna

Modulator
and

transmitter

Receiver
and

demodulator

Gamma
correction

Figure H.10: Television Transmission With Gamma Correction

In computer graphics, gamma correction is implemented in the color lookup table.
To get an idea of how this is done, the reader should consider another feature of the
human visual system. The eye-brain system can detect differences in light intensity, but
this ability is not uniform from black to white. It is about 1% of the intensity itself.
When looking at dark images, we can detect small variations in intensity. When seeing
a bright image, we can only detect larger changes. With this in mind, imagine a color
lookup table with 8-bit luminance values, where 0 represents black and 255 represents
white. If two entries in the table have values of 25 and 26, then the difference between
them is 1, but this one unit of difference is 4% of 25. Changing the value of a pixel from
25 to 26 would increase the brightness of the pixel by 4%, a large, noticeable intensity
difference. Similarly, if the value of a pixel is changed from 100 to 101, then this one
unit of change represents 1% of 100, and is, therefore, just barely noticeable to the eye.
Changing a pixel from 200 to 201 increases the brightness of the pixel by 0.5% and would
be unnoticeable. The value 201 is, in effect, wasted, and on the other hand we would like
to have one or two values between 25 and 26. This suggests a gamma correction that
assigns small intensity differences to small pixel values and large intensity differences to
large pixel values. Ideally, adjacent values should correspond to luminance values that
differ by about 1%, and one way of achieving this is to interpret pixel values as the
logarithm of luminance.

Readers usually find gamma correction to be a confusing topic! Our aim, however,
is to understand luminance and chrominance, and we start by stating that the RGB
components of a color are gamma corrected (in the video camera or in the lookup table),
and the new, corrected values (which are also normalized in the range [0, 1]) are denoted
R′, G′, and B′. Each of these three components contributes differently to the brightness
perceived by the eye (because of the three types of cones in the retina), so a new quantity
Y ′, is defined as the weighted sum

Y ′ = 0.299R′ + 0.587G′ + 0.114B′. (H.1)

Y ′ is called luma, but most authors call it luminance. Since the three corrected

H.8 Luminance and Chrominance 983

RGB components are normalized, Y ′ is also normalized in the range [0, 1]. The two
chrominance components U ′ and V ′ are defined as the differences U ′ = B′ − Y ′ and
V ′ = R′−Y ′. They can be interpreted as the presence or absence of blue and red in the
color, respectively. Since R′, G′, B′, and Y ′ all vary in the range [0, 1], it is easy to verify
that U ′ varies in the range [−0.886,+0.886] and V ′ varies in the range [−0.701,+0.701],
which suggests that they be normalized. Before we do that let’s try to get a better
understanding of the relations between the RGB and Y UV color representations (the
primes are omitted for convenience). Figure H.11 shows the RGB cube in dashed and
the three planes Y = 0.3, U = 0, and V = 0. The latter two planes intersect at points
that satisfy R = G = B = Y , so the intersection is the line that corresponds to all the
gray colors.

Y=0.3 plane

U=0 plane

Y=1

R

B

G

V=0 plane

1
2

3

Figure H.11: Relationship Between the RGB and Y UV Color Representations

One point on the U = 0 plane is (0, 0.755, .5). One point on the V = 0 plane is
(0.5, 0.5, 0.5). The reader should try to locate these points on the diagram.

� Exercise H.4: What are the RGB coordinates of the three points labeled ©1 , ©2 , and
©3 in Figure H.11?

Next, we get to the chrominance components. Because of the ranges of variation
of U ′ and V ′ they are easy to normalize. The two normalized quantities are denoted by
Cb and Cr (for chrominance blue and chrominance red) and are defined by

Cb = (U ′/2) + 0.5, Cr = (V ′/1.6) + 0.5.

The Y CbCr color representation is commonly used in video and computer graphics, so
image and video compression methods often assume that the images to be compressed
are represented this way.

The three color representations RGB, Y UV and Y CbCr are mathematically equiv-
alent, since it is possible to transform each of them into the other ones. The advantage
of Y CbCr is that the eye is more sensitive to small spatial luminance variations than
to small color variations. A compression method that deals with an image in Y CbCr

984 H. Human Visual System

format should keep the Y component lossless (or close to lossless), but can afford to
lose information in the chrominance components.

Transforming R′G′B′ into Y ′CbCr is done by
 Y ′

Cb
Cr


 =


 16

128
128


 +


 65.481 128.553 24.966

−37.797 −74.203 112
112 −93.786 −18.214





 R′

G′

B′


 .

The inverse transformation is
 R′

G′

B′


 =


 0.00456621 0 0.00625893

0.00456621 −0.00153632 −0.00318811
0.00456621 0.00791061 0








 Y ′

Cb
Cr


 −


 16

128
128





 .

Note: The luminance (or luma) defined by Equation (H.1) is part of the ITU-R
recommendation BT.601-4. Strictly speaking it should be denoted Y601 and should be
called nonlinear video luma. There is also a quantity called linear luma, which is defined
by means of the linear (uncorrected) RGB. It is defined by the ITU-R recommendation
709 as

Y709 = 0.2125R + 0.7154G + 0.0721B.

H.9 Spectral Density

A laser is capable of emitting “pure” light, i.e., just one wavelength. Most light sources,
however, emit “dirty” light that is a mixture of many wavelengths, normally with one
dominating. For each light source, the graph of light intensity as a function of the
wavelength λ is called the spectral density of the light source. Figure H.12 shows the
spectral densities of several typical light sources.

These simple diagrams illustrate one problem in attempting to specify color sys-
tematically and unambiguously. Several different spectral densities may be perceived
by us as identical. When the colors created by these spectral densities are placed side
by side, we find it impossible to distinguish between them. The first step in solving
the problem is color matching. Suppose that we use a color model defined by the three
primaries A(λ), B(λ), and C(λ) and we have a color described by the spectral den-
sity S(λ). How can we express S(λ) in terms of our three primaries? One way to
do this is to shine a spot of S(λ) on a white screen and, right next to it, a spot of
light P (λ) = αA(λ) + βB(λ) + γC(λ) created by mixing the three primaries (where
0 ≤ α, β, γ ≤ 1). Now change the amounts of α, β, and γ until a trained observer agrees
that the spots are indistinguishable. We can now say that, in some sense, S(λ) and
P (λ) are identical, and write S = P .

In what sense is the preceding true? It turns out that the above statement is
meaningful because of a remarkable property of colors. Suppose that two spectral
densities S(λ) and P (λ) have the same perceived color, so we write S = P . We now

H.9 Spectral Density 985

400 700400 700400 700

400 700400 700400 700

400 700400 700400 700

Black

Gray

White

Orange

Green
Purple

Yellow Red Blue

Figure H.12: Some Spectral Densities

select another color Q and shine it on both spots S and P . We know from experience
that the two new spots would also be indistinguishable. This means that we can use
the symbol + for adding lights and we can describe the two spots by S(λ) + Q(λ) and
P (λ)+Q(λ). In short, we can say “if S = P , then S+Q = P +Q.” The same is true for
changing intensities. If S = P , then αS = αP for any intensity α. We, therefore, end
up with a vector algebra for colors, where a color can be treated as a three-dimensional
vector, with the usual vector operations.

Given the above, we can select a color model based on three primaries, A, B,
and C, and can represent any color S as a linear combination of the primaries S =
αA + βB + γC. We can say that the vector (α, β, γ) is the representation of S in the
basis (A, B, C). Equivalently, we can say that S is represented as the point (α, β, γ)

986 H. Human Visual System

in the three-dimensional space defined by the vectors A = (1, 0, 0), B = (0, 1, 0), and
C = (0, 0, 1).

Since three-dimensional graphs are hard to draw on paper, we would like to artifi-
cially reduce the representation from three to two dimensions. This is done by realizing
that the vector (2α, 2β, 2γ) represents the same color as (α, β, γ), only twice as bright.
We, therefore, restrict ourselves to vectors (α, β, γ), where α+β+γ = 1. These are vec-
tors normalized to unit brightness. All vectors of unit brightness lie in the α+β +γ = 1
plane and it is this plane (which, of course, is two-dimensional) that we plot on paper.
We can specify a color by using two numbers, say, α and β and calculate γ as 1−α−β.

For the RGB color model, we now select the pure spectral colors using trained
human experts. The idea is to shine a spot of a pure color, say, 500 nm, on a screen
and, right next to it, a spot that is a mixture (r, g, b = 1− r − g) of the three primaries
of the RGB model. The values of r and g are varied until the observer judges the two
spots to be indistinguishable. The point (r, g, b) is then plotted in the three-dimensional
RGB color space. When all the pure colors have been plotted in this way, the points are
connected to form a smooth curve, P(λ) = (r(λ), g(λ), b(λ)). This is the pure spectral
color curve of the RGB model (Figure H.13).

R G

B

400

520 (R negative)

670

R+G+B=1

Figure H.13: Pure RGB Spectral Color Curve

An important property of the curve is that some of r, g, and b may sometimes
have to be negative. An example is λ ≈ 520 nm, where r turns out to be negative.
What is the meaning of adding a negative quantity of green in a color defined by, for
example, S = 0.8R− 0.1G+0.3B? The way to understand this is to write the equation
as S + 0.1G = 0.8R + 0.3B. It now means that color S cannot be constructed from the
RGB primaries, but color S + 0.1G can. The important conclusion is that not every
color can be created in the RGB model! This is illustrated in Figure H.14. For some
colors we can only create an approximation. This is true for all color models that can
be created in practice.

Did I ever tell you my favorite color is blue?
—Jürgen Prochnow (as Sutter Cane) in In the Mouth of Madness.

H.10 The CIE Standard 987

0

0.2

0.4

400 500 600 700
Wavelength (nm)

T
ris

tim
ul

us
 V

al
ue

s

R

G

B

Figure H.14: RGB Color Combinations

H.10 The CIE Standard

This standard was created in 1931 by the CIE. It is based on three carefully chosen
artificial color primaries X, Y , and Z. They don’t correspond to any real colors, but
they have the important property that any real color can be represented as a linear
combination xX + yY + zZ, where x + y + z = 1 and none of x, y, and z are negative
(Figure H.15).

The plane x + y + z = 1 in the XY Z space is called the CIE chromaticity diagram
(Figure H.16). The curve of pure spectral color in the CIE diagram covers all the pure
colors, from 420 nm to 660 nm. It is shaped like a horseshoe.

Point w = (0.310, 0.316) in the CIE diagram is special and is called “illuminant
white.” It is assumed to be the fully unsaturated white and is used in practice to match
to colors that should be pure white.

� Exercise H.5: If illuminant white is pure white, why isn’t it on the curve of pure
spectral color in the CIE diagram?

The CIE diagram provides a standard for describing colors. There are instruments
that, given a color sample, calculate the (x, y) coordinates of the color in the diagram.
Also, given the CIE coordinates of a color, those instruments can generate a sample of
the color. The diagram can also be used for useful color calculations. Here are some
examples:

1. Given two points a and b in the diagram (Figure H.16), the line connecting them
has the form (1 − α)a + αb for 0 ≤ α ≤ 1. This line shows all the colors that can be
created by adding varying amounts of colors a and b.

2. Imagine two points, such as c and d in Figure H.16. They are on the opposite
sides of illuminant white and, therefore, correspond to complementary colors.

� Exercise H.6: Why is that true?

3. The dominant wavelength of any color, such as e in Figure H.16 can be measured
in the diagram. Just draw a straight line from illuminant white w to e and continue

988 H. Human Visual System

y

zx

670

400

x+y+z=1
plane

Figure H.15: Pure Spectral Color Curve

450
470

480

500

520

540

560

580

590

620

.1 .2 .3 .4 .5 .6 .7 .8

x

y

.1

.2

.3

.4

.5

.6

.7

.8

.9

a

b

c
d

e

f

g

w

Figure H.16: The CIE Chromaticity Diagram

H.11 Halftoning 989

it until it intercepts the curve of pure spectral color. Then read the wavelength at the
interception point f (564 nm in our example).

� Exercise H.7: How can the saturation of color e be calculated from the diagram?

� Exercise H.8: What is the dominant wavelength of point g in the CIE diagram?

Have you lost your mind? What color is this bill?
—Lori Petty (as Georgia “George” Sanders) in Lush Life (1996)

4. The color gamut of a device is the range of colors that can be displayed by
the device. This can also be calculated with the CIE diagram. An RGB monitor,
for example, can display combinations of red, green, and blue, but what colors are
included in those combinations? To find the color gamut of an RGB monitor, we first
have to find the locations of pure red, green, and blue in the diagram [these are points
(0.628, 0.330), (0.285, 0.590), and (0.1507, 0.060)], then connect them with straight lines.
The color gamut consists of all the colors within the resulting triangle. Each can be
expressed as a linear combination of red, green, and blue, with non-negative coefficients
(a convex combination).

Interestingly, because of the shape of the horseshoe, no three colors on or inside it
can serve as ideal primaries. No matter what three points we select, some colors will be
outside the triangle defined by them. This means that no set of three primaries can be
used to create all the colors. The RGB set has the advantage that the triangle created
by it is large, and thus contains many colors. The CMY triangle, for example, is much
smaller by comparison. This is another reason for using red, green, and blue as the
RGB primaries.

H.11 Halftoning

Color inkjet printers are common nowadays, but the inks are still expensive. Most
laser printers are black and white. Halftoning is a method that makes it possible to
print or display images with shades of gray on a black and white (i.e., bi-level) output
device. The trade-off is loss of resolution. Instead of small, individual pixels, halftoning
uses groups of pixels where only some of the pixels in a group are black. Halftoning is
important, since it makes it possible to print pictures consisting of more than just black
and white on a black and white printer. It is commonly used in newspapers and books.
A classic reference is [Ulichney 87].

The human eye can resolve details as small as 1 minute of arc under normal light
conditions. This is called the visual acuity. If we view a very small area from a normal
viewing distance, our eyes cannot see the details in the area and end up integrating
them, such that we only see an average intensity coming from the area. This property
is called spatial integration and is very nicely demonstrated by Figure H.17. The figure
consists of black circles and dots on a white background, but spatial integration creates
the effect of a gray background.

990 H. Human Visual System

◦◦

..

Figure H.17: Gray Backgrounds Obtained by Spatial Integration

The principle of halftoning is to use groups of n×n pixels (with n usually in the
range 2–4) and to set some of the pixels in a group to black. Depending on the black-
to-white percentage of pixels in a group, the group appears to have a certain shade of
gray. An n×n group of pixels contains n2 pixels and can therefore provide n2 + 1 levels
of gray. The only practical problem is to find the best pattern for each of those levels.
The n2 + 1 pixel patterns selected must satisfy the following conditions:

1. Areas covered by copies of the same pattern should not show any textures.
2. Any pixel set to black for pattern k must also be black in all patterns of intensity

levels > k. This is considered a good growth sequence and it minimizes the differences
between patterns of successive intensities.

3. The patterns should grow from the center of the n×n area, to create the effect
of a growing dot.

4. All the black pixels of a pattern must be adjacent to each other. This property
is called clustered dot halftoning and is important if the output is intended for a printer
(laser printers cannot always fully reproduce small isolated dots). If the output is
intended for CRT only, then dispersed dot halftoning can be used, where the black
pixels of a pattern are not adjacent.

As a simple example of condition 1, a pattern such as
��������•��•��•������

must be avoided, since large areas with level-3 groups would produce long horizontal
lines. Other patterns may result in similar, annoying textures. With a 2×2 group, such
effects may be impossible to avoid. The best that can be done is to use the patterns
�������� ��•������ ��•������• ��•��•����• ��•��•��•��• .

A 3×3 group provides for more possibilities. The 10 patterns below (= 32 + 1)
are the best ones possible (reflections and rotations of these patterns are considered
identical) and usually avoid the problem above. They were produced by the matrix


 7 9 5

2 1 4
6 3 8




using the following rule: To create a group with intensity n, only cells with values ≤ n
in the above matrix should be black.

������������������
����������•��������

��������•��•��������
��������•��•������•��

��������•��•��•����•��
������•��•��•��•����•��

������•��•��•��•��•��•��
��•����•��•��•��•��•��•��

��•����•��•��•��•��•��•��•
��•��•��•��•��•��•��•��•��•

H.12 Dithering 991

The halftone method is not limited to a monochromatic display. Imagine a display
with four levels of gray per pixel (2-bit pixels). Each pixel is either black or can be in
one of three other levels. A 2×2 group consists of four pixels, each of which can be in one
of three levels of gray or in black. The total number of levels is therefore 4×3 + 1 = 13.
One possible set of the 13 patterns is shown below.

0 0
0 0

1 0
0 0

1 0
0 1

1 1
0 1

1 1
1 1

2 1
1 1

2 1
1 2

2 2
1 2

2 2
2 2

3 2
2 2

3 2
2 3

3 3
2 3

3 3
3 3

Bibliography

Ulichney, Robert (1987) Digital Halftoning, Cambridge, MA, MIT Press.

H.12 Dithering

The downside of halftoning is loss of resolution. It is also possible to display continuous-
tone images (i.e., images with different shades of gray) on a bi-level device without losing
resolution. Such methods are sometimes called dithering and their trade-off is loss of
image detail. If the device resolution is high enough and if the image is watched from a
suitable distance, then our eyes perceive an image in grayscale, but with fewer details
than in the original.

The dithering problem can be phrased as follows: given an m×n array A of pixels
in grayscale, calculate an array B of the same size with zeros and ones (corresponding to
white and black pixels, respectively) such that for every pixel B[i, j] the average value
of the pixel and a group of its near neighbors will approximately equal the normalized
value of A[i, j]. (Assume that pixel A[i, j] has an integer value I in the interval [0, a];
then its normalized value is the fraction I/a. It is in the interval [0, 1].)

The simplest dithering method uses a threshold and the single test: Set B[i, j] to
white (0) if A[i, j] is bright enough (i.e., less than the value of the threshold); otherwise,
set B[i, j] to black (1). This method is fast and simple, but generates very poor results,
as the next example shows, so it is never used in practice. As an example, imagine a
human head. The hair is generally darker than the face below it, so the simple threshold
method may quantize the entire hair area to black and the entire face area to white, a
very poor, unrecognizable, and unacceptable result. (It should be noted, however, that
some images are instantly recognizable even in just black and white, as Figure H.18
aptly demonstrates.) This method can be improved a little by using a different, random
threshold for each pixel, but even this produces low-quality results.

Four approaches to dithering, namely ordered dither, constrained average dithering,
diffusion dither, and dot diffusion, are presented in this section. Another approach,
called ARIES, is discussed in [Roetling 76] and [Roetling 77].

H.12.1 Ordered Dither

The principle of this method is to paint a pixel B[i, j] black or leave it white, depending
on the intensity of pixel A[i, j] and on its position in the picture [i.e., on its coordinates
(i, j)]. If A[i, j] is a dark shade of gray, then B[i, j] should ideally be dark thus, it is
painted black most of the time, but sometimes it is left white. The decision whether to

992 H. Human Visual System

Figure H.18: A Familiar Black-and-White Image

The giant panda resembles a bear, although anatomically it is more like a
raccoon. It lives in the high bamboo forests of central China. Its body is mostly
white, with black limbs, ears, and eye patches. Adults weigh 200 to 300 lb (90 to
140 kg). Low birth rates and human encroachment on its habitat have seriously
endangered this species.

paint it black or white depends on its coordinates i and j. The opposite is true for a
bright pixel. This method is described in [Jarvis et al. 76].

The method starts with an m×n dithering matrix Dmn which is used to determine
the color (black = 1 or white = 0) of all the B pixels. In the example below we assume
that the A pixels have 16 gray levels, with 0 as white and 15 as black. The dithering
matrices for n = 2 and n = 4 are shown below. The idea in these matrices is to minimize
the amount of texture in areas with a uniform gray level.

D22 =
[

0 2
3 1

]
, D44 =




0 8 2 10
12 4 14 6
3 11 1 9
15 7 13 5


 .

The rule is as follows: Given a pixel A[x, y] calculate i = x mod m, j = y mod n,
then select black (i.e., set B[x, y] to 1) if A[x, y] ≥ Dmn[i, j] and select white otherwise.

To see how the dithering matrix is used, imagine a large, uniform area in the image
A where all the pixels have a gray level of 4. Since 4 is the fifth of 16 levels, we would
like to end up with 5/16 of the pixels in the area set to black (ideally they should be
randomly distributed in this area). When a row of pixels is scanned in this area, y is
incremented, but x does not change. Since i depends on x, and j depends on y, the

H.12 Dithering 993

pixels scanned are compared to one of the rows of matrix D44. If this happens to be
the first row, then we end up with the sequence 10101010 . . . in bitmap B.

When the next line of pixels is scanned, x and, as a result, i have been incremented,
so we look at the next row of D44, that produces the pattern 01000100 . . . in B. The
final result is an area in B that looks like

10101010. . .
01000100. . .
10101010. . .
00000000. . .

Ten out of the 32 pixels are black, but 10/32 = 5/16. The black pixels are not randomly
distributed in the area, but their distribution does not create annoying patterns either.

� Exercise H.9: Assume that image A has three large uniform areas with gray levels 0,
1, and 15 and calculate the pixels that go into bitmap B for these areas.

Ordered dither is easy to understand if we visualize copies of the dither matrix laid
next to each other on top of the bitmap. Figure H.19 shows a 6×12 bitmap with six
copies of a 4×4 dither matrix laid on top of it. The threshold for dithering a pixel A[i, j]
is that element of the dither matrix that happens to lie on top of A[i, j].

Figure H.19: Ordered Dither

Matrix D44 above was created from D22 by the recursive rule

Dnn =
(

4Dn/2,n/2 4Dn/2,n/2 + 2Un/2,n/2

4Dn/2,n/2 + 3Un/2,n/2 4Dn/2,n/2 + Un/2,n/2,

)
, (H.2)

where Unn is an n×n matrix with all ones. Other matrices are easy to generate with
this rule.

994 H. Human Visual System

� Exercise H.10: Use the rule of Equation (H.2) to construct D88.

The basic rule of ordered dither can be generalized as follows: Given a pixel A[x, y],
calculate i = x mod m and j = y mod n, then select black (i.e., assign B[x, y] ← 1) if
Ave[x, y] ≥ Dmn[i, j], where Ave[x, y] is the average of the 3×3 group of pixels centered
on A[x, y]. This is computationally more intensive, but tends to produce better results
in most cases, since it considers the average brightness of a group of pixels.

Ordered dither is a simple, fast method, but it tends to create images that have
been described by various people as “computerized,” “cold,” or “artificial.” The reason
for that is probably the recursive nature of the dithering matrix.

H.12.2 Constrained Average Dithering

In cases where high speed is not important, this method [Jarvis and Roberts 76] gives
good results, although it involves more computations than ordered dither. The idea
is to compute, for each pixel A[i, j], the average Ā[i, j] of the pixel and its eight near
neighbors. The pixel is then compared to a threshold of the form

γ +
(

1 − 2γ

M

)
Ā[i, j],

where γ is a user-selected parameter and M is the maximum value of A[i, j]. Notice
that the threshold can have values in the range [γ, M − γ]. The final step is to compare
A[i, j] to the threshold and set B[i, j] to 1 if A[i, j] ≥ threshold and to 0 otherwise.

The main advantage of this method is edge enhancement. An example is Fig-
ure H.20 that shows a 6×8 bitmap A, where pixels have 4-bit values. Most pixels have
a value of 0, but the bitmap also contains a thick slanted line indicated in the figure.
It separates the 0 (white) pixels in the upper-left and bottom-right corners from the
darker pixels in the middle.

 0 0 0 0 0 8 15 15

 0 9 15 15 6 13 0 0
 0 1 10 15 15 8 0 0

 0 0 3 11 15 15 8 0
 0 0 0 5 13 15 15 10

 0 0 0 0 7 14 15 15

 10 38 79105 113 80 44 8

 1 14 45 87112 104 71 33
 0 3 19 54 95117 107 63

 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 0 0
 0 0 0 0 1 1 1 0

(c)(a) (b)

Figure H.20: Constrained Average Dithering

Figure H.20a shows how the pixels around the line have values approaching the
maximum (which is 15). Figure H.20b shows (for some pixels) the average of the pixel
and its eight near neighbors (the averages are shown as integers, so an average of 54
really indicates 54/9). The result of comparing these averages to the threshold (which
in this example is 75) is shown in Figure H.20c. It is easy to see how the thick line is
sharply defined in the bi-level image.

H.12 Dithering 995

So I’m a ditherer? Well, I’m jolly well going to dither, then!
—Roland Young (as Cosmo Topper) in Topper (1937)

H.12.3 Diffusion Dither

Imagine a photograph, rich in color, being digitized by a scanner that can distinguish
millions of colors. The result may be an image file where each pixel A[i, j] is represented
by, say, 24 bits. The pixel may have one of 224 colors. Now, imagine that we want to
display this file on a computer that can only display 256 colors simultaneously on the
screen. A good example is a computer using a color lookup table whose size is 3×256
bytes.

We begin by loading a palette of 256 colors into the lookup table. Each pixel A[i, j]
of the original image will now have to be displayed on the screen as a pixel B[i, j] in 1
of the 256 palette colors. The diagram below shows a pixel A[i, j] with original color
(255, 52, 80). If we decide to assign pixel B[i, j] the palette color (207, 62, 86), then we
are left with a difference of A[i, j]−B[i, j] = (48,−10,−6). This difference is called the
color error of the pixel.

R=255
G=52
B=80

−
R=207
G=62
B=86

=
R=48
G=−10
B=−6

Large color errors degrade the quality of the displayed image, so an algorithm is needed
to minimize the total color error of the image. Diffusion dither does this by distributing
the color errors among all the pixels such that the total color error for the entire image
is zero (or very close to zero).

The algorithm is very simple. Pixels A[i, j] are scanned line by line from top to
bottom. In each line, they are scanned from left to right. For each pixel, the algorithm
performs the following:

1. Pick up the palette color that is nearest the original pixel’s color. This palette
color is stored in the destination bitmap B[i, j].

2. Calculate the color error A[i, j] − B[i, j] for the pixel.
3. Distribute this error to four of A[i, j]’s nearest neighbors that haven’t been

scanned yet (the one on the right and the three ones centered below) according to
the Floyd-Steinberg filter [Floyd and Steinberg 75] (where the X represents the current
pixel):

X 7/16
3/16 5/16 1/16

Consider the example of Figure H.21a. The current pixel is (255, 52, 80) and we
(arbitrarily) assume that the nearest palette color is (207, 62, 86). The color error is
(48,−10,−6) and is distributed as shown in Figure H.21c. The five nearest neighbors are
assigned new colors as shown in Figure H.21b. The algorithm is shown in Figure H.22a

996 H. Human Visual System

where the weights p1, p2, p3, and p4 can be assigned either the Floyd-Steinberg values
7/16, 3/16, 5/16, and 1/16 or any other values.

The total color error may not be exactly zero because the method does not work
well for the leftmost column and for the bottom row of pixels. However, the results can
be quite good if the palette colors are carefully selected.

This method can easily be applied to the case of a monochromatic display (or any
bi-level output device), as shown by the pseudo-code of Figure H.22b, where p1, p2, p3,
and p4 are the four error diffusion parameters. They can be the ones already given (i.e.,
7/16, 3/16, 5/16, and 1/16) or different ones, but their sum should be 1.

� Exercise H.11: Consider an all-gray image, where A[i, j] is a real number in the range
[0, 1] and it equals 0.5 for all pixels. What image B would be generated by diffusion
dither in this case?

� Exercise H.12: Imagine a grayscale image consisting of a single row of pixels where
pixels have real values in the range [0, 1]. The value of each pixel p is compared to the
threshold value of 0.5 and the error is propagated to the neighbor on the right. Show
the result of dithering a row of pixels all with values 0.5.

Error diffusion can also be used for color printing. A typical low-end ink-jet color
printer has four ink cartridges for cyan, magenta, yellow, and black ink. The printer
places dots of ink on the page such that each dot has one of the four colors. If a certain
area on the page should have color L, where L isn’t any of CMYK, then L can be
simulated by dithering. This is done by printing adjacent dots in the area with CMYK
colors such that the eye (which integrates colors in a small area) will perceive color L.
This can be done with error diffusion where the palette consists of the four colors cyan
(255, 0, 0), magenta (0, 255, 0), yellow (0, 0, 255), and black (255, 255, 255) and the error
for a pixel is the difference between the pixel color and the nearest palette color.

A slightly simpler version of error diffusion is the minimized average error method.
The errors are not propagated but rather calculated and saved in a separate table. When
a pixel A[x, y] is examined, the error table is used to look up the errors E[x + i, y + j]
already computed for some previously seen neighbors A[i, j] of the pixel. Pixel B[x, y]
is assigned a value of 0 or 1 depending on the corrected intensity:

A[x, y] +
1∑

ij αij

∑
ij

αijE[x + i, y + j].

The new error, E[x, y] = A[x, y]−B[x, y], is then added to the error table to be used for
future pixels. The quantities αij are weights assigned to the near neighbors of A[x, y].
They can be assigned in many different ways, but they should assign more weight to
nearby neighbors, so the following is a typical example:

α =


 1 3 5 3 1

3 5 7 5 3
5 7 x − −


 ,

H.12 Dithering 997

Before
R=255
G=52
B=80

R=178
G=20
B=60

R=192
G=45
B=75

R=250
G=49
B=83

R=191
G=31
B=72

After
R=207
G=62
B=86

R=199
G=16
B=57

R=201
G=43
B=74

R=265
G=46
B=81

R=194
G=30
B=72

(a) (b)

7
16 × 48 = 21, 1

16 × 48 = 3, 5
16 × 48 = 15, 3

16 × 48 = 9,
7
16×(−10) = −4, 1

16×(−10) = −1, 5
16×(−10) = −3, 3

16×(−10) = −2,
7
16 × (−6) = −3, 1

16 × (−6) = 0, 5
16 × (−6) = −2, 3

16 × (−6) = −1.

(c)
Figure H.21: Diffusion Dither.

for i := 1 to m do
for j := 1 to n do
begin
B[i, j]:=SearchPalette(A[i, j]);

err := A[i, j] − B[i, j];
A[i, j + 1] := A[i, j + 1] + err ∗ p1;
A[i + 1, j − 1] := A[i + 1, j − 1] + err ∗ p2;
A[i + 1, j] := A[i + 1, j] + err ∗ p3;
A[i + 1, j + 1] := A[i + 1, j + 1] + err ∗ p4;
end.

(a)

for i := 1 to m do
for j := 1 to n do
begin
if A[i, j] < 0.5 then B[i, j] := 0

else B[i, j] := 1;
err := A[i, j] − B[i, j];
A[i, j + 1] := A[i, j + 1] + err ∗ p1;
A[i + 1, j − 1] := A[i + 1, j − 1] + err ∗ p2;
A[i + 1, j] := A[i + 1, j] + err ∗ p3;
A[i + 1, j + 1] := A[i + 1, j + 1] + err ∗ p4;
end.

(b)

Figure H.22: Diffusion Dither Algorithm. (a) For Color. (b) For Bi-level

998 H. Human Visual System

where x is the current pixel A[x, y] and the weights are defined for some previously seen
neighbors above and to the left of A[x, y]. If the weights add up to 1, then the corrected
intensity above is simplified and becomes

A[x, y] +
∑
ij

αijE[x + i, y + j].

Floyd-Steinberg error diffusion generally produces better results than ordered dither,
but has two drawbacks, namely it is serial in nature and it sometimes produces annoy-
ing “ghosts.” Diffusion dither is serial, since the near neighbors of B[i, j] cannot be
calculated until the calculation of B[i, j] is complete and the error A[i, j] − B[i, j] has
been distributed to the four near neighbors of A[i, j]. To understand why ghosts are
created, imagine a dark area positioned above a bright area (for example, a dark sky
above a bright sea). When the algorithm works on the last dark A pixels, a lot of
error is distributed below, to the first bright A pixels (and also to the right). When
the algorithm gets to the first bright pixels, they have collected so much error from
above that they may no longer be bright, creating perhaps several rows of dark B pix-
els. It has been found experimentally that ghosts can be “exorcised” by scaling the A
pixels before the algorithm starts. For example, each A[i, j] pixel can be replaced by
0.1 + 0.8A[i, j], which “softens” the differences in brightness (the contrast) between the
dark and bright pixels, thereby reducing the ghosts. This solution also changes all the
pixel intensities, but the eye is less sensitive to absolute intensities than to changes in
contrast, so changing intensities may be acceptable in many practical situations.

H.12.4 Dot Diffusion

This section is based on [Knuth 87], a very detailed article containing thorough analysis
and actual images dithered using several different methods. The dot diffusion algorithm
is somewhat similar to diffusion dither, it also produces good quality, sharp bi-level
images, but it is not serial in nature and may be easier to implement on a parallel
computer.

We start with the 8×8 class matrix of Figure H.23a. The way this matrix was
constructed will be discussed later. For now, we simply consider it a permutation of
the integers (0, 1, . . . , 63), which we call classes. The class number k of a pixel A[i, j] is
found at position (i, j) of the class matrix. The main algorithm is shown in Figure H.24.

The algorithm computes all the pixels of class 0 first, then those of class 1, and so
on. Procedure Distribute is called for every class k and diffuses the error err to those
near neighbors of A[i, j] whose class numbers exceed k. The algorithm distinguishes
between the four orthogonal neighbors and the four diagonal neighbors of A[i, j]. If a
neighbor is A[u, v], then the former type satisfies (u − i)2 + (v − j)2 = 1, while the
latter type is identified by (u − i)2 + (v − j)2 = 2. It is reasonable to distribute more
of the error to the orthogonal neighbors than to the diagonal ones, so a possible weight
function is weight(x, y) = 3 − x2 − y2. For an orthogonal neighbor, either (u − i) or
(v − j) equals 1, so weight(u− i, v − j) = 2, while for a diagonal neighbor, both (u− i)
and (v − j) equal 1, so weight(u − i, v − j) = 1. Procedure Distribute is listed in
pseudo-code in Figure H.24.

H.12 Dithering 999

34 48 40 32 29 15 23 31

42 58 56 53 21 5 7 10

50 62 61 45 13 1 2 18

38 46 54 37 25 17 9 26

28 14 22 30 35 49 41 33

20 4 6 11 43 59 57 52

12 0 3 19 51 63 60 44

24 16 8 27 39 47 55 36

34 48 40 32 29 15 23 31

42 58 56 53 21

50 62 61 45 13 18

38 46 54 37 25 17 26

28 14 22 30 35 49 41 33

20 11 43 59 57 52

12 19 51 63 60 44

24 16 27 39 47 55 36

34 48 40 32 29 23 31

42 58 56 53 21

50 62 61 45

38 46 54 37 25 26

28 22 30 35 49 41 33

43 59 57 52

51 63 60 44

24 27 39 47 55 36

34 48 40 32

42 58 56 53

50 62 61 45

38 46 54 37

35 49 41 33

43 59 57 52

51 63 60 44

39 47 55 36

(a) (b) (c) (d)
Figure H.23: 8×8 Matrices for Dot Diffusion

for k := 0 to 63 do
for all (i, j) of class k do
begin
if A[i, j] < .5 then B[i, j] := 0 else B[i, j] := 1;
err := A[i, j] − B[i, j];
Distribute(err, i, j, k);
end.

procedure Distribute(err, i, j, k);
w := 0;
for all neighbors A[u,v] of A[i,j] do
if class(u, v) > k then w := w+weight(u − i, v − j);
if w > 0 then for all neighbors A[u, v] of A[i, j] do
if class(u, v) > k then A[u, v] := A[u, v] + err×weight(u− i, v − j)/w;

end;

Figure H.24: The Dot Diffusion Algorithm

Once the coordinates (i, j) of a pixel A[i, j] are known, the class matrix gives the
pixel’s class number k that is independent of the color (or brightness) of the pixel.
The class matrix also gives the classes of the eight near neighbors of A[i, j], so those
neighbors whose classes exceed k can be selected and linked in a list. It is a good idea
to construct those lists once and for all, since this speeds up the algorithm considerably.

It remains to show how the class matrix, Figure H.23a, was constructed. The main
consideration is the relative positioning of small and large classes. Imagine a large class
surrounded, in the class matrix, by smaller classes. An example is class 63, which is
surrounded by the “lower classes” 43, 59, 57, 51, 60, 39, 47, and 55. A little thinking
shows that as the algorithm iterates toward 63, more and more error is absorbed into
pixels that belong to this class, regardless of their brightness. A large class surrounded
by lower classes is therefore undesirable and may be called a “baron.” The class matrix
of Figure H.23a has just two barons. Similarly, “near-baron” positions, which have only
one higher-class neighbor, are undesirable and should be avoided. Our class matrix has
just two of them.

� Exercise H.13: What are the barons and near-barons of our class matrix?

1000 H. Human Visual System

� Exercise H.14: Consider an all-gray image where A[i, j] = 0.5 for all pixels. What
image B would be generated by dot diffusion in this case?

Another important consideration is the positions of consecutive classes in the class
matrix. Figure H.23b,c,d show the class matrix after 10, 21, and 32 of its lowest classes
have been blackened. It is easy to see how the black areas form 45◦ grids that grow and
eventually form a 2×2 checkerboard. This helps create diagonal, rather than rectilinear
dot patterns in the bi-level array B, and we know from experience that such patterns
are less noticeable to the eye. Figure H.25a shows a class matrix with just one baron
and one near-baron, but it is easy to see how the lower classes are mostly concentrated
at the bottom-left corner of the matrix.

25 21 13 39 47 57 53 45

48 32 29 43 55 63 61 56

40 30 35 51 59 62 60 52

36 14 22 26 46 54 58 44

16 6 10 18 38 42 50 24

8 0 2 7 15 31 34 20

4 1 3 11 23 33 28 12

17 9 5 19 27 49 41 37

14 13 1 2

4 6 11 9

0 3 15 12

10 8 5 7

(a) (b)
Figure H.25: Two Class Matrices for Dot Diffusion

A close examination of the class matrix shows that the class numbers in positions
(i, j) and (i, j + 4) always add up to 63. This means that the grid pattern of 63 − k
white pixels after k steps is identical to the grid pattern of 63 − k black pixels after
63− k steps, shifted right four positions. This relation between the dot pattern and the
diffusion pattern is the reason for the name dot diffusion.

� Exercise H.15: Figure H.25b shows a 4×4 class matrix. Identify the barons, near-
barons, and grid patterns.

Experiments with the four methods described in this section seem to indicate that
the dot diffusion method produces best results for printing because it tends to generate
contiguous areas of black pixels, rather than “checkerboard” areas of alternating black
and white. Modern laser and ink-jet printers have resolutions of 600 dpi or more, but
they generally cannot produce a high-quality checkerboard of 300 black and 300 white
alternating pixels per inch.

Bibliography

Floyd, R., and L. Steinberg (1975) “An Adaptive Algorithm for Spatial Gray Scale,” in Society
for Information Display 1975 Symposium Digest of Technical Papers, p. 36.

Jarvis, J. F., C. N. Judice, and W. H. Ninke (1976) “A Survey of Techniques for the Im-
age Display of Continuous Tone Pictures on Bilevel Displays” Computer Graphics and Image
Processing 5(1):13–40.

H.12 Dithering 1001

Jarvis, J. F. and C. S. Roberts (1976) “A New Technique for Displaying Continuous Tone
Images on a Bilevel Display” IEEE Transactions on Communications 24(8):891–898, August.

Knuth, Donald E., (1987) “Digital Halftones by Dot Diffusion,” ACM Transactions on Graphics
6(4):245–273.

Roetling, P. G. (1976) “Halftone Method with Edge Enhancement and Moiré Suppression,”
Journal of the Optical Society of America, 66:985–989.

Roetling, P. G. (1977) “Binary Approximation of Continuous Tone Images,” Photography
Science and Engineering, 21:60–65.

While wondering what he should do in this emergency he came upon

a girl sitting by the roadside. She wore a costume that struck the

boy as being remarkably brilliant: her silken waist being of

emerald green and her skirt of four distinct colors – blue in

front, yellow at the left side, red at the back and purple at the

right side. Fastening the waist in front were four buttons—the

top one blue, the next yellow, a third red and the last purple.

L. Frank Baum, The Marvelous Land of Oz

I
Introductory
Mathematics

Do not worry too much about your difficulties in mathematics, I can assure you
that mine are still greater.

—Albert Einstein

I.1 Useful Sums

1. The sum of a geometric series is

n∑
i=0

ai =




0, if a = 0,
n + 1, if a = 1,
1−an+1

1−a , otherwise.
(I.1)

A simple corollary is
∞∑

i=0

ai =
1

1 − a
for |a| < 1. (I.2)

Differentiating Equation (I.2) yields

∞∑
i=0

iai =
a

(1 − a)2
for |a| < 1.

1004 I. Introductory Mathematics

2. The binomial theorem

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i. (I.3)

3. Series expansion of an exponential (Taylor series)

ex =
∞∑

i=0

xi

i!
.

4. The sum of the first n integers

n∑
i=1

i =
n(n + 1)

2
.

5. The sum of the first n integers squared

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
.

6. Sum of powers of 2

n∑
i=0

2i = 20 + 21 + 22 + · · · + 2n = 2n+1 − 1.

I.2 Matrices

A matrix T is a rectangular array of numbers, where each element aij is identified by
its row and column. Matrix T1 below is “generic,” with m rows and n columns. Notice
how elements aii constitute the main diagonal of the matrix. Matrix T2 is diagonal
(aij = 0 for i �= j), matrix T3, is symmetric (aij = aji), and T4 is an identity matrix.

T1 =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 , T2 =




a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44


 ,

T3 =




33 −17 201 −5
−17 66 26 −68
201 26 21 −9
−5 −68 −9 0


 , T4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

The transpose of matrix A (denoted by AT) is obtained from A by reflecting all the
elements with respect to the main diagonal. A symmetric matrix equals its transpose.

I.2 Matrices 1005

All problems in computer graphics can be solved with a matrix inversion.

James F. Blinn, 1993.

I.2.1 Matrix Operations

The rule for matrix addition/subtraction is cij = aij±bij , where C = A±B. The rule for
matrix multiplication is slightly more complex: cij =

∑n
k=1 aikbkj . Each element of C

is the dot product of a row of A and a column of B. In the dot product, corresponding
elements from A and B are multiplied, and the products summed. In order for the
multiplication to be well defined, each row of A must have the same size as a column of
B. Matrices A and B can therefore be multiplied only if the number of columns of A
equals the number of rows of B. Note that matrix multiplication is not commutative,
i.e., AB �= BA in general.

An example of matrix multiplication is the product of the 1×3 and 3×1 matrices

(1,−1, 5)


 4

−2
3


 ,

which yields the 1×1 matrix 21.
Tensor products. This is a special case of matrix multiplication. If A is a column

vector and B is a row vector (each with n elements), then their tensor product C is
defined by Cij = AiBj . Example:


 4

−2
3


 (1,−1, 5) =


 4 −4 20

−2 2 −10
3 −3 15


 .

A square matrix has a determinant, denoted by either “detA” or |A|, that is a
number. The determinant of the 2×2 matrix

(
a b
c d

)
is defined as ad−bc. The determinant

of a larger matrix can be calculated by the rule (note the alternating signs):

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣ .

Matrix division is not defined, but certain matrices have an inverse. The inverse
of A is denoted A−1, and has the property that AA−1 = A−1A = I, where I is
the identity matrix (with ones in the diagonal and zeros elsewhere). The inverse of a
matrix is used, e.g., to solve systems of linear algebraic equations. Such a system can
be denoted Ax = b where A is the matrix of coefficients, x is the column of unknowns,
and b is the column of the right-hand side coefficients. The solution is x = A−1b.

1006 I. Introductory Mathematics

Example: The following system of three equations with three unknowns x, y, and
z

x − y = 1,

−x + y = 2,

25x + 2y + z = 3, (I.4)

can be written 
 1 −1 0

−1 1 0
25 2 1





 x

y
z


 =


 1

2
3


 .

The inverse of the 3×3 transformation matrix (used in Section 4.35.1)

T =


 a b 0

c d 0
m n 1


 is T−1 =

1
ad − bc


 d −b 0

−c a 0
cn − dm bm − an 1


 . (I.5)

In general, however, the calculation of the inverse is not trivial and can be found in
any text on Linear Algebra, and also in [Press et al. 88]. Page 257 has an interesting
example of the inverse of a matrix.

Here is a summary of the properties of matrix operations:

A + B = B + A, A + (B + C) = (A + B) + C,

k(A + B) = kA + kB, (k + m)A = kA + mA, k(mA) = (km)A = m(kA),
A(BC) = (AB)C, A(B + C) = AB + AC,

(A + B)C = AB + AC, A(kB) = k(AB) = (kA)B,

(A + B)T = AT + BT , (kA)T = kT AT , (AB)T = BT AT .

Information on the history of matrices and determinants can be found at URL

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/, file
Matrices_and_determinants.html.

� Exercise I.1: Add, subtract, and multiply the two matrices

A =


 1 2 3

4 5 6
7 8 9


 , B =


 7 8 9

4 5 6
1 2 3


 .

� Exercise I.2: Calculate the inverse of

T =


 1 −1 0

−1 1 0
25 2 1


 .

I.2 Matrices 1007

A matrix is orthogonal if the dot product of any two different rows is zero (and the
same for columns. A matrix is orthonormal if it is orthogonal and the dot product of a
row with itself is one (and the same for columns). Imagine a square matrix A. When it
is transposed, its rows and columns change roles. A general element (i, j) of the product
AAT is thus the dot product of row i of A and row j of the same A. Therefore, if A
is orthonormal, then AAT is the identity matrix I. However, the product BB−1 for
any matrix B is I (if B has an inverse), so we conclude that the transpose AT of an
orthonormal matrix A equals its inverse A−1. The opposite is also true. If AT = A−1

for some matrix A, then A is orthonormal. It can be shown that an orthonormal
matrix is always a rotation matrix, and that any rotation matrix [Equation (4.53)] is
orthonormal.

Eigenvalues and eigenvectors (from the German word for “own”) are useful mathe-
matical quantities associated with matrices. They are defined as follows: If A is an n×n
matrix and if there exist vectors x and scalars λ such that Ax = λx [or (A−λI)x = 0],
then λ is called an eigenvalue of A, and x is the eigenvector associated with λ. The
eigenvectors of a symmetric matrix are orthogonal.

In principle, calculating the eigenvalues of an n×n matrix involves solving an nth-
degree polynomial equation. Therefore, for n ≥ 5, the results cannot in general be
expressed purely in terms of explicit radicals. Even for the simple matrix(

a b
−b 2a

)
,

the eigenvalues have the two complicated expressions

1
2

(
3a −

√
a2 − 4b2

)
, and

1
2

(
3a +

√
a2 − 4b2

)
.

This is why mathematical software is used in practice to obtain approximate values
(real and complex) of the eigenvalues and eigenvectors of a given matrix.

Eigenvalues and eigenvectors are mentioned in Section 4.5.4.

Bibliography

Press, W. H., B. P. Flannery, et al. (1988) Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press.
(Also available on-line from http://www.nr.com/.)

We [he and Halmos] share a philosophy about linear algebra:
we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like fury.

Irving Kaplansky.

1008 I. Introductory Mathematics

I.3 Trigonometric Identities

Many of the identities listed here can be derived with the help of DeMoivre’s theorem
[Equation (Ans.3)].

Basic Identities

tanα =
sin α

cos α
, cot α =

cos α

sinα
=

1
tanα

, csc α =
1

sinα
, sec α =

1
cos α

.

sin(−α) = − sin α, cos(−α) = cos α, tan(−α) = − tanα.

sin2 α + cos2 α = 1, tan2 α + 1 = sec2 α, cot2 α + 1 = csc2 α.

Sum and Difference Identities

cos(α ± β) = cos α cos β ∓ sinα sinβ, sin(α ± β) = sinα cos β ± cos α sinβ,

tan(α ± β) =
tanα ± tanβ

1 ∓ tanα tanβ
.

Cofunction Identities

sin(π/2 − α) = cos α, cos(π/2 − α) = sinα, tan(π/2 − α) = cot α.

Multiple Angle and Half Angle Identities

cos 2α = cos2 α − sin2 α = 1 − 2 sin2 α = 2 cos2 α − 1, sin 2α = 2 sinα cos α,

tan 2α =
2 tanα

1 − tan2 α
.

cos(α/2) = ±
√

(1 + cos α)/2, sin(α/2) = ±
√

(1 + cos α)/2.

tan(α/2) = ±
√

1 − cos α

1 + cos α
=

sinα

1 + cos α
=

1 − cos α

sinα
.

Sum and Product Identities

sin α + sinβ = 2 sin
(

α + β

2

)
cos

(
α − β

2

)
,

sinα − sinβ = 2 cos
(

α + β

2

)
sin

(
α − β

2

)
.

cos α + cos β = 2 cos
(

α + β

2

)
cos

(
α − β

2

)
,

cos α − cos β = −2 sin
(

α + β

2

)
sin

(
α − β

2

)
.

sinα cos β =
1
2

[sin(α + β) + sin(α − β)] ,

cos α sinβ =
1
2

[sin(α + β) − sin(α − β)] .

I.4 Vector Algebra 1009

cos α cos β =
1
2

[cos(α + β) + cos(α − β)] ,

sinα sinβ = −1
2

[cos(α + β) − cos(α − β)] .

Note that the line above also implies

cos2 α =
1
2

(cos(2α) + 1) , sin2 α =
1
2

(1 − cos(2α)) .

Laws of Sines and Cosines: any triangle with sides a, b, c and angles α, β, γ
satisfies the law of sines a/ sin α = b/ sinβ = c/ sin γ and the law of cosines

a2 = b2 + c2 − 2bc cos α, b2 = a2 + c2 − 2ac cos β, c2 = a2 + b2 − 2ab cos γ.

Mathematics is the only universal language there is, senator!
—Jodie Foster (as Ellie Arroway) in Contact (1977)

I.4 Vector Algebra

A vector is a mathematical entity with two attributes, direction and magnitude (notice
that a vector has no spatial position). The magnitude of vector P = (x, y, z) (also called
its absolute value) is |P| =

√
x2 + y2 + z2. The direction of a vector can be expressed

by the cosines of the angles it makes with the coordinate axes x/|P|, y/|P|, and z/|P|.
Note that the vector (x/|P|, y/|P|, z/|P|) has a magnitude of 1 (it is a unit vector).

The three unit vectors in the directions of the coordinate axes are traditionally
denoted i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1).

I.4.1 Operations on Vectors

Vector addition is defined by adding the individual elements of the vectors being added.
Thus, P+Q = (Px, Py, Pz)+(Qx, Qy, Qz) = (Px+Qx, Py+Qy, Pz+Qz). This operation
is both commutative (P + Q = Q + P) and associative P + (Q + T) = (P + Q) + T.
Subtraction of vectors P − Q is done similarly and results in the vector from Q to P.

Vectors can be multiplied in three different ways:

1. The multiplication of a scalar by a vector is defined by αP = (αx, αy, αz). It
changes the magnitude of the vector (by a factor α), but not its direction. This operation
is distributive with respect to vector addition or subtraction, α(P ± Q) = αP ± αQ.

2. The dot product of two vectors is denoted by P •Q and is defined as the scalar

(Px, Py, Pz)(Qx, Qy, Qz)T = PQT = PxQx + PyQy + PzQz.

This also equals |P| |Q| cos θ, where θ is the angle between the vectors. The dot product
of perpendicular vectors (also called orthogonal vectors) is thus zero. The dot product

1010 I. Introductory Mathematics

is commutative, P • Q = Q • P and is also distributive with respect to vector addition
or subtraction P • (Q ± T) = P • Q ± P • T.

The triple product (P • Q)R is sometimes useful. It can be represented as

(P • Q)R
= (PxQx + PyQy + PzQz)(Rx, Ry, Rz)
=

(
(PxQx + PyQy + PzQz)Rx, (PxQx + PyQy + PzQz)Ry, (PxQx + PyQy + PzQz)

)
Rz

= (Qx, Qy, Qz)


 PxRx PyRx PzRx

PxRy PyRy PzRy

PxRz PyRz PzRz




= Q(PR), (I.6)

where the notation (PR) stands for the 3×3 matrix above.
3. The cross product of two vectors (also called the vector product) is denoted P×Q

and is defined as the vector

(P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1). (I.7)

It is easy to show that P×Q is perpendicular to both P and Q.

� Exercise I.3: Prove it!

The following expressions show how P × Q can be expressed by means of a deter-
minant.

P×Q =

∣∣∣∣∣∣
i j k

P1 P2 P3

Q1 Q2 Q3

∣∣∣∣∣∣ = i
∣∣∣∣ P2 P3

Q2 Q3

∣∣∣∣ − j
∣∣∣∣ P1 P3

Q1 Q3

∣∣∣∣ + k
∣∣∣∣ P1 P2

Q1 Q2

∣∣∣∣
= (P2Q3 − P3Q2,−P1Q3 + P3Q1, P1Q2 − P2Q1),

or, alternatively, by means of a matrix

= (Q1, Q2, Q3)


 0 P3 −P2

−P3 0 P1

P2 −P1 0


 . (I.8)

� Exercise I.4: The cross product P×Q is perpendicular to both P and Q. In what
direction does it point?

The cross product is not commutative and is not associative. It is, however, dis-
tributive with respect to addition or subtraction of vectors. Hence P× (Q ± T) =
P×Q ± P×T.

The magnitude of P×Q equals |P| |Q| sin θ, where θ is the angle between the
two vectors. The cross product therefore has a simple geometric interpretation. Its
magnitude equals the area of the parallelogram defined by the two vectors.

I.4 Vector Algebra 1011

� Exercise I.5: Given that P×Q = 0, what does it tell us about the vectors involved?

As an example, the vector equation of a straight line is shown below for the case
where the direction of the line and one point on the line are known. Assume that d is a
unit vector in the direction of the line and P1 is a given point on the line. The equation
of the entire line is

P(t) = P1 + td, for any real t. (I.9)

� Exercise I.6: Derive the vector line equation for the straight segment between two
given points P1 and P2.

What if angry vectors veer
Round your sleeping head, and form.
There’s never need to fear
Violence of the poor world’s abstract storm.
— Robert Penn Warren, Lullaby in Encounter, 1957.

I.4.2 The Scalar Triple Product

The scalar triple product of three vectors P, Q, and R is defined as

S = P • (Q × R) = P1(Q2R3 − Q3R2) + P2(Q3R1 − Q1R3) + P3(Q1R2 − Q2R1)

=

∣∣∣∣∣∣
P1 P2 P3

Q1 Q2 Q3

R1 R2 R3

∣∣∣∣∣∣ . (I.10)

Interchanging two rows in a determinant changes its sign, so interchanging rows twice
leaves the determinant unchanged. This is why the triple product is not affected by a
cyclic permutation of its three components. We can therefore write

S = P • (Q×R) = Q • (R×P) = R • (P×Q).

The triple product has a simple geometric interpretation. It equals the volume of
the parallelepiped defined by the three vectors. An important corollary is: If the three
vectors are coplanar, then the parallelepiped defined by them has volume zero, implying
that their scalar triple product is zero.

I.4.3 Projecting a Vector

A common and useful operation on vectors is projecting a vector a on another vector
b. The idea is to break vector a up into two perpendicular components c and d, such
that c is in the direction of b.

Figure I.1a shows that a = c + d and |c| = |a| cos α. On the other hand a • b =
|a| |b| cos α, yielding the magnitude of c

|c| = |a| (a • b)
|a| |b| =

(a • b)
|b| . (I.11)

1012 I. Introductory Mathematics

a

b
c

d

N

l r

N

d d

c −c

(a) (b) (c)

ααα

Figure I.1: Projecting a Vector

The direction of c is identical to the direction of b, so we can write vector c as

c = |c| b
|b| =

(a • b)
|b|2 b. (I.12)

Example: Given vectors a = (2, 1) and b = (1, 0) it is easy to calculate

c =
(a • b)
|b|2 b =

2×1 + 1×0
12 + 02

(2, 0) = (4, 0), d = a − c = (−2, 1).

� Exercise I.7: The projection method above works also for three-dimensional vectors.
Given vectors a = (2, 1, 3) and b = (1, 0,−1), calculate the projection of a on b.

� Exercise I.8: Vectors and their operations have been known for a long time. Explain
why they have become important in the last few decades, since the introduction of the
digital computer.

I.5 Complex Numbers

Complex numbers are expressed in terms of the special number i that is defined as√
−1 and, hence, satisfies i × i = i2 = −1. Any complex number z can be represented

either as the sum a + bi or as the pair (a, b), where a and b are real. The conjugate of
z is denoted by z∗ and is defined as a − bi. Complex conjugates roughly correspond
to negative real numbers. The sum of the real numbers a and −a is zero and the sum
z + z∗ is 2a, which is real. The magnitude or absolute value of a complex number is
denoted by |z| and is defined as

√
z · z∗ =

√
a2 + b2. The sum and the difference of the

complex numbers a + bi, c + di are the obvious (a + b) ± (c + d)i. The product makes
use of the relation i2 = −1 and is (a + bi)(c + di) = (ac− bd) + (ad + bc)i. The inverse,
z−1, of z is defined as z∗/|z|. It corresponds to the reciprocal 1/a of a real number a.
The division z1/z2 is easy to perform for |z2| �= 0:

z1

z2
=

z1z
∗
2

z2z∗2
=

(a + bi)(c − di)
c2 + d2

=
(

ac + bd

c2 + d2
,
bc − ad

c2 + d2

)
.

I.5 Complex Numbers 1013

The multiplication rule of complex numbers can be interpreted as a rotation in two
dimensions. This is easy to see if we consider the product of the two complex numbers
(x, y) and (cos θ, sin θ).

(x, y) · (cos θ, sin θ) = (x cos θ − y sin θ, x sin θ + y cos θ)

= (x, y)
(

cos θ sin θ
− sin θ cos θ

)
.

(I.13)

This product rotates the two-dimensional point (x, y) through an angle θ about the
origin.

� Exercise I.9: Use the rule of complex number multiplication to multiply the complex
number (0, 1) by itself.

� Exercise I.10: Use the rule of complex number multiplication to multiply the complex
number (a, b) by the number (−a,−b).

The shortest path between two truths in the real domain passes through
the complex domain.

—Jacques Hadamard.

Complex numbers can be represented graphically as two-dimensional points where
the real part is the x coordinate and the imaginary part is the y coordinate. Such a
representation is called an Argand diagram.

We normally use the Cartesian coordinates (a, b) of a point P. The polar coordinates
of P are (r, θ), where r =

√
a2 + b2 is the distance of the point from the origin and

θ = arctan(b/a) is the angle between the x axis and vector r. Given a complex number
z = (x, y), r is its absolute value and θ is called its argument (arg for short). The polar
coordinates can be obtained from the Cartesian ones by (a, b) = (r cos θ, r sin θ). Since
the complex number z = (a, b) can be interpreted as a two-dimensional point, it has
the polar representation z = (r cos θ, r sin θ) = r(cos θ + i sin θ). This representation is
useful in many applications.

The famous Euler formula

eiθ = cos θ + i sin θ

allows us to write z = reiθ, a representation that makes it easy to multiply and divide
complex numbers

z1z2 = r1r2e
i(θ1+θ2),

z1

z2
= r1r2e

i(θ1−θ2),

and even extract roots

n
√

z = n
√

r

[
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

)]
, k = 0, 1, . . . , n − 1.

1014 I. Introductory Mathematics

The n roots of z can be visualized as equally-spaced points lying on the circumference
of a circle of radius n

√
r whose center is at the origin. Connecting them produces an

n-sided regular polygon.

� Exercise I.11: (Mathematical.) We know that i =
√
−1. What is

√
i ?

� Exercise I.12: While we are at it, what are ii and ln i ?

The Complex Number Song

(Tune: John Brown’s Body)
Mine eyes have seen the glory of the Argand diagram
They have seen the i’s and thetas of De Moivre’s mighty plan
Now I can find the complex roots with consummate elan
With the root of minus one
Complex numbers are so easy
Complex numbers are so easy
Complex numbers are so easy
With the root of minus one
In Cartesian co-ordinates the complex plane is fine,
But the grandeur of the polar form this beauty doth outshine
You be raising i+40 to the power of 99
With the root of minus one
You’ll realise your understanding was just second rate
When you see the power and magic of the complex conjugate
Drawing vectors corresponding to the roots of minus eight
With the root of minus one

(Attributed to Mrs P. E. Perella.)

Bibliography

Nahin, Paul J., (1998) An Imaginary Tale: The Story of
√
−1, Princeton, NJ, Princeton

University Press.

I.6 Convolution 1015

I.6 Convolution

Convolution is an important quantity that has several practical applications. It is used
in Sections 5.6.1 and 5.8. We start with the simple, intuitive concept of a system. This
is anything that receives input and generates output in response. The input and output
can be one-dimensional (a function of the time), two-dimensional (a function of two
spatial variables), or can have any number of dimensions. We will be concerned with
the relation of the output to the input, not with the internal operation of the system.
We will also concentrate on linear systems, since they are both simple and important.
A linear system is defined as follows: If input x1(t) produces output y1(t) [we denote
this by x1(t) → y1(t)] and if x2(t) → y2(t), then x1(t) + x2(t) → y1(t) + y2(t). Any
system that does not satisfy this condition is considered nonlinear.

This definition implies that 2x1(t) = x1(t) + x1(t) → y1(t) + y1(t) = 2y1(t) or, in
general, a x1(t) → a y1(t) for any real a.

Some linear systems are shift invariant. If such a linear system satisfies x(t) → y(t),
then x(t−T) → y(t−T), i.e., shifting the input by an amount T shifts the output by the
same amount, but does not otherwise affect the output. In the discussion of convolution,
we assume that the systems in question are linear and shift-invariant. This is true (or
true to a very good approximation) for electrical networks and optical systems, the main
pieces of hardware used in image processing and compression.

System. Frequently used without need.
Dayton has adopted the Dayton has adopted government
commission system of government. by commission.
The dormitory system Dormitories

—Strunk and White, The Elements of Style.

It is useful to have a general relation between the input and output of a linear,
shift-invariant system. It turns out that the expression

y(t) =
∫ +∞

−∞
f(t, τ)x(τ) dτ, (I.14)

is general enough for this purpose. In other words, there is always a two-parameter
function f(t, τ) that can be used to predict the output y(t) if the input x(τ) is known.
However, we want to express this relation with a one-parameter function, and we use
the shift-invariance of the system for this purpose. For a linear, shift-invariant system
we can write

y(t − T) =
∫ +∞

−∞
f(t, τ)x(τ − T) dτ.

1016 I. Introductory Mathematics

If we change variables by adding T to both t and τ , we get

y(t) =
∫ +∞

−∞
f(t + T, τ + T)x(τ) dτ. (I.15)

Comparing Equations (I.14) and (I.15) shows that f(t, τ) = f(t + T, τ + T). Thus,
function f has the property that if we add T to both its parameters, it does not change.
The function is constant as long as the difference between its parameters is constant.
Function f depends only on the difference of its parameters, so it is essentially a single
parameter function. We can therefore write g(t − τ) = f(t, τ), which changes Equa-
tion (I.14) to

y(t) =
∫ +∞

−∞
g(t − τ)x(τ) dτ. (I.16)

This is the convolution integral, an important relation between x(t) and y(t) or between
x(t) and g(t). This relation is denoted y = g 	 x and it says that the output of a linear,
shift-invariant system is given by the convolution of its input with a certain function
g(t) (or by convolving x with g). Function g, which is characteristic of the system, is
called the impulse response of the system. Figure I.2 shows a graphical description of a
convolution, where the final result (the integral) is the gray area under the curve.

The convolution has a number of important properties. It is commutative, associa-
tive, and distributive over addition. These properties are shown in Equation (I.17)

f 	 g = g 	 f,

f 	 (g 	 h) = (f 	 g) 	 h, (I.17)
f 	 (g + h) = f 	 g + f 	 h.

Practical problems normally involve discrete sequences of numbers, rather than
continuous functions, so the discrete convolution is useful. The discrete convolution of
the two sequences f(i) and g(i) is defined as

h(i) = f(i) 	 g(i) =
∑

j

f(j) g(i − j). (I.18)

If the lengths of f(i) and g(i) are m and n, respectively, then h(i) has length m+n−1.
Example: Given the two sequences f =

(
f(0), f(1), . . . , f(5)

)
(six elements) and

g =
(
g(0), g(1), . . . , g(4)

)
(five elements), Equation (I.18) yields the ten elements of the

convolution h = f 	 g

h(0) =
0∑

j=0

f(j)g(0 − j) = f(0)g(0)

h(1) =
1∑

j=0

f(j)g(1 − j) = f(0)g(1) + f(1)g(0)

I.6 Convolution 1017

input function convolving function

functions superimposed product of functions

x(t)

x(t)

g(τ)

g(0−τ) g(t−τ)

g(t−τ)

g(τ) reflected g(τ) reflected and shifted

t

t t

t

t t

Figure I.2: The Convolution of x(t) and g(t)
“Oh no,” George said. “It was more than money.”

He leaned his forehead in his hand and tried to remember what else more
than money. The darkness inside his head was full of convolutions. His eardrums
were too tight. Only the higher registers of sound were getting through.

—Paul Scott, The Bender.

g(t)

input function smooth function

f(t)

Figure I.3: Applying Convolution to Denoising a Function

1018 I. Introductory Mathematics

h(2) =
2∑

j=0

f(j)g(2 − j) = f(0)g(2) + f(1)g(1) + f(2)g(0)

h(3) =
3∑

j=0

f(j)g(3 − j) = f(0)g(3) + f(1)g(2) + f(2)g(1) + f(3)g(0)

h(4) =
4∑

j=0

f(j)g(4 − j) = f(0)g(4) + f(1)g(3) + f(2)g(2) + f(3)g(1) + f(4)g(0)

h(5) =
5∑

j=1

f(j)g(5 − j) = f(1)g(4) + f(2)g(3) + f(3)g(2) + f(4)g(1) + f(5)g(0)

h(6) =
5∑

j=2

f(j)g(6 − j) = f(2)g(4) + f(3)g(3) + f(4)g(2) + f(5)g(1)

h(7) =
5∑

j=3

f(j)g(7 − j) = f(3)g(4) + f(4)g(3) + f(5)g(2)

h(8) =
5∑

j=4

f(j)g(8 − j) = f(4)g(4) + f(5)g(3)

h(9) =
5∑

j=5

f(j)g(9 − j) = f(5)g(4)

A simple example of the use of a convolution is smoothing (or denoising). This
shows how convolution can be used as a filter. Given a noisy function f(t) (Fig-
ure (I.17)), we select a rectangular pulse as the convolving function g(t). It is defined
as

g(t) =




1, −a/2 < t < a/2,
1
2 , t = ±a/2,
0, elsewhere,

where a is a suitably small value (typically 1, but could be anything). As the convolution
proceeds, the pulse is moved from left to right and is multiplied by f(t). The result of
the product is a local average of f(t) over an interval of width a. This has the effect of
suppressing the high frequency fluctuations of f(t).

From the Dictionary

convolution: coiling together
convolve: roll together

I.7 Voronoi Diagrams 1019

I.7 Voronoi Diagrams

Imagine a petri dish ready for growing bacteria. Four bacteria of different types are
simultaneously placed in it at different points and immediately start multiplying. We
assume that their colonies grow at the same rate. Initially, each colony consists of a
growing circle around one of the starting points. After a while some of them meet and
stop growing in the meeting area due to lack of food. The final result is that the entire
dish gets divided into four areas, one around each of the four starting points, such that
all the points within area i are closer to starting point i than to any other start point.
Such areas are called Voronoi regions or Dirichlet tessellations. Figure I.4a shows the
Voronoi regions for four points placed approximately at the four corners of a dashed
rectangle. The regions are close to the four quadrants of the rectangle. Figure I.4b,c
shows how the regions change when the points are moved.

(a) (b) (c)

Figure I.4: Three Voronoi Diagrams of Four Points

At the time of writing there are on the web several Java applets that demonstrate
the concepts discussed here. A typical example is [Zhao 98].

Bibliography

Zhao, Zhiyuan (1998) is an applet at
http://ra.cfm.ohio-state.edu/~zhao/algorithms/algorithms.html.

1020 I. Introductory Mathematics

I.8 L Systems

Lindenmayer Systems (or L-systems for short) were developed by the biologist Aristid
Lindenmayer in 1968 as a tool [Lindenmayer 68] to describe the morphology of plants.
They were initially used in computer science, in the 1970s, as a tool to define formal
languages, but have become really popular only after 1984, when Alvy Ray Smith
pointed out [Smith 84] that L-systems can be used to draw many types of fractals,
in addition to their use in botany. Today L-systems are also used to generate tilings,
geometric art, and even musical scores.

The main idea of L-systems is to define a complex object by (1) defining an initial
simple object, called the axiom, and (2) giving rules that show how to replace parts of
the axiom.

The following true story is an example of Aristid’s modesty.
At one of the American conferences somebody asked him what the
L in “L-systems” stands for. Aristid’s answer was “Languages.”

—Grzegorz Rozenberg.

The rules are applied successively, creating parts that get more and more complex,
thereby transforming the simple axiom closer to the final, complex goal. The rules are
called rewriting or production rules, and are an extension of Chomsky’s work on formal
grammars, and also of the BNF notation. N. Chomsky showed, in the 1950s, how to
describe the syntax of a natural language by means of production rules. At about the
same time Backus and Naur developed the BNF notation, which is based on rewriting
rules, specifically to provide a formal definition [Naur 60] of the syntax of ALGOL 60.

Figure I.5 shows how a fractal, the Koch snowflake curve, is constructed, in several
steps, out of an axiom that is a simple triangle (I.5a) and a rewriting rule that says:
Replace each straight segment with the curve of I.5b. Figure I.5c is the result of applying
the rule on all three triangle sides. Figure I.5d is the result of applying the same rule
on all 12 sides of I.5c, and so on.

Notice that in order to construct iteration i + 1 of an object, the rule has to be
applied to all parts of iteration i of the object. This is the main difference between
L-systems and Chomsky grammars, and this is also one reason why L-systems are
so powerful. Another reason is the notation used in modern L-systems, a notation
introduced in 1979 by A. Szilard and R. E. Quinton and improved by P. Prusinkiewicz
in 1986. It is based on the LOGO language [Abelson 82] and the concept of turtle
moves. These two differences are illustrated below.

Example: An L-system dealing with the two letters x and y. The axiom is y and
the two rewriting rules are: x → xy (every occurrence of x should be replaced by xy)
and y → x (every occurrence of y should be replaced by x). The first iteration starts
with the axiom y, and applies both rules to it. The first rule does not apply, and the
second yields x. The result of the first iteration is thus x. Iteration 2 applies both
rules to x. The first rule replaces x by xy and the second rule does not apply, since the

I.8 L Systems 1021

(a) (b) (c)

(b) (c)

Figure I.5: Successive Generations of the Koch Snowflake

original string x did not have any y in it. Iteration 3 replaces the x of xy by xy and the
y of xy by x. The result is xyx. Successive iterations produce the strings

y → x → xy → xyx → xyxxy → xyxxyxyx.

(This does not seem useful, but wait until this method is applied to geometric shapes.)
The two parts on the left and right of a production rule are called its predecessor and
successor, respectively. An L-system such as the one above is called a D0L-system. (D0L
stands for Deterministic, Context-Free L-system. Notice that most texts on L-systems
corrupt this name and spell it “DOL” instead of “D0L.”)

Turtle Moves: It is possible to define geometric shapes by imagining a turtle
moving in the two-dimensional plane, sometimes leaving marks behind. The LOGO
programming language supports drawing commands that “move” the turtle from point
to point and cause it to turn at an angle when it reaches a point. The production rules of
L-systems also use this notation. Mathematically, the state of the turtle is represented
by a triplet (x, y, α) where (x, y) are the present coordinates of the turtle and α is its
heading. The basic notation used in such a rule employs the following characters:

F : The turtle moves forward a distance d, drawing a straight line of a given thickness
W . The state of the turtle changes from (x, y, α) to (x + d cos α, y + d sinα, α).

f : The turtle moves forward as above, but without drawing anything.
+ : The turtle turns to the right (clockwise) by a given angle δ. Its new state is thus

(x, y, α + δ).

1022 I. Introductory Mathematics

− : The turtle turns to the left (counterclockwise) by the same angle δ. Its new state
is (x, y, α − δ).
Table I.7 shows several more character commands that have traditionally been used

in L-systems. As more research is done in this field, the number of turtle commands
will grow, but the reader has to keep one important convention in mind: When a
rewriting rule contains a command that the turtle (i.e., the computer implementation
of L-systems) does not understand, that command is ignored; no error message is issued.
This convention is useful and is commonly used in drawing complex shapes.

Table I.7 implies that several more parameters, such as C, sl, and ∆, are needed
to completely specify the shape being drawn. These parameters should be supported
by any computer implementation of L-systems; they should have default values, and
should be easy for the user to modify. These parameters are listed in Table I.8.

The string F+F+F+F is a command to move forward one line length, turn right, and
repeat three more times. If the turn angle is 90◦, the result is a square of size d. If
the initial turtle heading is α = 90◦, then the start/end point is the bottom left corner
of the square (Figure I.9a). The string FFF+FF+F+F-F-F-FF+F+FFF draws the shape of
Figure I.9b.

The Koch snowflake of Figure I.5 was generated by an L-system with an axiom
F++F++F and the single production rule F->F-F++F-F. The initial heading was 0◦ and
the turn angle 60◦. Figure I.6 shows three iterations of the Peano space-filling curve
drawn with both an initial heading and a turn angle of 90◦.

(a) (b) (c)

Figure I.6: Three Iterations of the Peano Curve

The L-system for this curve consists of the axiom X and the two production rules
X->XFYFX+F+YFXFY-F-XFYFX and Y->YFXFY-F-XFYFX+F+YFXFY.

The key to understanding this L-system is the rule that any unknown turtle commands
(in this case the characters X and Y) should be ignored. The first iteration draws the
axiom X, which is unknown, causing nothing to be drawn. The next iteration executes
the two rewriting rules. The first rule replaces the axiom X with XFYFX+F+YFXFY-F-
XFYFX, which is plotted (since X and Y are unknown) as FF+F+FF-F-FF. The second rule
looks for a Y in the axiom, but finds none. The iteration thus draws FF+F+FF-F-FF,
which results in Figure I.6a. The next iteration starts with XFYFX+F+YFXFY-F-XFYFX,

I.8 L Systems 1023

F Move forward d units and draw a line.
f Move forward d units without drawing.
+ Turn clockwise by an angle δ.
- Turn counterclockwise by an angle δ.
| Reverse direction (rotate by 180◦).
[Push current turtle state into the stack.
] Pop current turtle state from the stack.
Increment the line width W by an amount w.
! Decrement the line width W by an amount w.
@ Draw a dot with radius W .
{ Open a polygon.
} Close a polygon and fill it with color C.
< Divide line length d by scale factor sl.
> Multiply line length d by scale factor sl.
& Swap meaning of + and −.
(Decrement turn angle δ by ∆.
) Increment turn angle δ by ∆.
* Match any character (used in context-sensitive L-systems only).
. . . Ignore rule (used in context-sensitive L-systems only).

Table I.7: L-system Conventions for Turtle Commands.

d The line length.
sl Scale factor for line length d.
W The line width.
w The line width increment.
α The initial turtle heading.
δ Turn angle.
∆ Increment/decrement the turn angle δ.
C Default color for polygon fill.

Table I.8: Additional Turtle Parameters.

Start Start(a) (b)

Figure I.9: Examples of Turtle Movements

1024 I. Introductory Mathematics

replaces each X with the successor of rule 1, and replaces each Y with the successor
of rule 2. The result is a very long string, that, when drawn, produces the curve of
Figure I.6b.

The L-system for the Hilbert curve is similarly defined by the axiom X and the 2
production rules

X->-YF+XFX+FY- and Y->+XF-YFY-FX+.

� Exercise I.13: Show how to get the 4 orientations of the Hilbert curve out of the
L-system above.

Abelson, H. and A. A. diSessa (1982) Turtle Geometry, Cambridge, MA, MIT
Press.

Prusinkiewicz, Przemys�law (1986) Graphical Applications of L-systems, in Proc.
of Graphics Interface ’86—Vision Interface ’86, pp .247–253.

Prusinkiewicz, P., and A. Lindenmayer (1990) The Algorithmic Beauty of Plants,
New York, Springer Verlag.

Prusinkiewicz, P., A. Lindenmayer, and F. D. Fracchia (1991) “Synthesis of Space-
Filling Curves on the Square Grid,” in Fractals in the Fundamental and Applied Sci-
ences, edited by Peitgen, H.-O. et al., Amsterdam, Elsevier Science Publishers, pp. 341–
366.

Smith, Alvy Ray (1984) “Plants, Fractals and Formal Languages,” Computer
Graphics 18(3):1–10.

Szilard, A. L. and R. E. Quinton (1979) “An Interpretation for D0L Systems by
Computer Graphics,” The Science Terrapin 4:8–13.

I.9 The Greek Alphabet

A α alpha I ι iota P ρ
 rho
B β beta K κ kappa Σ σ ς sigma
Γ γ gamma Λ λ lambda T τ tau
∆ δ delta M µ mu Y υ upsilon
E ε epsilon N ν nu Φ φ ϕ phi
Z ζ zeta Ξ ξ xi X ξ xi
H η eta O o omicron Ψ ψ psi
Θ θ theta Π π � pi Ω ω omega

I.10 Interpolating Polynomials 1025

I.10 Interpolating Polynomials

This section shows how to predict the value of a pixel from those of 16 of its near
neighbors by means of a two-dimensional interpolating polynomial. The results are
used in Table 4.133.

We start with an intuitive discussion of the term interpolation. Given two numbers
a and b, their average (a + b)/2 is always located midway between them, so we can
use the average to interpolate them. However, given four numbers a, b, c, and d, their
average (a + b + c + d)/4 is not a good interpolation, since it is not located “midway”
between the four. A simple example is the four numbers 1, 1, 1, and 100. Their average
is close to 25, so it is nowhere “in the middle” of the four numbers. Interpolating four
numbers is therefore done by (1) converting the numbers to two-dimensional points, (2)
calculating a smooth curve that passes through the points, and (3) finding the midpoint
of the curve.

Any numbers a, b, c, and d can be converted to the points (1, a), (2, b), (3, c), and
(4, d). It is intuitively clear that the midpoint (x, y) of a smooth curve that passes
through those points is a good candidate for the title “the interpolation of the four
points.” The y coordinate becomes the interpolation of the four numbers, and the x
coordinate is ignored.

This method is called one-dimensional interpolation. It can be extended to more
than four numbers, and also to pixels, where it becomes two-dimensional interpolation.
As mentioned before, we want to use a group of 16 neighboring pixels to predict the
value of a pixel at the center of the group. The main idea is to consider the 16 neighbor
pixels a 4×4 equally-spaced points on a surface (where the value of a pixel is interpreted
as the height of the surface) and to derive a polynomial function P(u, w) that passes
through all 16 points. Graphically, P(u, w) can be thought of as a surface. The value
of the pixel at the center of the 4×4 group can then be predicted by calculating the
height of the center point P(.5, .5) of the surface. Mathematically, this surface is the
two-dimensional polynomial interpolation of the 16 points.

I.10.1 One-Dimensional Interpolation

A surface can be viewed as an extension of a curve, so we start by deriving a one-
dimensional polynomial (a curve) that interpolates four points, then extend it to a
two-dimensional polynomial (a surface) that interpolates a grid of 4×4 points.

Given four points P1, P2, P3, and P4 we look for a polynomial that will pass
through them. In general, a polynomial of degree n in x is defined (Section 3.27) as the
function

Pn(x) =
n∑

i=0

aix
i = a0 + a1x + a2x

2 + · · · + anxn, (I.19)

where ai are the n+1 coefficients of the polynomial and the parameter x is a real number.
The one-dimensional interpolating polynomial that is of interest to us is special, and
differs from the definition above in two respects

1. This polynomial goes from point P1 to point P4. Its length is finite, and it is

1026 I. Introductory Mathematics

therefore better to describe it as the function

Pn(t) =
n∑

i=0

ait
i = a0 + a1t + a2t

2 + · · · + antn; where 0 ≤ t ≤ 1.

This is the parametric representation of a polynomial. We want this polynomial to go
from P1 to P4 when the parameter t is varied from 0 to 1.

2. The only given data are the four points and we have to use them to calculate
all n + 1 coefficients of the polynomial. This suggests the value n = 3 (a polynomial
of degree 3, a cubic polynomial; one which has four coefficients). The idea is to set up
and solve four equations, with the four coefficients as the unknowns, and with the four
points as known quantities. Thus, we use the notation (T indicates transpose)

P(t) = at3 + bt2 + ct + d = (t3, t2, t, 1)(a,b, c,d)T = T(t) · A. (I.20)

The four coefficients a,b, c,d are shown in boldface because they are not numbers. Keep
in mind that the polynomial has to pass through the given points, so the value of P(t)
for any t must be the three coordinates of a point. Each coefficient should therefore be
a triplet. T(t) is the row vector (t3, t2, t, 1), and A is the column vector (a,b, c,d)T .
Calculating the curve therefore involves finding the values of the four unknowns a, b,
c, and d. P(t) is called a parametric cubic (or PC) polynomial.

It turns out that degree 3 is the smallest one that is still useful for an interpolating
polynomial. A polynomial of degree 1 has the form P1(t) = ct + d and is, therefore,
a straight line, so it can only be used in special cases. A polynomial of degree two
(quadratic) has the form P2(t) = bt2 + ct+d and is a conic section, so it can only take
a few different shapes. A polynomial of degree 3 (cubic) is thus the simplest one that
can take on complex shapes, and can also be a space curve.

� Exercise I.14: Prove that a quadratic polynomial must be a plane curve.

Our ultimate problem is to interpolate pixels. Pixels are always equally-spaced, so
we assume that the two interior points P2 and P3 are equally spaced between P1 and
P4. The first point P1 is the start point P(0) of the polynomial, the last point, P4 is
the endpoint P(1), and the two interior points P2 and P3 are the two equally-spaced
interior points P(1/3) and P(2/3) of the polynomial.

We thus write P(0) = P1, P(1/3) = P2, P(2/3) = P3, P(1) = P4, or

a(0)3 + b(0)2 + c(0) + d = P1,

a(1/3)3 + b(1/3)2 + c(1/3) + d = P2,

a(2/3)3 + b(2/3)2 + c(2/3) + d = P3,

a(1)3 + b(1)2 + c(1) + d = P4.

I.10 Interpolating Polynomials 1027

These equations are easy to solve and the solutions are:

a = −9/2P1 + 27/2P2 − 27/2P3 + 9/2P4,

b = 9P1 − 45/2P2 + 18P3 − 9/2P4,

c = −11/2P1 + 9P2 − 9/2P3 + P4,

d = P1.

Substituting into Equation (I.20) gives

P(t) =(−9/2P1 + 27/2P2 − 27/2P3 + 9/2P4)t3

+ (9P1 − 45/2P2 + 18P3 − 9/2P4)t2

+ (−11/2P1 + 9P2 − 9/2P3 + P4)t + P1.

Which, after rearranging, becomes

P(t) =(−4.5t3 + 9t2 − 5.5t + 1)P1 + (13.5t3 − 22.5t2 + 9t)P2

+ (−13.5t3 + 18t2 − 4.5t)P3 + (4.5t3 − 4.5t2 + t)P4

=G1(t)P1 + G2(t)P2 + G3(t)P3 + G4(t)P4

=G(t) · P, (I.21)

where

G1(t) = (−4.5t3 + 9t2 − 5.5t + 1),

G3(t) = (−13.5t3 + 18t2 − 4.5t),

G2(t) = (13.5t3 − 22.5t2 + 9t),

G4(t) = (4.5t3 − 4.5t2 + t);
(I.22)

P is the column (P1,P2,P3,P4)T , and G(t) is the row vector

(
G1(t), G2(t), G3(t), G4(t)

)
.

The functions Gi(t) are called blending functions, since they create any point on
the curve as a blend of the four given points. Note that they add up to 1 for any value of
t. This property must be satisfied by any set of blending functions, and such functions
are called barycentric. We can also write

G1(t) = (t3, t2, t, 1)(−4.5, 9,−5.5, 1)T

and, similarly, for G2(t), G3(t), and G4(t). In matrix notation this becomes

G(t) = (t3, t2, t, 1)




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0


 = T(t) · N. (I.23)

1028 I. Introductory Mathematics

The word barycentric is derived from barycenter, meaning “cen-
ter of gravity,” because such weights are used to calculate the cen-
ter of gravity of an object. Barycentric weights have many uses in
geometry in general, and in curve and surface design in particular.

The curve can now be written P(t) = G(t) · P = T(t)·N·P. N is called the basis matrix
and P is the geometry vector. From Equation (I.20) we know that P(t) = T(t) · A, so
we can write A = N ·P. Equation (5.17) illustrates an application of this interpolating
polynomial for image compression.

Given the four points, the interpolating polynomial can be calculated in two steps:
1. Set-up the equation A = N · P and solve it for A = (a,b, c,d)T .
2. The polynomial is P(t) = T(t) · A.

I.10.2 Example

(This example is in two dimensions, each of the four points Pi and each of the four
coefficients a, b, c, and d is a pair. For three-dimensional curves, the method is the same,
except that triplets should be used, instead of pairs.) Given the four two-dimensional
points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we set up the equation




a
b
c
d


 = A = N · P =




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0







(0, 0)
(1, 0)
(1, 1)
(0, 1)


 ,

which is easy to solve

a = −4.5(0, 0) + 13.5(1, 0) − 13.5(1, 1) + 4.5(0, 1) = (0,−9),
b = 19(0, 0) − 22.5(1, 0) + 18(1, 1) − 4.5(0, 1) = (−4.5, 13.5),
c = −5.5(0, 0) + 9(1, 0) − 4.5(1, 1) + 1(0, 1) = (4.5,−3.5),
d = 1(0, 0) − 0(1, 0) + 0(1, 1) − 0(0, 1) = (0, 0).

Thus P(t) = T · A = (0,−9)t3 + (−4.5, 13.5)t2 + (4.5,−3.5)t.

It is now easy to calculate and verify that P(0) = (0, 0) = P1, and

P(1/3) = (0,−9)1/27 + (−4.5, 13.5)1/9 + (4.5,−3.5)1/3 = (1, 0) = P2,

P(1) = (0,−9)13 + (−4.5, 13.5)12 + (4.5,−3.5)1 = (0, 1) = P4.

� Exercise I.15: Calculate P(2/3) and verify that it is equal to P3.

I.10 Interpolating Polynomials 1029

� Exercise I.16: Imagine the circular arc of radius one in the first quadrant (a quarter
circle). Write the coordinates of the four points that are equally spaced on this arc.
Use the coordinates to calculate a PC interpolating polynomial approximating this arc.
Calculate point P(1/2). How far does it deviate from the midpoint of the true quarter
circle?

The main advantage of this method is its simplicity. Given the four points, it is
easy to calculate the PC polynomial that passes through them.

� Exercise I.17: This method makes sense if the four points are (at least approximately)
equally spaced along the curve. If they are not, the following may be done: Instead
of using 1/3 and 2/3 as the intermediate values, the user may specify values α, β such
that P2 = P(α) and P3 = P(β). Generalize Equation (I.23) such that it depends on α
and β.

I.10.3 Two-Dimensional Interpolation

The PC polynomial, Equation (I.20), can easily be extended to two dimensions by
means of a technique called Cartesian product. The polynomial is generalized from a
cubic curve to a bicubic surface.

A one-dimensional PC polynomial has the form P(t) =
∑3

i=0 ait
i. Two such curves,

P(u) and P(w), can be combined by means of this technique to form the surface:

P(u, w) =
3∑

i=0

3∑
j=0

aiju
iwj

= a33u
3w3 + a32u

3w2 + a31u
3w + a30u

3 + a23u
2w3 + a22u

2w2 + a21u
2w + a20u

2

+ a13uw3 + a12uw2 + a11uw + a10u + a03w
3 + a02w

2 + a01w + a00

= (u3, u2, u, 1)




a33 a32 a31 a30

a23 a22 a21 a20

a13 a12 a11 a10

a03 a02 a01 a00







w3

w2

w
1


 , where 0 ≤ u, w ≤ 1. (I.24)

This is a double cubic polynomial (hence the name bicubic) with 16 terms, where
each of the 16 coefficients aij is a triplet. Note that the surface depends on all 16
coefficients. Any change in any of them produces a different surface. Equation (I.24)
is the algebraic representation of a bicubic surface. In order to use it in practice, the
16 unknown coefficients have to be expressed in terms of the 16 known, equally-spaced
points. We denote these points

P03 P13 P23 P33

P02 P12 P22 P32

P01 P11 P21 P31

P00 P10 P20 P30.

To calculate the 16 unknown coefficients, we write 16 equations, each based on one of

1030 I. Introductory Mathematics

the given points:

P(0, 0) = P00 P(0, 1/3) = P01 P(0, 2/3) = P02 P(0, 1) = P03

P(1/3, 0) = P10 P(1/3, 1/3) = P11 P(1/3, 2/3) = P12 P(1/3, 1) = P13

P(2/3, 0) = P20 P(2/3, 1/3) = P21 P(2/3, 2/3) = P22 P(2/3, 1) = P23

P(1, 0) = P30 P(1, 1/3) = P31 P(1, 2/3) = P32 P(1, 1) = P33.

Solving, substituting the solutions in Equation (I.24), and simplifying produces the
geometric representation of the bicubic surface

P(u, w) = (u3, u2, u, 1)N




P33 P32 P31 P30

P23 P22 P21 P20

P13 P12 P11 P10

P03 P02 P01 P00


NT




w3

w2

w
1


 , (I.25)

where N is the Hermite matrix of Equation (I.23).
The surface of Equation (I.25) can now be used to predict the value of a pixel

as a polynomial interpolation of 16 of its near neighbors. All that is necessary is to
substitute u = 0.5 and w = 0.5. The following Mathematica code

Clear[Nh,P,U,W];
Nh={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},
{-5.5,9,-4.5,1},{1,0,0,0}};
P={{p33,p32,p31,p30},{p23,p22,p21,p20},
{p13,p12,p11,p10},{p03,p02,p01,p00}};
U={u^3,u^2,u,1};
W={w^3,w^2,w,1};
u:=0.5;
w:=0.5;
Expand[U.Nh.P.Transpose[Nh].Transpose[W]]

does that and produces

P(.5, .5)
= 0.00390625P00 − 0.0351563P01 − 0.0351563P02 + 0.00390625P03

− 0.0351563P10 + 0.316406P11 + 0.316406P12 − 0.0351563P13

− 0.0351563P20 + 0.316406P21 + 0.316406P22 − 0.0351563P23

+ 0.00390625P30 − 0.0351563P31 − 0.0351563P32 + 0.00390625P33,

where the 16 coefficients are the ones used in Table 4.133.

� Exercise I.18: How can this method be used in cases where not all 16 points are
known?

I.10 Interpolating Polynomials 1031

� Exercise I.19: The center point of the surface is calculated as a weighted sum of the
16 equally-spaced data points. It makes sense to assign small weights to points located
away from the center, but our result assigns negative weights to eight of the 16 points.
Explain the meaning of negative weights and show what role they play in interpolating
the center of the surface.

Readers who find it hard to follow the details above should compare the way two-
dimensional polynomial interpolation is presented here to the way it is discussed by
[Press et al. 88]. The following quotation is from page 125: “. . .The formulas that
obtain the c’s from the function and derivative values are just a complicated linear
transformation, with coefficients which, having been determined once, in the mists of
numerical history, can be tabulated and forgotten.”

Seated at his disorderly desk, caressed by a counterpane of drifting

tobacco haze, he would pore over the manuscript, crossing out,

interpolating, re-arguing, and then referring to volumes on his shelves.

Christopher Morley, The Haunted Bookshop

Glossary

ACB. A very efficient text compression method by G. Buyanovsky (Section 8.3). It
uses a dictionary with unbounded contexts and contents to select the context that best
matches the search buffer and the content that best matches the look-ahead buffer.

Adaptive Compression. A compression method that modifies its operations and/or
its parameters according to new data read from the input stream. Examples are the
adaptive Huffman method of Section 2.9 and the dictionary-based methods of Chapter 3.
(See also Semiadaptive Compression, Locally Adaptive Compression.)

Affine Transformations. Two-dimensional or three-dimensional geometric transforma-
tions, such as scaling, reflection, rotation, and translation, that preserve parallel lines
(Section 4.35.1).

Alphabet. The set of all possible symbols in the input stream. In text compression the
alphabet is normally the set of 128 ASCII codes. In image compression it is the set of
values a pixel can take (2, 16, 256, or anything else). (See also Symbol.)

Archive. A set of one or more files combined into one file (Section 3.22). The individual
members of an archive may be compressed. An archive provides a convenient way of
transferring or storing groups of related files. (See also ARC, ARJ.)

ARC. A compression/archival/cataloging program written by Robert A. Freed in the
mid 1980s (Section 3.22). It offers good compression and the ability to combine several
files into an archive. (See also Archive, ARJ.)

Arithmetic Coding. A statistical compression method (Section 2.14) that assigns one
(normally long) code to the entire input stream, instead of assigning codes to the in-
dividual symbols. The method reads the input stream symbol by symbol and appends
more bits to the code each time a symbol is input and processed. Arithmetic coding is
slow, but it compresses at or close to the entropy, even when the symbol probabilities
are skewed. (See also Model of Compression, Statistical Methods, QM Coder.)

1034 Glossary

ARJ. A free compression/archiving utility for MS/DOS (Section 3.22), written by
Robert K. Jung to compete with ARC and the various PK utilities. (See also Archive,
ARC.)

ASCII Code. The standard character code on all modern computers (although Unicode
is becoming a competitor). ASCII stands for American Standard Code for Information
Interchange. It is a (1 + 7)-bit code, meaning 1 parity bit and 7 data bits per symbol.
As a result, 128 symbols can be coded (see appendix in book’s web page). They include
the upper- and lowercase letters, the ten digits, some punctuation marks, and control
characters. (See also Unicode.)

Bark. Unit of critical band rate. Named after Heinrich Georg Barkhausen and used in
audio applications. The Bark scale is a nonlinear mapping of the frequency scale over
the audio range, a mapping that matches the frequency selectivity of the human ear.

Bayesian Statistics. (See Conditional Probability.)

Bi-level Image. An image whose pixels have two different colors. The colors are nor-
mally referred to as black and white, “foreground” and “background,” or 1 and 0. (See
also Bitplane.)

BinHex. A file format for reliable file transfers, designed by Yves Lempereur for use on
the Macintosh computer (Section 1.4.3).

Bintrees. A method, somewhat similar to quadtrees, for partitioning an image into
nonoverlapping parts. The image is (horizontally) divided into two halves, each half is
divided (vertically) into smaller halves, and the process continues recursively, alternating
between horizontal and vertical splits. The result is a binary tree where any uniform
part of the image becomes a leaf. (See also Prefix Compression, Quadtrees.)

Bitplane. Each pixel in a digital image is represented by several bits. The set of all the
kth bits of all the pixels in the image is the kth bitplane of the image. A bi-level image,
for example, consists of two bitplanes. (See also Bi-level Image.)

Bitrate. In general, the term “bitrate” refers to both bpb and bpc. In MPEG audio,
however, this term is used to indicate the rate at which the compressed stream is read
by the decoder. This rate depends on where the stream comes from (such as disk, com-
munications channel, memory). If the bitrate of an MPEG audio file is, e.g., 128Kbps.
then the encoder will convert each second of audio into 128K bits of compressed data,
and the decoder will convert each group of 128K bits of compressed data into one sec-
ond of sound. Lower bitrates mean smaller file sizes. However, as the bitrate decreases,
the encoder must compress more audio data into fewer bits, eventually resulting in a
noticeable loss of audio quality. For CD-quality audio, experience indicates that the
best bitrates are in the range of 112Kbps to 160Kbps. (See also Bits/Char.)

Bits/Char. Bits per character (bpc). A measure of the performance in text compression.
Also a measure of entropy. (See also Bitrate, Entropy.)

Bits/Symbol. Bits per symbol. A general measure of compression performance.

Glossary 1035

Block Coding. A general term for image compression methods that work by break-
ing the image into small blocks of pixels, and encoding each block separately. JPEG
(Section 4.8) is a good example, since it processes blocks of 8×8 pixels.

Block Decomposition. A method for lossless compression of discrete-tone images. The
method works by searching for, and locating, identical blocks of pixels. A copy B of a
block A is compressed by preparing the height, width, and location (image coordinates)
of A, and compressing those four numbers by means of Huffman codes. (See also
Discrete-Tone Image.)

Block Matching. A lossless image compression method based on the LZ77 sliding win-
dow method originally developed for text compression. (See also LZ Methods.)

Block Truncation Coding. BTC is a lossy image compression method that quantizes
pixels in an image while preserving the first two or three statistical moments. (See also
Vector Quantization.)

BMP. BMP (Section 1.4.4) is a palette-based graphics file format for images with 1, 2,
4, 8, 16, 24, or 32 bitplanes. It uses a simple form of RLE to compress images with 4
or 8 bitplanes.

BOCU-1. This is a simple algorithm for Unicode compression (Section 8.12.1).

Burrows-Wheeler Method. This method (Section 8.1) prepares a string of data for
later compression. The compression itself is done using the move-to-front method (Sec-
tion 1.5), perhaps in combination with RLE. The BW method converts a string S to
another string L that satisfies two conditions:

1. Any region of L will tend to have a concentration of just a few symbols.

2. It is possible to reconstruct the original string S from L (a little more data may be
needed for the reconstruction, in addition to L, but not much).

CALIC. A context-based, lossless image compression method (Section 4.24) whose two
main features are (1) the use of three passes in order to achieve symmetric contexts
and (2) context quantization, to significantly reduce the number of possible contexts
without degrading compression performance.

CCITT. The International Telegraph and Telephone Consultative Committee (Comité
Consultatif International Télégraphique et Téléphonique), the old name of the ITU,
the International Telecommunications Union, a United Nations organization respon-
sible for developing and recommending standards for data communications (not just
compression). (See also ITU.)

Cell Encoding. An image compression method where the entire bitmap is divided into
cells of, say, 8×8 pixels each and is scanned cell by cell. The first cell is stored in entry
0 of a table and is encoded (i.e., written on the compressed file) as the pointer 0. Each
subsequent cell is searched in the table. If found, its index in the table becomes its code
and is written on the compressed file. Otherwise, it is added to the table. In the case
of an image made of just straight segments, it can be shown that the table size is just
108 entries.

1036 Glossary

CIE. CIE is an abbreviation for Commission Internationale de l’Éclairage (International
Committee on Illumination). This is the main international organization devoted to
light and color. It is responsible for developing standards and definitions in this area.
(See Luminance.)

Circular Queue. A basic data structure (Section 3.3.1) that moves data along an array
in circular fashion, updating two pointers to point to the start and end of the data in
the array.

Codec. A term used to refer to both encoder and decoder.

Codes. A code is a symbol that stands for another symbol. In computer and telecom-
munications applications, codes are virtually always binary numbers. The ASCII code
is the defacto standard, although the new Unicode is used on several new computers and
the older EBCDIC is still used on some old IBM computers. (See also ASCII, Unicode.)

Composite and Difference Values. A progressive image method that separates the
image into layers using the method of bintrees. Early layers consist of a few large,
low-resolution blocks, followed by later layers with smaller, higher-resolution blocks.
The main principle is to transform a pair of pixels into two values, a composite and a
differentiator. (See also Bintrees, Progressive Image Compression.)

Compress. In the large UNIX world, compress is commonly used to compress data.
This utility uses LZW with a growing dictionary. It starts with a small dictionary of
just 512 entries and doubles its size each time it fills up, until it reaches 64K bytes
(Section 3.19).

Compression Factor. The inverse of compression ratio. It is defined as

compression factor =
size of the input stream
size of the output stream

.

Values greater than 1 mean compression, and values less than 1 imply expansion. (See
also Compression Ratio.)

Compression Gain. This measure is defined as

100 loge

reference size
compressed size

,

where the reference size is either the size of the input stream or the size of the compressed
stream produced by some standard lossless compression method.

Compression Ratio. One of several measures that are commonly used to express the
efficiency of a compression method. It is the ratio

compression ratio =
size of the output stream
size of the input stream

.

Glossary 1037

A value of 0.6 means that the data occupies 60% of its original size after compression.
Values greater than 1 mean an output stream bigger than the input stream (negative
compression).

Sometimes the quantity 100 × (1 − compression ratio) is used to express the quality of
compression. A value of 60 means that the output stream occupies 40% of its original
size (or that the compression has resulted in a savings of 60%). (See also Compression
Factor.)

Conditional Image RLE. A compression method for grayscale images with n shades
of gray. The method starts by assigning an n-bit code to each pixel depending on its
near neighbors. It then concatenates the n-bit codes into a long string, and calculates
run lengths. The run lengths are encoded by prefix codes. (See also RLE, Relative
Encoding.)

Conditional Probability. We tend to think of probability as something that is built
into an experiment. A true die, for example, has probability of 1/6 of falling on any
side, and we tend to consider this an intrinsic feature of the die. Conditional probability
is a different way of looking at probability. It says that knowledge affects probability.
The main task of this field is to calculate the probability of an event A given that
another event, B, is known to have occurred. This is the conditional probability of A
(more precisely, the probability of A conditioned on B), and it is denoted by P (A|B).
The field of conditional probability is sometimes called Bayesian statistics, since it was
first developed by the Reverend Thomas Bayes, who came up with the basic formula of
conditional probability.

Context. The N symbols preceding the next symbol. A context-based model uses
context to assign probabilities to symbols.

Context-Free Grammars. A formal language uses a small number of symbols (called
terminal symbols) from which valid sequences can be constructed. Any valid sequence
is finite, the number of valid sequences is normally unlimited, and the sequences are
constructed according to certain rules (sometimes called production rules). The rules
can be used to construct valid sequences and also to determine whether a given sequence
is valid. A production rule consists of a nonterminal symbol on the left and a string
of terminal and nonterminal symbols on the right. The nonterminal symbol on the left
becomes the name of the string on the right. The set of production rules constitutes the
grammar of the formal language. If the production rules do not depend on the context
of a symbol, the grammar is context-free. There are also context-sensitive grammars.
The sequitur method of Section 8.10 uses context-free grammars.

Context-Tree Weighting. A method for the compression of bit strings. It can be applied
to text and images, but they have to be carefully converted to bit strings. The method
constructs a context tree where bits input in the immediate past (context) are used to
estimate the probability of the current bit. The current bit and its estimated probability
are then sent to an arithmetic encoder, and the tree is updated to include the current
bit in the context. (See also KT Probability Estimator.)

1038 Glossary

Continuous-Tone Image. A digital image with a large number of colors, such that
adjacent image areas with colors that differ by just one unit appear to the eye as having
continuously varying colors. An example is an image with 256 grayscale values. When
adjacent pixels in such an image have consecutive gray levels, they appear to the eye as
a continuous variation of the gray level. (See also Bi-level image, Discrete-Tone Image,
Grayscale Image.)

Continuous Wavelet Transform. An important modern method for analyzing the time
and frequency contents of a function f(t) by means of a wavelet. The wavelet is itself a
function (which has to satisfy certain conditions), and the transform is done by multi-
plying the wavelet and f(t) and calculating the integral of the product. The wavelet is
then translated and the process is repeated. When done, the wavelet is scaled, and the
entire process is carried out again in order to analyze f(t) at a different scale. (See also
Discrete Wavelet Transform, Lifting Scheme, Multiresolution Decomposition, Taps.)

Convolution. A way to describe the output of a linear, shift-invariant system by means
of its input.

Correlation. A statistical measure of the linear relation between two paired variables.
The values of R range from −1 (perfect negative relation), to 0 (no relation), to +1
(perfect positive relation).

CRC. CRC stands for Cyclical Redundancy Check (or Cyclical Redundancy Code). It
is a rule that shows how to obtain vertical check bits from all the bits of a data stream
(Section 3.27). The idea is to generate a code that depends on all the bits of the data
stream, and use it to detect errors (bad bits) when the data is transmitted (or when it
is stored and retrieved).

CRT. A CRT (cathode ray tube) is a glass tube with a familiar shape. In the back it
has an electron gun (the cathode) that emits a stream of electrons. Its front surface is
positively charged, so it attracts the electrons (which have a negative electric charge).
The front is coated with a phosphor compound that converts the kinetic energy of the
electrons hitting it to light. The flash of light lasts only a fraction of a second, so in
order to get a constant display, the picture has to be refreshed several times a second.

Data Compression Conference. A meeting of researchers and developers in the area of
data compression. The DCC takes place every year in Snowbird, Utah, USA. It lasts
three days and the next few meetings are scheduled for late March.

Data Structure. A set of data items used by a program and stored in memory such
that certain operations (for example, finding, adding, modifying, and deleting items)
can be performed on the data items fast and easily. The most common data structures
are the array, stack, queue, linked list, tree, graph, and hash table. (See also Circular
Queue.)

Decibel. A logarithmic measure that can be used to measure any quantity that takes
values over a very wide range. A common example is sound intensity. The intensity
(amplitude) of sound can vary over a range of 11–12 orders of magnitude. Instead of

Glossary 1039

using a linear measure, where numbers as small as 1 and as large as 1011 would be
needed, a logarithmic scale is used, where the range of values is [0, 11].

Decoder. A decompression program (or algorithm).

Deflate. A popular lossless compression algorithm (Section 3.23) used by Zip and gzip.
Deflate employs a variant of LZ77 combined with static Huffman coding. It uses a
32 Kb-long sliding dictionary and a look-ahead buffer of 258 bytes. When a string is
not found in the dictionary, its first symbol is emitted as a literal byte. (See also Gzip,
Zip.)

Dictionary-Based Compression. Compression methods (Chapter 3) that save pieces of
the data in a “dictionary” data structure (normally a tree). If a string of new data is
identical to a piece already saved in the dictionary, a pointer to that piece is output to
the compressed stream. (See also LZ Methods.)

Differential Image Compression. A lossless image compression method where each
pixel p is compared to a reference pixel, which is one of its immediate neighbors, and is
then encoded in two parts: a prefix, which is the number of most significant bits of p
that are identical to those of the reference pixel, and a suffix, which is (almost all) the
remaining least significant bits of p. (See also DPCM.)

Digital Video. Digital video is a form of video in which the original image is generated,
in the camera, in the form of pixels. (See also High-Definition Television.)

Digram. A pair of consecutive symbols.

Discrete Cosine Transform. A variant of the discrete Fourier transform (DFT) that
produces just real numbers. The DCT (Sections 4.6 and 4.8.2) transforms a set of
numbers by combining n numbers to become an n-dimensional point and rotating it
in n-dimensions such that the first coordinate becomes dominant. The DCT and its
inverse, the IDCT, are used in JPEG (Section 4.8) to compress an image with acceptable
loss, by isolating the high-frequency components of an image, so that they can later be
quantized. (See also Fourier Transform, Transform.)

Discrete-Tone Image. A discrete-tone image may be bi-level, grayscale, or color. Such
images are (with few exceptions) artificial, having been obtained by scanning a docu-
ment, or grabbing a computer screen. The pixel colors of such an image do not vary
continuously or smoothly, but have a small set of values, such that adjacent pixels may
differ much in intensity or color. Figure G.5 is an example of such an image. (See also
Block Decomposition, Continuous-Tone Image.)

Discrete Wavelet Transform. The discrete version of the continuous wavelet transform.
A wavelet is represented by means of several filter coefficients, and the transform is car-
ried out by matrix multiplication (or a simpler version thereof) instead of by calculating
an integral. (See also Continuous Wavelet Transform, Multiresolution Decomposition.)

Dithering. A technique for printing or displaying a grayscale image on a bi-level output
device, such as a monochromatic screen or a black and white printer. The tradeoff is
loss of image detail. (See also Halftoning.)

1040 Glossary

DjVu. Certain images combine the properties of all three image types (bi-level, discrete-
tone, and continuous-tone). An important example of such an image is a scanned
document containing text, line drawings, and regions with continuous-tone pictures,
such as paintings or photographs. DjVu (pronounced “déjà vu”), is designed for high
compression and fast decompression of such documents.

It starts by decomposing the document into three components: mask, foreground, and
background. The background component contains the pixels that constitute the pictures
and the paper background. The mask contains the text and the lines in bi-level form
(i.e., one bit per pixel). The foreground contains the color of the mask pixels. The
background is a continuous-tone image and can be compressed at the low resolution of
100 dpi. The foreground normally contains large uniform areas and is also compressed
as a continuous-tone image at the same low resolution. The mask is left at 300 dpi but
can be efficiently compressed, since it is bi-level. The background and foreground are
compressed with a wavelet-based method called IW44, while the mask is compressed
with JB2, a version of JBIG2 (Section 4.12) developed at AT&T.

DPCM. DPCM compression is a member of the family of differential encoding compres-
sion methods, which itself is a generalization of the simple concept of relative encoding
(Section 1.3.1). It is based on the fact that neighboring pixels in an image (and also
adjacent samples in digitized sound) are correlated. (See also Differential Image Com-
pression, Relative Encoding.)

Embedded Coding. This feature is defined as follows: Imagine that an image encoder
is applied twice to the same image, with different amounts of loss. It produces two files,
a large one of size M and a small one of size m. If the encoder uses embedded coding,
the smaller file is identical to the first m bits of the larger file.

The following example aptly illustrates the meaning of this definition. Suppose that
three users wait for you to send them a certain compressed image, but they need different
image qualities. The first one needs the quality contained in a 10 Kb file. The image
qualities required by the second and third users are contained in files of sizes 20 Kb and
50 Kb, respectively. Most lossy image compression methods would have to compress the
same image three times, at different qualities, to generate three files with the right sizes.
An embedded encoder, on the other hand, produces one file, and then three chunks—of
lengths 10 Kb, 20 Kb, and 50 Kb, all starting at the beginning of the file—can be sent
to the three users, satisfying their needs. (See also SPIHT, EZW.)

Encoder. A compression program (or algorithm).

Entropy. The entropy of a single symbol ai is defined (in Section 2.1) as −Pi log2 Pi,
where Pi is the probability of occurrence of ai in the data. The entropy of ai is the
smallest number of bits needed, on average, to represent symbol ai. Claude Shannon,
the creator of information theory, coined the term entropy in 1948, since this term is
used in thermodynamics to indicate the amount of disorder in a physical system. (See
also Entropy Encoding, Information Theory.)

Glossary 1041

Entropy Encoding. A lossless compression method where data can be compressed such
that the average number of bits/symbol approaches the entropy of the input symbols.
(See also Entropy.)

Error-Correcting Codes. The opposite of data compression, these codes (appendix
in the book’s web page) detect and correct errors in digital data by increasing the
redundancy of the data. They use check bits or parity bits, and are sometimes designed
with the help of generating polynomials.

EXE Compressor. A compression program for compressing EXE files on the PC. Such
a compressed file can be decompressed and executed with one command. The original
EXE compressor is LZEXE, by Fabrice Bellard (Section 3.26).

EZW. A progressive, embedded image coding method based on the zerotree data struc-
ture. It has largely been superseded by the more efficient SPIHT method. (See also
SPIHT, Progressive Image Compression, Embedded Coding.)

Facsimile Compression. Transferring a typical page between two fax machines can take
up to 10–11 minutes without compression, This is why the ITU has developed several
standards for compression of facsimile data. The current standards (Section 2.13) are
T4 and T6, also called Group 3 and Group 4, respectively. (See also ITU.)

FELICS. A Fast, Efficient, Lossless Image Compression method designed for grayscale
images that competes with the lossless mode of JPEG. The principle is to code each
pixel with a variable-size code based on the values of two of its previously seen neighbor
pixels. Both the unary code and the Golomb code are used. There is also a progressive
version of FELICS (Section 4.20). (See also Progressive FELICS.)

FHM Curve Compression. A method for compressing curves. The acronym FHM
stands for Fibonacci, Huffman, and Markov. (See also Fibonacci Numbers.)

Fibonacci Numbers. A sequence of numbers defined by

F1 = 1, F2 = 1, Fi = Fi−1 + Fi−2, i = 3, 4,

The first few numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, and 21. These numbers
have many applications in mathematics and in various sciences. They are also found in
nature, and are related to the golden ratio. (See also FHM Curve Compression.)

File Differencing. This topic (Section 3.8) explores the case where a file is updated and
the differences between the file before and after the update are encoded.

Fourier Transform. A mathematical transformation that produces the frequency com-
ponents of a function (Section 5.1). The Fourier transform shows how a periodic function
can be written as the sum of sines and cosines, thereby showing explicitly the frequen-
cies “hidden” in the original representation of the function. (See also Discrete Cosine
Transform, Transform.)

Gaussian Distribution. (See Normal Distribution.)

1042 Glossary

GFA. A compression method originally developed for bi-level images that can also be
used for color images. GFA uses the fact that most images of interest have a certain
amount of self similarity (i.e., parts of the image are similar, up to size, orientation,
or brightness, to the entire image or to other parts). GFA partitions the image into
subsquares using a quadtree, and expresses relations between parts of the image in a
graph. The graph is similar to graphs used to describe finite-state automata. The
method is lossy, since parts of a real image may be very similar to other parts. (See
also Quadtrees, Resolution Independent Compression, WFA.)

GIF. An acronym that stands for Graphics Interchange Format. This format (Sec-
tion 3.20) was developed by Compuserve Information Services in 1987 as an efficient,
compressed graphics file format that allows for images to be sent between computers.
The original version of GIF is known as GIF 87a. The current standard is GIF 89a.
(See also Patents.)

Golomb Code. The Golomb codes consist of an infinite set of parametrized prefix codes.
They are the best ones for the compression of data items that are distributed geomet-
rically. (See also Unary Code.)

Gray Codes. These are binary codes for the integers, where the codes of consecutive
integers differ by one bit only. Such codes are used when a grayscale image is separated
into bitplanes, each a bi-level image. (See also Grayscale Image,)

Grayscale Image. A continuous-tone image with shades of a single color. (See also
Continuous-Tone Image.)

Growth Geometry Coding. A method for progressive lossless compression of bi-level
images. The method selects some seed pixels and applies geometric rules to grow each
seed pixel into a pattern of pixels. (See also Progressive Image Compression.)

Gzip. Popular software that implements the Deflate algorithm (Section 3.23) that uses
a variation of LZ77 combined with static . It uses a 32 Kb-long sliding dictionary, and
a look-ahead buffer of 258 bytes. When a string is not found in the dictionary, it is
emitted as a sequence of literal bytes. (See also Zip.)

H.261. In late 1984, the CCITT (currently the ITU-T) organized an expert group to
develop a standard for visual telephony for ISDN services. The idea was to send images
and sound between special terminals, so that users could talk and see each other. This
type of application requires sending large amounts of data, so compression became an
important consideration. The group eventually came up with a number of standards,
known as the H series (for video) and the G series (for audio) recommendations, all
operating at speeds of p×64 Kbit/s for p = 1, 2, . . . , 30. These standards are known
today under the umbrella name of p×64.

Halftoning. A method for the display of gray scales in a bi-level image. By placing
groups of black and white pixels in carefully designed patterns, it is possible to create
the effect of a gray area. The tradeoff of halftoning is loss of resolution. (See also
Bi-level Image, Dithering.)

Glossary 1043

Hamming Codes. A type of error-correcting code for 1-bit errors, where it is easy to
generate the required parity bits.

Hierarchical Progressive Image Compression. An image compression method (or an
optional part of such a method) where the encoder writes the compressed image in
layers of increasing resolution. The decoder decompresses the lowest-resolution layer
first, displays this crude image, and continues with higher-resolution layers. Each layer
in the compressed stream uses data from the preceding layer. (See also Progressive
Image Compression.)

High-Definition Television. A general name for several standards that are currently
replacing traditional television. HDTV uses digital video, high-resolution images, and
aspect ratios different from the traditional 3:4. (See also Digital Video.)

Huffman Coding. A popular method for data compression (Section 2.8). It assigns a
set of “best” variable-size codes to a set of symbols based on their probabilities. It
serves as the basis for several popular programs used on personal computers. Some
of them use just the Huffman method, while others use it as one step in a multistep
compression process. The Huffman method is somewhat similar to the Shannon-Fano
method. It generally produces better codes, and like the Shannon-Fano method, it
produces best code when the probabilities of the symbols are negative powers of 2. The
main difference between the two methods is that Shannon-Fano constructs its codes top
to bottom (from the leftmost to the rightmost bits), while Huffman constructs a code
tree from the bottom up (builds the codes from right to left). (See also Shannon-Fano
Coding, Statistical Methods.)

Information Theory. A mathematical theory that quantifies information. It shows how
to measure information, so that one can answer the question; How much information
is included in this piece of data? with a precise number! Information theory is the
creation, in 1948, of Claude Shannon, of Bell labs. (See also Entropy.)

Interpolating Polynomials. Given two numbers a and b we know that m = 0.5a+0.5b
is their average, since it is located midway between a and b. We say that the average is
an interpolation of the two numbers. Similarly, the weighted sum 0.1a + 0.9b represents
an interpolated value located 10% away from b and 90% away from a. Extending
this concept to points (in two or three dimensions) is done by means of interpolating
polynomials (see the book’s web page). Given a set of points we start by fitting a
parametric polynomial P(t) or P(u, w) through them. Once the polynomial is known,
it can be used to calculate interpolated points by computing P(0.5), P(0.1), or other
values.

ISO. The International Standards Organization. This is one of the organizations re-
sponsible for developing standards. Among other things it is responsible (together with
the ITU) for the JPEG and MPEG compression standards. (See also ITU, CCITT,
MPEG.)

Iterated Function Systems (IFS). An image compressed by IFS is uniquely defined
by a few affine transformations (Section 4.35.1). The only rule is that the scale factors

1044 Glossary

of these transformations must be less than 1 (shrinking). The image is saved in the
output stream by writing the sets of six numbers that define each transformation. (See
also Affine Transformations, Resolution Independent Compression.)

ITU. The International Telecommunications Union, the new name of the CCITT, is a
United Nations organization responsible for developing and recommending standards
for data communications (not just compression). (See also CCITT.)

JBIG. A special-purpose compression method (Section 4.11) developed specifically for
progressive compression of bi-level images. The name JBIG stands for Joint Bi-Level
Image Processing Group. This is a group of experts from several international organi-
zations, formed in 1988 to recommend such a standard. JBIG uses multiple arithmetic
coding and a resolution-reduction technique to achieve its goals. (See also Bi-level
Image, JBIG2.)

JBIG2. A recent international standard for the compression of bi-level images. It is
intended to replace the original JBIG. Its main features are

1. Large increases in compression performance (typically 3–5 times better than Group
4/MMR, and 2–4 times better than JBIG).

2. Special compression methods for text, halftones, and other bi-level image parts.

3. Lossy and lossless compression.

4. Two modes of progressive compression. Mode 1 is quality-progressive compression,
where the decoded image progresses from low to high quality. Mode 2 is content-
progressive coding, where important image parts (such as text) are decoded first, fol-
lowed by less important parts (such as halftone patterns).

5. Multipage document compression.

6. Flexible format, designed for easy embedding in other image file formats, such as
TIFF.

7. Fast decompression. Using some coding modes, images can be decompressed at over
250 million pixels/second in software.

(See also Bi-level Image, JBIG.)

JFIF. The full name of this method (Section 4.8.7) is JPEG File Interchange Format.
It is a graphics file format that makes it possible to exchange JPEG-compressed images
between different computers. The main features of JFIF are the use of the YCbCr triple-
component color space for color images (only one component for grayscale images) and
the use of a marker to specify features missing from JPEG, such as image resolution,
aspect ratio, and features that are application-specific.

JPEG. A sophisticated lossy compression method (Section 4.8) for color or grayscale
still images (not movies). It also works best on continuous-tone images, where adjacent
pixels have similar colors. One advantage of JPEG is the use of many parameters,
allowing the user to adjust the amount of data loss (and thus also the compression
ratio) over a very wide range. There are two main modes: lossy (also called baseline)

Glossary 1045

and lossless (which typically gives a 2:1 compression ratio). Most implementations
support just the lossy mode. This mode includes progressive and hierarchical coding.

The main idea behind JPEG is that an image exists for people to look at, so when the
image is compressed, it is acceptable to lose image features to which the human eye is
not sensitive.

The name JPEG is an acronym that stands for Joint Photographic Experts Group. This
was a joint effort by the CCITT and the ISO that started in June 1987. The JPEG
standard has proved successful and has become widely used for image presentation,
especially in Web pages. (See also JPEG-LS, MPEG.)

JPEG-LS. The lossless mode of JPEG is inefficient and often is not even implemented.
As a result, the ISO decided to develop a new standard for the lossless (or near-lossless)
compression of continuous-tone images. The result became popularly known as JPEG-
LS. This method is not simply an extension or a modification of JPEG. It is a new
method, designed to be simple and fast. It does not use the DCT, does not use arithmetic
coding, and uses quantization in a limited way, and only in its near-lossless option.
JPEG-LS examines several of the previously seen neighbors of the current pixel, uses
them as the context of the pixel, uses the context to predict the pixel and to select
a probability distribution out of several such distributions, and uses that distribution
to encode the prediction error with a special Golomb code. There is also a run mode,
where the length of a run of identical pixels is encoded. (See also Golomb Code, JPEG.)

Kraft-MacMillan Inequality. A relation (Section 2.5) that says something about un-
ambiguous variable-size codes. Its first part states; given an unambiguous variable-size
code, with n codes of sizes Li, then

n∑
i=1

2−Li ≤ 1.

(This is Equation(2.5).) The second part states the opposite, namely, given a set of n
positive integers (L1, L2, . . . , Ln) that satisfy Equation (2.5), there exists an unambigu-
ous variable-size code such that Li are the sizes of its individual codes. Together, both
parts say that a code is unambiguous if and only if it satisfies relation (2.5).

KT Probability Estimator. A method to estimate the probability of a bit string con-
taining a zeros and b ones. It is due to Krichevsky and Trofimov. (See also Context-Tree
Weighting.)

L Systems. Lindenmayer systems (or L-systems for short) were developed by the biolo-
gist Aristid Lindenmayer in 1968 as a tool [Lindenmayer 68] to describe the morphology
of plants. They were initially used in computer science, in the 1970s, as a tool to de-
fine formal languages, but have become really popular only after 1984, when it became
apparent that they can be used to draw many types of fractals, in addition to their use
in botany (see the book’s web page).

1046 Glossary

Laplace Distribution. A probability distribution similar to the normal (Gaussian) dis-
tribution, but narrower and sharply peaked. The general Laplace distribution with
variance V and mean m is given by

L(V, x) =
1√
2V

exp

(
−

√
2
V
|x − m|

)
.

Experience seems to suggest that the values of pixels in many images are Laplace dis-
tributed, which is why this distribution is used in some image compression methods,
such as MLP. (See also Normal Distribution.)

Laplacian Pyramid. A progressive image compression technique where the original im-
age is transformed to a set of difference images that can later be decompressed and
displayed as a small, blurred image that becomes increasingly sharper. (See also Pro-
gressive Image Compression.)

LHArc. This method (Section 3.22) is by Haruyasu Yoshizaki. Its predecessor is LHA,
designed jointly by Haruyasu Yoshizaki and Haruhiko Okumura. These methods use
adaptive Huffman coding with features drawn from LZSS.

Lifting Scheme. A method for calculating the discrete wavelet transform in place, so
no extra memory is required. (See also Discrete Wavelet Transform.)

Locally Adaptive Compression. A compression method that adapts itself to local
conditions in the input stream, and changes this adaptation as it moves from area to
area in the input. An example is the move-to-front method of Section 1.5. (See also
Adaptive Compression, Semiadaptive Compression.)

Luminance. This quantity is defined by the CIE (Section 4.8.1) as radiant power
weighted by a spectral sensitivity function that is characteristic of vision. (See also
CIE.)

Lossless Compression. A compression method where the output of the decoder is iden-
tical to the original data compressed by the encoder. (See also Lossy Compression.)

Lossy Compression. A compression method where the output of the decoder is differ-
ent from the original data compressed by the encoder, but is nevertheless acceptable
to a user. Such methods are common in image and audio compression, but not in text
compression, where the loss of even one character may result in ambiguous or incom-
prehensible text. (See also Lossless Compression, Subsampling.)

LZ Methods. All dictionary-based compression methods are based on the work of
J. Ziv and A. Lempel, published in 1977 and 1978. Today, these are called LZ77 and
LZ78 methods, respectively. Their ideas have been a source of inspiration to many
researchers, who generalized, improved, and combined them with RLE and statistical
methods to form many commonly used adaptive compression methods, for text, images,
and audio. (See also Block Matching, Dictionary-Based Compression, Sliding-Window
Compression.)

Glossary 1047

LZAP. The LZAP method (Section 3.15) is an LZW variant based on the following
idea: Instead of just concatenating the last two phrases and placing the result in the
dictionary, place all prefixes of the concatenation in the dictionary. The suffix AP stands
for All Prefixes.

LZFG. This is the name of several related methods (Section 3.10) that are hybrids of
LZ77 and LZ78. They were developed by Edward Fiala and Daniel Greene. All these
methods are based on the following scheme. The encoder produces a compressed file
with tokens and literals (raw ASCII codes) intermixed. There are two types of tokens, a
literal and a copy. A literal token indicates that a string of literals follow, a copy token
points to a string previously seen in the data. (See also LZ Methods, Patents.)

LZMW. A variant of LZW, the LZMW method (Section 3.14) works as follows: Instead
of adding I plus one character of the next phrase to the dictionary, add I plus the entire
next phrase to the dictionary. (See also LZW.)

LZP. An LZ77 variant developed by C. Bloom (Section 3.17). It is based on the principle
of context prediction that says “if a certain string ‘abcde’ has appeared in the input
stream in the past and was followed by ‘fg...’, then when ‘abcde’ appears again in the
input stream, there is a good chance that it will be followed by the same ‘fg...’.” (See
also Context.)

LZSS. This version of LZ77 (Section 3.4) was developed by Storer and Szymanski in
1982 [Storer 82]. It improves on the basic LZ77 in three ways: (1) it holds the look-
ahead buffer in a circular queue, (2) It holds the search buffer (the dictionary) in a
binary search tree, and (3) it creates tokens with two fields instead of three. (See also
LZ Methods.)

LZW. This is a popular variant (Section 3.13) of LZ78, developed by Terry Welch in
1984. Its main feature is eliminating the second field of a token. An LZW token consists
of just a pointer to the dictionary. As a result, such a token always encodes a string of
more than one symbol. (See also Patents.)

LZX. LZX is an LZ77 variant for the compression of cabinet files (Section 3.7).

LZY. LZY (Section 3.16) is an LZW variant that adds one dictionary string per input
character and increments strings by one character at a time.

MLP. A progressive compression method for grayscale images. An image is compressed
in levels. A pixel is predicted by a symmetric pattern of its neighbors from preceding
levels, and the prediction error is arithmetically encoded. The Laplace distribution is
used to estimate the probability of the error. (See also Laplace Distribution, Progressive
FELICS.)

MLP Audio. The new lossless compression standard approved for DVD-A (audio) is
called MLP. It is the topic of Section 7.6.

MNP5, MNP7. These have been developed by Microcom, Inc., a maker of modems,
for use in its modems. MNP5 (Section 2.10) is a two-stage process that starts with run
length encoding, followed by adaptive frequency encoding. MNP7 (Section 2.11) com-
bines run length encoding with a two-dimensional variant of adaptive Huffman coding.

1048 Glossary

Model of Compression. A model is a method to “predict” (to assign probabilities to)
the data to be compressed. This concept is important in statistical data compression.
When a statistical method is used, a model for the data has to be constructed before
compression can begin. A simple model can be built by reading the entire input stream,
counting the number of times each symbol appears (its frequency of occurrence), and
computing the probability of occurrence of each symbol. The data stream is then input
again, symbol by symbol, and is compressed using the information in the probability
model. (See also Statistical Methods, Statistical Model.)

One feature of arithmetic coding is that it is easy to separate the statistical model (the
table with frequencies and probabilities) from the encoding and decoding operations. It
is easy to encode, for example, the first half of a data stream using one model, and the
second half using another model.

Move-to-Front Coding. The basic idea behind this method (Section 1.5) is to maintain
the alphabet A of symbols as a list where frequently occurring symbols are located near
the front. A symbol s is encoded as the number of symbols that precede it in this list.
After symbol s is encoded, it is moved to the front of list A.

MPEG. This acronym stands for Moving Pictures Experts Group. The MPEG standard
consists of several methods for the compression of movies, including the compression of
digital images and digital sound, as well as synchronization of the two. There currently
are several MPEG standards. MPEG-1 is intended for intermediate data rates, on the
order of 1.5 Mbit/s. MPEG-2 is intended for high data rates of at least 10 Mbit/s.
MPEG-3 was intended for HDTV compression but was found to be redundant and
was merged with MPEG-2. MPEG-4 is intended for very low data rates of less than
64 Kbit/s. A third international body, the ITU-T, has been involved in the design of
both MPEG-2 and MPEG-4. A working group of the ISO is still at work on MPEG.
(See also ISO, JPEG.)

Multiresolution Decomposition. This method groups all the discrete wavelet transform
coefficients for a given scale, displays their superposition, and repeats for all scales. (See
also Continuous Wavelet Transform, Discrete Wavelet Transform.)

Multiresolution Image. A compressed image that may be decompressed at any res-
olution. (See also Resolution Independent Compression, Iterated Function Systems,
WFA.)

Normal Distribution. A probability distribution with the typical bell shape. It is found
in many places in both theoretical and real-life models. The normal distribution with
mean m and standard deviation s is defined by

f(x) =
1

s
√

2π
exp

{
−1

2

(
x − m

s

)2
}

.

Glossary 1049

Patents. A mathematical algorithm can be patented if it is intimately associated with
software or firmware implementing it. Several compression methods, most notably LZW,
have been patented (Section 3.29), creating difficulties for software developers who work
with GIF, UNIX compress, or any other system that uses LZW. (See also GIF, LZW,
Compress.)

Pel. The smallest unit of a facsimile image; a dot. (See also Pixel.)

Phrase. A piece of data placed in a dictionary to be used in compressing future data.
The concept of phrase is central in dictionary-based data compression methods since
the success of such a method depends a lot on how it selects phrases to be saved in its
dictionary. (See also Dictionary-Based Compression, LZ Methods.)

Pixel. The smallest unit of a digital image; a dot. (See also Pel.)

PKZip. A compression program for MS/DOS (Section 3.22) written by Phil Katz who
has founded the PKWare company which also markets the PKunzip, PKlite, and PKArc
software (http://www.pkware.com).

PNG. An image file format (Section 3.24) that includes lossless compression with De-
flate and pixel prediction. PNG is free and it supports several image types and number
of bitplanes, as well as sophisticated transparency.

Prediction. Assigning probabilities to symbols. (See also PPM.)

Prefix Compression. In an image of size 2n×2n each pixel can be assigned a 2n-bit
number using quadtree methods. The prefix compression method shows how to select a
prefix value P . Once P has been selected, the method finds all the pixels whose numbers
have the same P leftmost bits (same prefix). Those pixels are compressed by writing
the prefix once on the compressed stream, followed by all the suffixes.

Prefix Property. One of the principles of variable-size codes. It states; Once a certain
bit pattern has been assigned as the code of a symbol, no other codes should start with
that pattern (the pattern cannot be the prefix of any other code). Once the string 1,
for example, is assigned as the code of a1, no other codes should start with 1 (i.e., they
all have to start with 0). Once 01, for example, is assigned as the code of a2, no other
codes can start with 01 (they all should start with 00). (See also Variable-Size Codes,
Statistical Methods.)

Progressive FELICS. A progressive version of FELICS where pixels are encoded in
levels. Each level doubles the number of pixels encoded. To decide what pixels are
included in a certain level, the preceding level can conceptually be rotated 45◦ and scaled
by

√
2 in both dimensions. (See also FELICS, MLP, Progressive Image Compression.)

Progressive Image Compression. An image compression method where the com-
pressed stream consists of “layers,” where each layer contains more detail of the image.
The decoder can very quickly display the entire image in a low-quality format, then
improve the display quality as more and more layers are being read and decompressed.
A user watching the decompressed image develop on the screen can normally recognize

1050 Glossary

most of the image features after only 5–10% of it has been decompressed. Improving im-
age quality over time can be done by (1) sharpening it, (2) adding colors, or (3) adding
resolution. (See also Progressive FELICS, Hierarchical Progressive Image Compression,
MLP, JBIG.)

PPM. A compression method that assigns probabilities to symbols based on the context
(long or short) in which they appear. (See also Prediction, PPPM.)

PPPM. A lossless compression method for grayscale (and color) images that assigns
probabilities to symbols based on the Laplace distribution, like MLP. Different contexts
of a pixel are examined and their statistics used to select the mean and variance for
a particular Laplace distribution. (See also Laplace Distribution, Prediction, PPM,
MLP.)

Prefix Compression. A variant of quadtrees, designed for bi-level images with text or
diagrams, where the number of black pixels is relatively small. Each pixel in a 2n × 2n

image is assigned an n-digit, or 2n-bit, number based on the concept of quadtrees.
Numbers of adjacent pixels tend to have the same prefix (most-significant bits), so the
common prefix and different suffixes of a group of pixels are compressed separately. (See
also Quadtrees.)

Psychoacoustic Model. A mathematical model of the sound masking properties of the
human auditory (ear brain) system.

QIC-122 Compression. An LZ77 variant that has been developed by the QIC organi-
zation for text compression on 1/4-inch data cartridge tape drives.

QM Coder. This is the arithmetic coder of JPEG and JBIG. It is designed for simplicity
and speed, so it is limited to input symbols that are single bits and it uses an approxi-
mation instead of a multiplication. It also uses fixed-precision integer arithmetic, so it
has to resort to renormalization of the probability interval from time to time, in order
for the approximation to remain close to the true multiplication. (See also Arithmetic
Coding.)

Quadrisection. This is a relative of the quadtree method. It assumes that the original
image is a 2k × 2k square matrix M0, and it constructs matrices M1, M2,. . . ,Mk+1

with fewer and fewer columns. These matrices naturally have more and more rows,
and quadrisection achieves compression by searching for and removing duplicate rows.
Two closely related variants of quadrisection are bisection and octasection (See also
Quadtrees.)

Quadtrees. This is a data compression method for bitmap images. A quadtree (Sec-
tion 4.30) is a tree where each leaf corresponds to a uniform part of the image (a quad-
rant, subquadrant, or a single pixel) and each interior node has exactly four children.
(See also Bintrees, Prefix Compression, Quadrisection.)

Quaternary. A base-4 digit. It can be 0, 1, 2, or 3.

Glossary 1051

Relative Encoding. A variant of RLE, sometimes called differencing (Section 1.3.1). It
is used in cases where the data to be compressed consists of a string of numbers that
don’t differ by much, or in cases where it consists of strings that are similar to each
other. The principle of relative encoding is to send the first data item a1 followed by
the differences ai+1 − ai. (See also DPCM, RLE.)

Reliability. Variable-size codes and other codes are vulnerable to errors. In cases
where reliable transmission of codes is important, the codes can be made more reliable
by adding check bits, parity bits, or CRC (Section 2.12 and Appendix in the book’s web
page). Notice that reliability is, in a sense, the opposite of data compression, since it is
done by increasing redundancy. (See also CRC.)

Resolution Independent Compression. An image compression method that does not
depend on the resolution of the specific image being compressed. The image can be
decompressed at any resolution. (See also Multiresolution Images, Iterated Function
Systems, WFA.)

RLE. A general name for methods that compress data by replacing a run length of
identical symbols with one code, or token, containing the symbol and the length of the
run. RLE sometimes serves as one step in a multistep statistical or dictionary-based
method. (See also Relative Encoding, Conditional Image RLE.)

Scalar Quantization. The dictionary definition of the term “quantization” is “to restrict
a variable quantity to discrete values rather than to a continuous set of values.” If
the data to be compressed is in the form of large numbers, quantization is used to
convert them to small numbers. This results in (lossy) compression. If the data to
be compressed is analog (e.g., a voltage that changes with time), quantization is used
to digitize it into small numbers. This aspect of quantization is used by several audio
compression methods. (See also Vector Quantization.)

SCSU. SCSU is a new compression algorithm, designed specifically for compressing text
files in Unicode (Section 8.12).

SemiAdaptive Compression. A compression method that uses a two-pass algorithm,
where the first pass reads the input stream to collect statistics on the data to be com-
pressed, and the second pass performs the actual compression. The statistics (model)
are included in the compressed stream. (See also Adaptive Compression, Locally Adap-
tive Compression.)

Semi-Structured Text. Such text is defined as data that is human readable and also
suitable for machine processing. A common example is HTML. The sequitur method
of Section 8.10 performs especially well on such text.

Shannon-Fano Coding. An early algorithm for finding a minimum-length variable-size
code given the probabilities of all the symbols in the data (Section 2.7). This method
was later superseded by the Huffman method. (See also Statistical Methods, Huffman
Coding.)

Shorten. A simple compression algorithm for waveform data in general and for speech
in particular. It is described in (Section 7.8).

1052 Glossary

Simple Image. A simple image is one that uses a small fraction of the possible grayscale
values or colors available to it. A common example is a bi-level image where each pixel
is represented by eight bits. Such an image uses just two colors out of a palette of 256
possible colors. Another example is a grayscale image scanned from a bi-level image.
Most pixels will be black or white, but some pixels may have other shades of gray. A
cartoon is also an example of a simple image (especially a cheap cartoon, where just a
few colors are used). A typical cartoon consists of uniform areas, so it may use a small
number of colors out of a potentially large palette. The EIDAC method of Section 4.13
is especially designed for simple images.

Sliding Window Compression. The LZ77 method (Section 3.3) uses part of the previ-
ously seen input stream as the dictionary. The encoder maintains a window to the input
stream, and shifts the input in that window from right to left as strings of symbols are
being encoded. The method is thus based on a sliding window. (See also LZ Methods.)

Space-Filling Curves. A space-filling curve (Section 4.32) is a function P(t) that goes
through every point in a given two-dimensional area, normally the unit square. Such
curves are defined recursively and are used in image compression.

Sparse Strings. Regardless of what the input data represents—text, binary, images, or
anything else—we can think of the input stream as a string of bits. If most of the bits
are zeros, the string is called sparse. Sparse strings can be compressed very efficiently
by specially designed methods (Section 8.5).

SPIHT. A progressive image encoding method that efficiently encodes the image after it
has been transformed by any wavelet filter. SPIHT is embedded, progressive, and has a
natural lossy option. It is also simple to implement, fast, and produces excellent results
for all types of images. (See also EZW, Progressive Image Compression, Embedded
Coding, Discrete Wavelet Transform.)

Statistical Methods. These methods (Chapter 2) work by assigning variable-size codes
to symbols in the data, with the shorter codes assigned to symbols or groups of symbols
that appear more often in the data (have a higher probability of occurrence). (See
also Variable-Size Codes, Prefix Property, Shannon-Fano Coding, Huffman Coding, and
Arithmetic Coding.)

Statistical Model. (See Model of Compression.)

String Compression. In general, compression methods based on strings of symbols can
be more efficient than methods that compress individual symbols (Section 3.1).

Subsampling. Subsampling is, possibly, the simplest way to compress an image. One
approach to subsampling is simply to ignore some of the pixels. The encoder may, for
example, ignore every other row and every other column of the image, and write the
remaining pixels (which constitute 25% of the image) on the compressed stream. The
decoder inputs the compressed data and uses each pixel to generate four identical pixels
of the reconstructed image. This, of course, involves the loss of much image detail and
is rarely acceptable. (See also Lossy Compression.)

Glossary 1053

Symbol. The smallest unit of the data to be compressed. A symbol is normally a byte
but may also be a bit, a trit {0, 1, 2}, or anything else. (See also Alphabet.)

Symbol Ranking. A context-based method (Section 8.2) where the context C of the
current symbol S (the N symbols preceding S) is used to prepare a list of symbols that
are likely to follow C. The list is arranged from most likely to least likely. The position
of S in this list (position numbering starts from 0) is then written by the encoder, after
being suitably encoded, on the output stream.

Taps. Wavelet filter coefficients. (See also Continuous Wavelet Transform, Discrete
Wavelet Transform.)

TAR. The standard UNIX archiver. The name TAR stands for Tape ARchive. It
groups a number of files into one file without compression. After being compressed by
the UNIX compress program, a TAR file gets an extension name of tar.z.

Textual Image Compression. A compression method for hard copy documents contain-
ing printed or typed (but not handwritten) text. The text can be in many fonts and
may consist of musical notes, hieroglyphs, or any symbols. Pattern recognition tech-
niques are used to recognize text characters that are identical or at least similar. One
copy of each group of identical characters is kept in a library. Any leftover material is
considered residue. The method uses different compression techniques for the symbols
and the residue. It includes a lossy option where the residue is ignored.

Token. A unit of data written on the compressed stream by some compression algo-
rithms. A token consists of several fields that may have either fixed or variable sizes.

Transform. An image can be compressed by transforming its pixels (which are corre-
lated) to a representation where they are decorrelated. Compression is achieved if the
new values are smaller, on average, than the original ones. Lossy compression can be
achieved by quantizing the transformed values. The decoder inputs the transformed val-
ues from the compressed stream and reconstructs the (precise or approximate) original
data by applying the opposite transform. (See also Discrete Cosine Transform, Fourier
Transform, Continuous Wavelet Transform, Discrete Wavelet Transform.)

Triangle Mesh. Polygonal surfaces are very popular in computer graphics. Such a
surface consists of flat polygons, mostly triangles, so there is a need for special methods
to compress a triangle mesh. Such a method is edgebreaker (Section 8.11).

Trit. A ternary (base 3) digit. It can be 0, 1, or 2.

Unary Code. A way to generate variable-size codes in one step. The unary code of
the nonnegative integer n is defined (Section 2.3.1) as n − 1 ones followed by one zero
(Table 2.3). There is also a general unary code. (See also Golomb Code.)

Unicode. A new international standard code, the Unicode, has been proposed, and is
being developed by the international Unicode organization (www.unicode.org). Uni-
code uses 16-bit codes for its characters, so it provides for 216 = 64K = 65,536 codes.
(Notice that doubling the size of a code much more than doubles the number of possible

1054 Glossary

codes. In fact, it squares the number of codes.) Unicode includes all the ASCII codes
in addition to codes for characters in foreign languages (including complete sets of Ko-
rean, Japanese, and Chinese characters) and many mathematical and other symbols.
Currently, about 39,000 out of the 65,536 possible codes have been assigned, so there is
room for adding more symbols in the future.

The Microsoft Windows NT operating system has adopted Unicode, as have also AT&T
Plan 9 and Lucent Inferno. (See also ASCII, Codes.)

V.42bis Protocol. This is a standard, published by the ITU-T (page 99) for use in fast
modems. It is based on the older V.32bis protocol and is supposed to be used for fast
transmission rates, up to 57.6K baud. The standard contains specifications for data
compression and error correction, but only the former is discussed, in Section 3.21.

V.42bis specifies two modes: a transparent mode, where no compression is used, and
a compressed mode using an LZW variant. The former is used for data streams that
don’t compress well, and may even cause expansion. A good example is an already
compressed file. Such a file looks like random data, it does not have any repetitive
patterns, and trying to compress it with LZW will fill up the dictionary with short,
two-symbol, phrases.

Variable-Size Codes. These are used by statistical methods. Such codes should satisfy
the prefix property (Section 2.2) and should be assigned to symbols based on their
probabilities. (See also Prefix Property, Statistical Methods.)

Vector Quantization. This is a generalization of the scalar quantization method. It
is used for both image and sound compression. In practice, vector quantization is
commonly used to compress data that has been digitized from an analog source, such
as sampled sound and scanned images (drawings or photographs). Such data is called
digitally sampled analog data (DSAD). (See also Scalar Quantization.)

Video Compression. Video compression is based on two principles. The first is the
spatial redundancy that exists in each video frame. The second is the fact that very
often, a video frame is very similar to its immediate neighbors. This is called temporal
redundancy. A typical technique for video compression should thus start by encoding the
first frame using an image compression method. It should then encode each successive
frame by identifying the differences between the frame and its predecessor, and encoding
these differences.

Voronoi Diagrams. Imagine a petri dish ready for growing bacteria. Four bacteria of
different types are simultaneously placed in it at different points and immediately start
multiplying. We assume that their colonies grow at the same rate. Initially, each colony
consists of a growing circle around one of the starting points. After a while some of
them meet and stop growing in the meeting area due to lack of food. The final result
is that the entire dish gets divided into four areas, one around each of the four starting
points, such that all the points within area i are closer to starting point i than to any
other start point. Such areas are called Voronoi regions or Dirichlet Tessellations.

Glossary 1055

WFA. This method uses the fact that most images of interest have a certain amount of
self similarity (i.e., parts of the image are similar, up to size or brightness, to the entire
image or to other parts). It partitions the image into subsquares using a quadtree, and
uses a recursive inference algorithm to express relations between parts of the image in
a graph. The graph is similar to graphs used to describe finite-state automata. The
method is lossy, since parts of a real image may be very similar to other parts. WFA is
a very efficient method for compression of grayscale and color images. (See also GFA,
Quadtrees, Resolution-Independent Compression.)

WSQ. An efficient lossy compression method specifically developed for compressing
fingerprint images. The method involves a wavelet transform of the image, followed by
scalar quantization of the wavelet coefficients, and by RLE and Huffman coding of the
results. (See also Discrete Wavelet Transform.)

XMill. Section 3.25 is a short description of XMill, a special-purpose compressor for
XML files.

Zero-Probability Problem. When samples of data are read and analyzed in order to
generate a statistical model of the data, certain contexts may not appear, leaving entries
with zero counts and thus zero probability in the frequency table. Any compression
method requires that such entries be somehow assigned nonzero probabilities.

Zip. Popular software that implements the Deflate algorithm (Section 3.23) that uses
a variant of LZ77 combined with static Huffman coding. It uses a 32 Kb-long sliding
dictionary and a look-ahead buffer of 258 bytes. When a string is not found in the
dictionary, its first symbol is emitted as a literal byte. (See also Gzip.)

The expression of a man’s face is commonly a

help to his thoughts, or glossary on his speech.

—Charles Dickens, Life and Adventures of Nicholas Nickleby

Answers to Exercises

A bird does not sing because he has an answer,
he sings because he has a song.

—Chinese Proverb

1: abstemious, abstentious, adventitious, annelidous, arsenious, arterious, facetious,
sacrilegious.

2: When a software house has a popular product they tend to come up with new
versions. A user can update an old version to a new one, and the update usually comes
as a compressed file on a floppy disk. Over time the updates get bigger and, at a
certain point, an update may not fit on a single floppy. This is why good compression is
important in the case of software updates. The time it takes to compress and decompress
the update is unimportant since these operations are typically done just once. Recently,
software makers have taken to providing updates over the Internet, but even in such
cases it is important to have small files because of the download times involved.

1.1: 6,8,0,1,3,1,4,1,3,1,4,1,3,1,4,1,3,1,2,2,2,2,6,1,1. The first two are the bitmap reso-
lution (6×8). If each number occupies a byte on the output stream, then its size is 25
bytes, compared to a bitmap size of only 6 × 8 bits = 6 bytes. The method does not
work for small images.

1.2: Each of the first four rows yields the eight runs 1,1,1,2,1,1,1,eol. Rows 6 and 8
yield the four runs 0,7,1,eol each. Rows 5 and 7 yield the two runs 8,eol each. The total
number of runs (including the eol’s) is thus 44.

When compressing by columns, columns 1, 3, and 6 yield the five runs 5,1,1,1,eol
each. Columns 2, 4, 5, and 7 yield the six runs 0,5,1,1,1,eol each. Column 8 gives 4,4,eol,
so the total number of runs is 42. This image is thus “balanced” with respect to rows
and columns.

1058 Answers to Exercises

1.3: As “11 22 90 00 00 33 44”. The 00 following the 90 indicates no run, and the
following 00 is interpreted as a regular character.

1.4: Table Ans.1 summarizes the results. In (a), the first string is encoded with k = 1.
In (b) it is encoded with k = 2. Columns (c) and (d) are the encodings of the second
string with k = 1 and k = 2, respectively. The averages of the four columns are 3.4375,
3.25, 3.56 and 3.6875; very similar! The move-ahead-k method used with small values
of k does not favor strings satisfying the concentration property.

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d bcadmnop 3
d bcdamnop 2
c bdcamnop 2
b bcdamnop 0
a bcdamnop 3
m bcadmnop 4
n bcamdnop 5
o bcamndop 6
p bcamnodp 7
p bcamnopd 6
o bcamnpod 6
n bcamnopd 4
m bcanmopd 4

bcamnopd

(a)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d cbadmnop 3
d cdbamnop 1
c dcbamnop 1
b cdbamnop 2
a bcdamnop 3
m bacdmnop 4
n bamcdnop 5
o bamncdop 6
p bamnocdp 7
p bamnopcd 5
o bampnocd 5
n bamopncd 5
m bamnopcd 2

mbanopcd

(b)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d bcadmnop 3
m bcdamnop 4
n bcdmanop 5
o bcdmnaop 6
p bcdmnoap 7
a bcdmnopa 7
b bcdmnoap 0
c bcdmnoap 1
d cbdmnoap 2
m cdbmnoap 3
n cdmbnoap 4
o cdmnboap 5
p cdmnobap 7

cdmnobpa

(c)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d cbadmnop 3
m cdbamnop 4
n cdmbanop 5
o cdmnbaop 6
p cdmnobap 7
a cdmnopba 7
b cdmnoapb 7
c cdmnobap 0
d cdmnobap 1
m dcmnobap 2
n mdcnobap 3
o mndcobap 4
p mnodcbap 7

mnodcpba

(d)

Table Ans.1: Encoding with Move-Ahead-k.

1.5: Table Ans.2 summarizes the decoding steps. Notice how similar it is to Table 1.16,
indicating that move-to-front is a symmetric data compression method.

2.1: It is 1 + �log2 i� as can be seen by simple experimenting.

2.2: We assume an alphabet with two symbols a1 and a2, with probabilities P1 and
P2, respectively. Since P1 + P2 = 1, the entropy of the alphabet is −P1 log2 P1 − (1 −
P1) log2(1−P1). Table Ans.3 shows the entropies for certain values of the probabilities.
When P1 = P2, at least 1 bit is required to encode each symbol, reflecting the fact
that the entropy is at its maximum, the redundancy is zero, and the data cannot be
compressed. However, when the probabilities are very different, the minimum number
of bits required per symbol drops significantly. We may not be able to develop a com-
pression method using 0.08 bits per symbol but we know that when P1 = 99%, this is
the theoretical minimum.

Answers to Exercises 1059

Code input A (before adding) A (after adding) Word

0the () (the) the
1boy (the) (the, boy) boy
2on (boy, the) (boy, the, on) on
3my (on, boy, the) (on, boy, the, my) my
4right (my, on, boy, the) (my, on, boy, the, right) right
5is (right, my, on, boy, the) (right, my, on, boy, the, is) is
5 (is, right, my, on, boy, the) (is, right, my, on, boy, the) the
2 (the, is, right, my, on, boy) (the, is, right, my, on, boy) right
5 (right, the, is, my, on, boy) (right, the, is, my, on, boy) boy

(boy, right, the, is, my, on)

Table Ans.2: Decoding Multiple-Letter Words.

P1 P2 Entropy
99 1 0.08
90 10 0.47
80 20 0.72
70 30 0.88
60 40 0.97
50 50 1.00

Table Ans.3: Probabilities and Entropies of Two Symbols.

An essential tool of this theory [information] is a quantity for
measuring the amount of information conveyed by a message. Sup-
pose a message is encoded into some long number. To quantify the
information content of this message, Shannon proposed to count
the number of its digits. According to this criterion, 3.14159, for
example, conveys twice as much information as 3.14, and six times
as much as 3. Struck by the similarity between this recipe and the
famous equation on Boltzman’s tomb (entropy is the number of
digits of probability), Shannon called his formula the “information
entropy.”

Hans Christian von Baeyer, Maxwell’s Demon, 1998

2.3: It is easy to see that the unary code satisfies the prefix property, so it definitely
can be used as a variable-size code. Since its length L satisfies L = n we get 2−L = 2−n,
so it makes sense to use it in cases were the input data consists of integers n with
probabilities P (n) ≈ 2−n. If the data lends itself to the use of the unary code, the
entire Huffman algorithm can be skipped, and the codes of all the symbols can easily
and quickly be constructed before compression or decompression starts.

2.4: This is straightforward. Table Ans.4 shows the code. There are only three
different codewords since “start” and “stop” are so close, but there are many codes

1060 Answers to Exercises

a = nth Number of Range of
n 10 + n · 2 codeword codewords integers

0 10 0 x...x︸︷︷︸
10

210 = 1K 0–1023

1 12 10 xx...x︸ ︷︷ ︸
12

212 = 4K 1024–5119

2 14 11 xx...xx︸ ︷︷ ︸
14

214 = 16K 5120–21503

Total 21504

Table Ans.4: The General Unary Code (10,2,14).

since “start” is large.

2.5: Subsequent splits can be done in different ways, but Table Ans.5 shows one way
of assigning Shannon-Fano codes to the 7 symbols.

Prob. Steps Final

1. 0.25 1 1 :11
2. 0.20 1 0 :101
3. 0.15 1 0 :100
4. 0.15 0 1 :01
5. 0.10 0 0 1 :001
6. 0.10 0 0 0 0 :0001
7. 0.05 0 0 0 0 :0000

Table Ans.5: Shannon-Fano Example.

The average size in this case is 0.25 × 2 + 0.20 × 3 + 0.15 × 3 + 0.15 × 2 + 0.10 × 3 +
0.10 × 4 + 0.05 × 4 = 2.75 bits/symbols.

2.6: Figure Ans.6a,b,c shows the three trees. The codes sizes for the trees are

(5 + 5 + 5 + 5·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(5 + 5 + 4 + 4·2 + 4·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(6 + 6 + 5 + 4·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30.

2.7: The second row of Table Ans.7 (due to Guy Blelloch) shows a symbol whose
Huffman code is three bits long, but for which �− log2 0.3� = �1.737� = 2.

2.8: Figure Ans.8 shows Huffman codes for 5, 6, 7, and 8 symbols with equal proba-
bilities. In the case where n is a power of 2, the codes are simply the fixed-sized ones.
In other cases the codes are very close to fixed-size. This shows that symbols with equal
probabilities do not benefit from variable-size codes. (This is another way of saying that
random text cannot be compressed.) Table Ans.9 shows the codes, their average sizes
and variances.

Answers to Exercises 1061

(a)

A B

2

5

8

(b) (c) (d)

A B

2

A B

2

C D

3

C D

3C D

3 D

8
8

FE 5

5

E

5

E

8

G

20

H

10

F

E

A B

2

3

C

G

10

F G

10 F G

10
H

30

3018 H

30

18
H

30

18

Figure Ans.6: Three Huffman Trees for Eight Symbols.

Pi Code − log2 Pi �− log2 Pi�
.01 000 6.644 7

*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table Ans.7: A Huffman Code Example.

2.9: The binary value of 127 is 01111111 and that of 128 is 10000000. Half the pixels in
each bitplane will therefore be 0 and the other half, 1. In the worst case, each bitplane
will be a checkerboard, i.e., will have many runs of size one. In such a case, each run
requires a 1-bit code, leading to one codebit per pixel per bitplane, or eight codebits per
pixel for the entire image, resulting in no compression at all. In comparison, a Huffman
code for such an image requires just two codes (since there are just two pixel values)
and they can be one bit each. This leads to one codebit per pixel, or a compression
factor of eight.

2.10: Figure Ans.10 shows how the loop continues until the heap shrinks to just one
node that is the single pointer 2. This indicates that the total frequency (which happens
to be 100 in our example) is stored in A[2]. All other frequencies have been replaced
by pointers. Figure Ans.11a shows the heaps generated during the loop.

2.11: The code lengths for the seven symbols are 2, 2, 3, 3, 4, 3, and 4 bits. This can
also be verified from the Huffman code-tree of Figure Ans.11b. A set of codes derived
from this tree is shown in the following table:

Count: 25 20 13 17 9 11 5
Code: 01 11 101 000 0011 100 0010
Length: 2 2 3 3 4 3 4

1062 Answers to Exercises

1

2

3

4

5

6

7

8

1

1

1

0

0

0

1

2

3

4

5

6

1

1

0

0

1

2

3

4

5

6

7

1

1

1

0

0

0

1

2

3

4

5

1

1

0

0

Figure Ans.8: Huffman Codes for Equal Probabilities.

Avg.
n p a1 a2 a3 a4 a5 a6 a7 a8 size Var.
5 0.200 111 110 101 100 0 2.6 0.64
6 0.167 111 110 101 100 01 00 2.672 0.2227
7 0.143 111 110 101 100 011 010 00 2.86 0.1226
8 0.125 111 110 101 100 011 010 001 000 3 0

Table Ans.9: Huffman Codes for 5–8 Symbols.

Answers to Exercises 1063

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[7 11 6 8 9] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 17+14 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 9 8 6] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[9 6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 20+24 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 8 5] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[8 5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 25+31 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3 4] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56+44 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[2] 100 2 2 3 4 5 3 4 6 5 7 6 7

Figure Ans.10: Sifting the Heap.

1064 Answers to Exercises

5 9 11 13

17 20
250

1

1
1

1

1
1

0

0
0

0

5

9 11

13 17 20 25

9

1113

17 2025

13 14

25 17 20

11

17 14

25 20

13

17 24

25 20

14

20 24

25

17

24 25

31

20

25 31

24

31 44

25

44

31

(a)

(b)

Figure Ans.11: (a) Heaps. (b) Huffman Code-Tree.

Answers to Exercises 1065

2.12: Figure Ans.12 shows the initial tree and how it is updated in the 11 steps (a)
through (k). Notice how the esc symbol gets assigned different codes all the time, and
how the different symbols move about in the tree and change their codes. Code 10, e.g.,
is the code of symbol “i” in steps (f) and (i), but is the code of “s” in steps (e) and (j).
The code of a blank space is 011 in step (h), but 00 in step (k).

The final output is: “s0i00r100�1010000d011101000”. A total of 5×8 + 22 = 62
bits. The compression ratio is thus 62/88 ≈ 0.7.

2.13: Each scan line starts with a white pel, so when the decoder inputs the next
code it knows whether it is for a run of white or black pels. This is why the codes
of Table 2.40 have to satisfy the prefix property in each column but not between the
columns.

2.14: Figure Ans.13 shows the modes and the actual code generated from the two
lines.

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
vertical mode horizontal mode pass vertical mode horizontal mode. . .

-1 0 3 white 4 black code +2 -2 4 white 7 black

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
010 1 001 1000 011 0001 000011 000010 001 1011 00011

Figure Ans.13: Two-Dimensional Coding Example.

2.15: Table Ans.14 shows the steps of encoding the string a2a2a2a2. Because of the
high probability of a2 the low and high variables start at very different values and
approach each other slowly.

a2 0.0 + (1.0 − 0.0) × 0.023162=0.023162
0.0 + (1.0 − 0.0) × 0.998162=0.998162

a2 0.023162 + .975 × 0.023162=0.04574495
0.023162 + .975 × 0.998162=0.99636995

a2 0.04574495 + 0.950625 × 0.023162=0.06776322625
0.04574495 + 0.950625 × 0.998162=0.99462270125

a2 0.06776322625 + 0.926859375 × 0.023162=0.08923124309375
0.06776322625 + 0.926859375 × 0.998162=0.99291913371875

Table Ans.14: Encoding the String a2a2a2a2.

2.16: The encoding steps are simple (see first example on page 109). We start with
the interval [0, 1). The first symbol a2 reduces the interval to [0.4, 0.9). The second one,
to [0.6, 0.85), the third one to [0.7, 0.825) and the eof symbol, to [0.8125, 0.8250). The

1066 Answers to Exercises

Initial tree

(a). Input: s. Output: ‘s’.
esc s1

(b). Input: i. Output: 0‘i’.
esc i1 1 s1

esc
0

1
s1esc

0

s1
0

i1esc
0

1

1
1

(c). Input: r. Output: 00‘r’.
esc r1 1 i1 2 s1 →
esc r1 1 i1 s1 2

s1
0

i1
0

1

1
2

1
r1esc

0

1

s1
0

i1
0

1

1
2

1
r1esc

0

1

(d). Input: �. Output: 100‘�’.
esc �1 1 r1 2 i1 s1 3 →
esc �1 1 r1 s1 i1 2 2

�1

s1
0

i1
0

1

1
3

1
r1

0

2

esc
0

1

1

�1

s1

0

i1
0

1

1

2

1
r1

0

2

esc
0

1

1

Figure Ans.12: Exercise 2.12. Part I.

Answers to Exercises 1067

�1

s2

0

i1
0

1

1

3

1
r1

0

2

esc
0

1

1

s2

�1

0

i1
0

1

1

3

1
r1

0

2

esc
0

1

1

(e). Input: s. Output: 10.
esc �1 1 r1 s2 i1 2 3 →
esc �1 1 r1 i1 s2 2 3

s2

�1

0

i2
0

1

1

4

1
r1

0

2

esc
0

1

1

(f). Input: i. Output: 10.
esc �1 1 r1 i2 s2 2 4

s2

�1

0

i2
0

1

1

4

1
r1

0

3

0

2

1

d1esc
0

1

s2

�1

0

i2
0

1

1

4

1
r1

0

3

0

2

1

d1esc
0

1

(g). Input: d. Output: 000‘d’.
esc d1 1 �1 2 r1 i2 s2 3 4 →
esc d1 1 �1 r1 2 i2 s2 3 4

Figure Ans.12: Exercise 2.12. Part II.

1068 Answers to Exercises

s2�2

0

i2
0

1

1

4

1

r1

0

4

0

2

1

d1esc
0

1

1

s2

�2

0

i2
0

1

1

4

1
r1

0

4

0

3

1

d1esc
0

1

1

(h). Input: �. Output: 011.
esc d1 1 �2 r1 3 i2 s2 4 4 →
esc d1 1 r1 �2 2 i2 s2 4 4

s2�2

0

i3
0

1

1

5

1

r1

0

4

0

2

1

d1esc
0

1

1

s2�2

0

i3
0

1

1

5

1

r1

0

4

0

2

1

d1esc
0

1

1

(i). Input: i. Output: 10.
esc d1 1 r1 �2 2 i3 s2 4 5 →
esc d1 1 r1 �2 2 s2 i3 4 5

Figure Ans.12: Exercise 2.12. Part III.

Answers to Exercises 1069

s3�2

0

i3
0

1

1

6

1

r1

0

4

0

2

1

d1esc
0

1

1

(j). Input: s. Output: 10.
esc d1 1 r1 �2 2 s3 i3 4 6

s3�3

0

i3
0

1

1

6

1

r1

0

5

0

2

1

d1esc
0

1

1

s3�3

0

i3
0

1

1

6

1

r1

0

5

0

2

1

d1esc
0

1

1

(k). Input: �. Output: 00.
esc d1 1 r1 �3 2 s3 i3 5 6 →
esc d1 1 r1 2 �3 s3 i3 5 6

Figure Ans.12: Exercise 2.12. Part IV.

1070 Answers to Exercises

approximate binary values of the last interval are 0.1101000000 and 0.1101001100, so
we select the 7-bit number 1101000 as our code.

The probability of the string “a2a2a2eof” is (0.5)3 × 0.1 = 0.0125, but since
− log2 0.125 ≈ 6.322 it follows that the practical minimum code size is 7 bits.

2.17: The results are shown in Tables Ans.15 and Ans.16. When all symbols are LPS,
the output C always points at the bottom A(1 − Qe) of the upper (LPS) subinterval.
When the symbols are MPS, the output always points at the bottom of the lower (MPS)
subinterval, i.e., 0.

2.18: The results are shown in Tables Ans.17 and Ans.18 (compare with the answer
to exercise 2.17).

2.19: The four decoding steps are as follows:

Step 1: C = 0.981, A = 1, the dividing line is A(1−Qe) = 1(1− 0.1) = 0.9, so the LPS
and MPS subintervals are [0, 0.9) and [0.9, 1). Since C points to the upper subinterval,
an LPS is decoded. The new C is 0.981−1(1−0.1) = 0.081 and the new A is 1×0.1 = 0.1.
Step 2: C = 0.081, A = 0.1, the dividing line is A(1−Qe) = 0.1(1− 0.1) = 0.09, so the
LPS and MPS subintervals are [0, 0.09) and [0.09, 0.1), and an MPS is decoded. C is
unchanged and the new A is 0.1(1 − 0.1) = 0.09.
Step 3: C = 0.081, A = 0.09, the dividing line is A(1−Qe) = 0.09(1−0.1) = 0.0081, so
the LPS and MPS subintervals are [0, 0.0081) and [0.0081, 0.09), and an LPS is decoded.
The new C is 0.081 − 0.09(1 − 0.1) = 0 and the new A is 0.09×0.1 = 0.009.
Step 4: C = 0, A = 0.009, the dividing line is A(1 − Qe) = 0.009(1 − 0.1) = 0.00081,
so the LPS and MPS subintervals are [0, 0.00081) and [0.00081, 0.009), and an MPS is
decoded. C is unchanged and the new A is 0.009(1 − 0.1) = 0.00081.

2.20: In practice, an encoder may encode texts other than English, such as a foreign
language or the source code of a computer program. Acronyms, such as QED and
abbreviations, such as qwerty, are also good examples. Even in English there are some
examples of a q not followed by a u, such as in this sentence. (The author has noticed
that science-fiction writers tend to use non-English sounding words, such as Qaal, to
name characters in their works.)

2.21: An object file generated by a compiler or an assembler normally has several
distinct parts including the machine instructions, symbol table, relocation bits, and
constants. Such parts may have different bit distributions.

2.22: The alphabet has to be extended, in such a case, to include one more symbol. If
the original alphabet consisted of all the possible 256 8-bit bytes, it should be extended
to 9-bit symbols, and should include 257 values.

2.23: Table Ans.19 shows the groups generated in both cases and makes it clear why
these particular probabilities were assigned.

Answers to Exercises 1071

Symbol C A

Initially 0 1
s1 (LPS) 0 + 1(1 − 0.5) = 0.5 1×0.5 = 0.5
s2 (LPS) 0.5 + 0.5(1 − 0.5) = 0.75 0.5×0.5 = 0.25
s3 (LPS) 0.75 + 0.25(1 − 0.5) = 0.875 0.25×0.5 = 0.125
s4 (LPS) 0.875 + 0.125(1 − 0.5) = 0.9375 0.125×0.5 = 0.0625

Table Ans.15: Encoding Four Symbols With Qe = 0.5.

Symbol C A

Initially 0 1
s1 (MPS) 0 1×(1 − 0.1) = 0.9
s2 (MPS) 0 0.9×(1 − 0.1) = 0.81
s3 (MPS) 0 0.81×(1 − 0.1) = 0.729
s4 (MPS) 0 0.729×(1 − 0.1) = 0.6561

Table Ans.16: Encoding Four Symbols With Qe = 0.1.

Symbol C A Renor. A Renor. C

Initially 0 1
s1 (LPS) 0 + 1 − 0.5 = 0.5 0.5 1 1
s2 (LPS) 1 + 1 − 0.5 = 1.5 0.5 1 3
s3 (LPS) 3 + 1 − 0.5 = 3.5 0.5 1 7
s4 (LPS) 7 + 1 − 0.5 = 6.5 0.5 1 13

Table Ans.17: Renormalization Added to Table Ans.15.

Symbol C A Renor. A Renor. C

Initially 0 1
s1 (MPS) 0 1 − 0.1 = 0.9
s2 (MPS) 0 0.9 − 0.1 = 0.8
s3 (MPS) 0 0.8 − 0.1 = 0.7 1.4 0
s4 (MPS) 0 1.4 − 0.1 = 1.3

Table Ans.18: Renormalization Added to Table Ans.16.

1072 Answers to Exercises

Context f p
abc→x 10 10/11
Esc 1 1/11

Context f p
abc→ a1 1 1/20

→ a2 1 1/20
→ a3 1 1/20
→ a4 1 1/20
→ a5 1 1/20
→ a6 1 1/20
→ a7 1 1/20
→ a8 1 1/20
→ a9 1 1/20
→ a10 1 1/20

Esc 10 10/20
Total 20

Table Ans.19: Stable vs. Variable Data.

2.24: The first three cases don’t change. They still code a symbol with 1, 1.32, and
6.57 bits, which is less than the 8 bits required for a 256-symbol alphabet without
compression. Case 4 is different since the d is now encoded with a probability of 1/256,
producing 8 instead of 4.8 bits. The total number of bits required to encode the d in
case 4 is now 1 + 1.32 + 1.93 + 8 = 12.25.

2.25: The final trie is shown in Figure Ans.20.

a,4 s,6

s,2 a,2 s,3

s,2 a,2

n,1

n,1

n,1

i,2

i,1

i,1

s,1

s,1

s,1

i,1

i,1m,1

m,1

m,1

14. ‘a’

a,1

a,1

s,1

Figure Ans.20: Final Trie of “assanissimassa”.

2.26: For the first string the single bit has a suffix of 00, so the probability of leaf
00 is Pe(1, 0) = 1/2. This is equal to the probability of string 0 without any suffix.
For the second string each of the two zero bits has suffix 00, so the probability of
leaf 00 is Pe(2, 0) = 3/8 = 0.375. This is greater than the probability 0.25 of string
00 without any suffix. Similarly, the probabilities of the remaining three strings are

Answers to Exercises 1073

Pe(3, 0) = 5/8 ≈ 0.625, Pe(4, 0) = 35/128 ≈ 0.273, and Pe(5, 0) = 63/256 ≈ 0.246.
As the strings get longer, their probabilities get smaller but they are greater than the
probabilities without the suffix. Having a suffix of 00 thus increases the probability of
having strings of zeros following it.

2.27: The four trees are shown in Figure Ans.21a–d. The weighted probability that
the next bit will be a zero given that three zeros have just been generated is 0.5. The
weighted probability to have two consecutive zeros given the suffix 000 is 0.375, higher
than the 0.25 without the suffix.

(a)

1

1

1

0 (1,0)

(1,0)

Pw=.5
Pe=.5

.5

.5
(1,0)
.5
.5

(1,0)
.5
.5

(b)

1

1

1

0 (2,0)

(2,0)

Pw=.375
Pe=.375

.375

.375
(2,0)
.375
.375

(2,0)
.375
.375

(c)

1

1

1

0

0

(1,0)

(1,0)

Pw=.5
Pe=.5

.5

.5
(1,0)
.5
.5

(1,0)
.5
.5

(d)

1 0

0 0

00

(0,1)

(0,2)

Pw=.3125
Pe=.375

.5

.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

000|0 000|00

000|11000|1

Figure Ans.21: Context Trees For 000|0, 000|00, 000|1, and 000|11.

3.1: This is straightforward. The remaining steps are shown in Table Ans.22

1074 Answers to Exercises

Dictionary Token Dictionary Token
15 “�t” (4, “t”) 21 “�si” (19,“i”)
16 “e” (0, “e”) 22 “c” (0, “c”)
17 “as” (8, “s”) 23 “k” (0, “k”)
18 “es” (16,“s”) 24 “�se” (19,“e”)
19 “�s” (4, “s”) 25 “al” (8, “l”)
20 “ea” (4, “a”) 26 “s(eof)” (1, “(eof)”)

Table Ans.22: Next 12 Encoding Steps in the LZ78 Example.

Hash
p_src 3 chars index P Output Binary output

11 “h t” 7 any→7 h 01101000
12 “�th” 5 5→5 4,7 0000|0011|00000111
16 “ws” ws 01110111|01110011

Table Ans.23: Last Steps of Encoding “that thatch thaws”.

3.2: Table Ans.23 shows the last three steps.
The final compressed stream consists of 1 control word followed by 11 items (9 literals
and 2 copy items)
0000010010000000|01110100|01101000|01100001|01110100|00100000|0000|0011
|00000101|01100011|01101000|0000|0011|00000111|01110111|01110011.

3.3: Table Ans.24 summarizes the steps. The output emitted by the encoder is

97 (a), 108 (l), 102 (f), 32 (�), 101 (e), 97 (a), 116 (t), 115 (s), 32 (�), 256 (al), 102
(f), 265 (alf), 97 (a),

and the following new entries are added to the dictionary

(256: al), (257: lf), (258: f), (259: �e), (260: ea), (261: at), (262: ts),
(263: s), (264: �a), (265: alf), (266: fa), (267: alfa).

3.4: The encoder inputs the first a into I, searches and finds a in the dictionary.
It inputs the next a but finds that Ix, which is now aa, is not in the dictionary. The
encoder thus adds string aa to the dictionary as entry 256 and outputs the token 97 (a).
Variable I is initialized to the second a. The third a is input, so Ix is the string aa, which
is now in the dictionary. I becomes this string, and the fourth a is input. Ix is now aaa
which is not in the dictionary. The encoder thus adds string aaa to the dictionary as
entry 257 and outputs 256 (aa). I is initialized to the fourth a. Continuing this process
is straightforward.

The result is that strings aa, aaa, aaaa,. . . are added to the dictionary as entries
256, 257, 258,. . . , and the output is

97 (a), 256 (aa), 257 (aaa), 258 (aaaa),. . .

The output consists of pointers pointing to longer and longer strings of as. The first k
pointers thus point at strings whose total length is 1 + 2 + · · · + k = (k + k2)/2.

Answers to Exercises 1075

in new in new
I dict? entry output I dict? entry output

a Y s N 263-s 115 (s)
al N 256-al 97 (a) � Y
l Y �a N 264-�a 32 (�)
lf N 257-lf 108 (l) a Y
f Y al Y
f N 258-f 102 (f) alf N 265-alf 256 (al)
� Y f Y
�e N 259-�e 32 (w) fa N 266-fa 102 (f)
e Y a Y
ea N 260-ea 101 (e) al Y
a Y alf Y
at N 261-at 97 (a) alfa N 267-alfa 265 (alf)
t Y a Y
ts N 262-ts 116 (t) a,eof N 97 (a)
s Y

Table Ans.24: LZW Encoding of “alf eats alfalfa”.

Assuming an input stream that consists of one million as, we can find the size of
the compressed output stream by solving the quadratic equation (k + k2)/2 = 1000000
for the unknown k. The solution is k ≈ 1414. The original, 8-million bit input is thus
compressed into 1414 pointers, each at least 9-bit (and in practice, probably 16-bit) long.
The compression factor is thus either 8M/(1414×9) ≈ 628.6 or 8M/(1414×16) ≈ 353.6.

This is an impressive result but such input streams are rare (notice that this par-
ticular input can best be compressed by generating an output stream containing just
“1000000 a”, and without using LZW).

3.5: We simply follow the decoding steps described in the text. The results are:
1. Input 97. This is in the dictionary so set I=“a” and output “a”. String “ax” needs
to be saved in the dictionary but x is still unknown..
2. Input 108. This is in the dictionary so set J=“l” and output “l”. Save “al” in entry
256. Set I=“l”.
3. Input 102. This is in the dictionary so set J=“f” and output “f”. Save “lf” in entry
257. Set I=“f”.
4. Input 32. This is in the dictionary so set J=“�” and output “�”. Save “f ” in entry
258. Set I=“�”.
5. Input 101. This is in the dictionary so set J=“e” and output “e”. Save “�e” in entry
259. Set I=“e”.
6. Input 97. This is in the dictionary so set J=“a” and output “a”. Save “ea” in entry
260. Set I=“a”.
7. Input 116. This is in the dictionary so set J=“t” and output “t”. Save “at” in entry
261. Set I=“t”.

1076 Answers to Exercises

8. Input 115. This is in the dictionary so set J=“s” and output “s”. Save “ts” in entry
262. Set I=“t”.
9. Input 32. This is in the dictionary so set J=“�” and output “�”. Save “s ” in entry
263. Set I=“�”.
10. Input 256. This is in the dictionary so set J=“al” and output “al”. Save “�a” in
entry 264. Set I=“al”.
11. Input 102. This is in the dictionary so set J=“f” and output “f”. Save “alf” in
entry 265. Set I=“f”.
12. Input 265. This has just been saved in the dictionary so set J=“alf” and output
“alf”. Save “fa” in dictionary entry 266. Set I=“alf”.
13. Input 97. This is in the dictionary so set J=“a” and output “a”. Save “alfa” in
entry 267 (even though it will never be used). Set I=“a”.
14. Read eof. Stop.

3.6: We assume that the dictionary is initialized to just the two entries (1: a) and (2:
b). The encoder outputs

1 (a), 2 (b), 3 (ab), 5(aba), 4(ba), 7 (bab), 6 (abab), 9 (ababa), 8 (baba),. . .

and adds the new entries (3: ab), (4: ba), (5: aba), (6: abab), (7: bab), (8: baba), (9:
ababa), (10: ababab), (11: babab),. . . to the dictionary. This regular behavior can be
analyzed and the kth output pointer and dictionary entry predicted, but the effort is
probably not worth it.

3.7: This is straightforward (Table Ans.25) but not very efficient since only one two-
symbol dictionary phrase is used.

Add to
Step Input Output S dict. S’

swiss miss

1 s 115 s — s
2 w 119 w 256-sw w
3 i 105 i 257-wi i
4 s 115 s 258-is s
5 s 115 s 259-ss s
6 - 32 � 260-s �
7 m 109 m 261-�m m
8 is 258 is 262-mis is
9 s 115 s 263-iss s

Table Ans.25: LZMW Compression of “swiss miss”.

3.8: Table Ans.26 shows all the steps. In spite of the short input, the result is quite
good (13 codes to compress 18-symbols) because the input contains concentrations of
as and bs.

Answers to Exercises 1077

Add to
Step Input Output S dict. S’

yabbadabbadabbadoo

1 y 121 y — y
2 a 97 a 256-ya a
3 b 98 b 257-ab b
4 b 98 b 258-bb b
5 a 97 a 259-ba a
6 d 100 a 260-ad a
7 ab 257 ab 261-dab ab
8 ba 259 ba 262-abba ba
9 dab 261 dab 263-badab dab
10 ba 259 ba 264-dabba ba
11 d 100 d 265-bad d
12 o 111 o 266-do o
13 o 111 o 267-o o

Table Ans.26: LZMW Compression of “yabbadabbadabbadoo”.

3.9: 1. The encoder starts by shifting the first two symbols xy to the search buffer,
outputting them as literals and initializing all locations of the index table to the null
pointer.
2. The current symbol is a (the first a) and the context is xy. It is hashed to, say, 5,
but location 5 of the index table contains a null pointer, so P is null. Location 5 is set to
point to the first a, which is then output as a literal. The data in the encoder’s buffer
is shifted to the left.
3. The current symbol is the second a and the context is ya. It is hashed to, say, 1,
but location 1 of the index table contains a null pointer, so P is null. Location 1 is set
to point to the second a, which is then output as a literal. The data in the encoder’s
buffer is shifted to the left.
4. The current symbol is the third a and the context is aa. It is hashed to, say, 2, but
location 2 of the index table contains a null pointer, so P is null. Location 2 is set to
point to the third a, which is then output as a literal. The data in the encoder’s buffer
is shifted to the left.
5. The current symbol is the fourth a and the context is aa. We know from step 4 that
it is hashed to 2, and location 2 of the index table points to the third a. Location 2 is
set to point to the fourth a, and the encoder tries to match the string starting with the
third a to the string starting with the fourth a. Assuming that the look-ahead buffer
is full of as, the match length L will be the size of that buffer. The encoded value of L
will be written to the compressed stream, and the data in the buffer shifted L positions
to the left.
6. If the original input stream is long, more a’s will be shifted into the look-ahead
buffer, and this step will also result in a match of length L. If only n as remain in the
input stream, they will be matched, and the encoded value of n output.

The compressed stream will consist of the three literals x, y, and a, followed by

1078 Answers to Exercises

(perhaps several values of) L, and possibly ending with a smaller value.

3.10: T percent of the compressed stream is made up of literals, some appearing
consecutively (and thus getting the flag “1” for two literals, half a bit per literal) and
others with a match length following them (and thus getting the flag “01”, one bit for
the literal). We assume that two thirds of the literals appear consecutively and one
third are followed by match lengths. The total number of flag bits created for literals
is thus

2
3
T × 0.5 +

1
3
T × 1.

A similar argument for the match lengths yields

2
3
(1 − T) × 2 +

1
3
(1 − T) × 1

for the total number of the flag bits. We now write the equation

2
3
T × 0.5 +

1
3
T × 1 +

2
3
(1 − T) × 2 +

1
3
(1 − T) × 1 = 1,

which is solved to yield T = 2/3. This means that if two thirds of the items in the
compressed stream are literals, there would be 1 flag bit per item on the average. More
literals would result in fewer flag bits.

4.1: This is shown by multiplying the largest four n-bit number, 11 . . . 1︸ ︷︷ ︸
n

by 4, which

is easily done by shifting it 2 positions to the left. The result is the n + 2-bit number
11 . . . 1︸ ︷︷ ︸

n

00.

4.2: Each new codebook entry C
(k)
i is calculated, in step 4 of iteration k, as the

average of the block images comprising partition P
(k−1)
i . In our example the image

blocks (points) are concentrated in four separate regions, so the partitions calculated
for iteration k = 1 are the same as those for k = 0. Another iteration, for k = 2,
will therefore compute the same partitions in its step 1 yielding, in step 3, an average
distortion D(2) that equals D(1). Step 3 will therefore indicate convergence.

4.3: Monitor the compression ratio and delete the dictionary and start afresh each
time compression performance drops below a certain threshold.

4.4: The two previously seen neighbors of P=8 are A=1 and B=11. P is thus in the
central region, where all codes start with a zero, and L=1, H=11. The computations
are straightforward:

k = �log2(11 − 1 + 1)� = 3, a = 23+1 − 11 = 5, b = 2(11 − 23) = 6.

Answers to Exercises 1079

Table Ans.27 lists the five 3-bit codes and six 4-bit codes for the central region.
The code for 8 is thus 0|111.

The two previously seen neighbors of P=7 are A=2 and B=5. P is thus in the right
outer region, where all codes start with 11, and L=2, H=7. We are looking for the code
of 7 − 5 = 2. Choosing m = 1 yields, from Table 4.127, the code 11|01.

The two previously seen neighbors of P=0 are A=3 and B=5. P is thus in the left
outer region, where all codes start with 10, and L=3, H=5. We are looking for the code
of 3 − 0 = 3. Choosing m = 1 yields, from Table 4.127, the code 10|100.

Pixel Region Pixel
P code code

1 0 0000
2 0 0010
3 0 0100
4 0 011
5 0 100
6 0 101
7 0 110
8 0 111
9 0 0001

10 0 0011
11 0 0101

Table Ans.27: The Codes for a Central Region.

4.5: The decoder knows this pixel since it knows the value of average µ[i − 1, j] =
0.5(I[2i − 2, 2j] + I[2i − 1, 2j + 1]) and since it has already decoded pixel I[2i − 2, 2j]

4.6: the four vectors are

a = (90, 95, 100, 80, 90, 85),

b(1) = (100, 90, 95, 102, 80, 90),

b(2) = (101, 128, 108, 100, 90, 95),

b(3) = (128, 108, 110, 90, 95, 100),

and the code of Figure Ans.28 produces the solutions w1 = 0.1051, w2 = 0.3974, and
w3 = 0.3690. Their total is 0.8715, compared with the original solutions, which added
up to 0.9061. The point is that the numbers involved in the equations (the elements
of the four vectors) are not independent (for example, pixel 80 appears in a and in
b(1)) except for the last element (85 or 91) of a and the first element 101 of b(2), which
are independent. Changing these two elements affects the solutions, which is why the
solutions do not always add up to unity. However, compressing nine pixels produces
solutions whose total is closer to one than in the case of six pixels. Compressing an
entire image, with many thousands of pixels, produces solutions whose sum is very close
to 1.

1080 Answers to Exercises

a={90.,95,100,80,90,85};
b1={100,90,95,100,80,90};
b2={100,128,108,100,90,95};
b3={128,108,110,90,95,100};
Solve[{b1.(a-w1 b1-w2 b2-w3 b3)==0,
b2.(a-w1 b1-w2 b2-w3 b3)==0,
b3.(a-w1 b1-w2 b2-w3 b3)==0},{w1,w2,w3}]

Figure Ans.28: Solving For Three Weights.

4.7: Figure Ans.29a,b,c shows the results, with all Hi values shown in small type. Most
Hi values are zero because the pixels of the original image are so highly correlated. The
Hi values along the edges are very different because of the simple edge rule used. The
result is that the Hi values are highly decorrelated and have low entropy. Thus, they
are candidates for entropy coding.

1 . 3 . 5 . 7 .
. 0 . 0 . 0 . -5

17 . 19 . 21 . 23 .
. 0 . 0 . 0 . -13

33 . 35 . 37 . 39 .
. 0 . 0 . 0 . -21

49 . 51 . 53 . 55 .
. -33 . -34 . -35 . -64

1 . 7 . 5 . 5 .
.
15 . 19 . 11 . 23 .
.
33 . 0 . 37 . 0 .
.
-33 . 51 . -35 . 55 .
.

1 . . . 5 . . .
.
. . 0 . . . -5 .
.
33 . . . 37 . . .
.
. . -33 . . . -55 .
.

(a) (b) (c)

Figure Ans.29: (a) Bands L2 and H2. (b) Bands L3 and H3. (c) Bands L4 and H4.

4.8: They are shown in Figure Ans.30

.
.

.

Figure Ans.30: The 15 6-Tuples With Two White Pixels.

4.9: The two halves of L0 are distinct, so L1 consists of the two elements

L1 = (0101010101010101, 1010101010101010),

Answers to Exercises 1081

and the first indicator vector is I1 = (0, 0). The two elements of L1 are distinct, so L2

has the four elements

L2 = (01010101, 01010101, 10101010, 10101010),

and the second indicator vector is I2 = (0, 1, 0, 2). Two elements of L2 are distinct, so
L3 has the four elements L3 = (0101, 0101, 1010, 1010), and the third indicator vector
is I3 = (0, 1, 0, 2). Again two elements of L3 are distinct, so L4 has the four elements
L4 = (01, 01, 10, 10), and the fourth indicator vector is I4 = (0, 1, 0, 2). Only two
elements of L4 are distinct, so L5 has the four elements L5 = (0, 1, 1, 0).

The output thus consists of k = 5, the value 2 (indicating that I2 is the first nonzero
vector) I2, I3, and I4 (encoded), followed by L5 = (0, 1, 1, 0).

4.10: This particular numbering makes it easy to convert between the number of a
subsquare and its image coordinates. (We assume that the origin is located at the
bottom-left corner of the image and that image coordinates vary from 0 to 1.) As an
example, translating the digits of the number 1032 to binary results in (01)(00)(11)(10).
The first bits of these groups constitute the x coordinate of the subsquare, and the
second bits constitute the y coordinate. Thus, the image coordinates of subsquare
1032 are x = .00112 = 3/16 and y = .10102 = 5/8, as can be directly verified from
Figure 4.170c.

4.11: Figure Ans.31a,b shows the six states and all 21 edges. We use the notation
i(q, t)j for the edge with quadrant number q and transformation t from state i to state j.
This GFA is more complex than pervious ones since the original image is less self-similar.

4.12: All three transformations shrink an image to half its original size. In addition,
w2 and w3 place two copies of the shrunken image at relative displacements of (0, 1/2)
and (1/2, 0), as shown in Figure Ans.32. The result is the familiar Sierpiński gasket but
in a different orientation.

5.1: Figure Ans.33 shows f(t) and three shifted copies of the wavelet, for a = 1 and
b = 2, 4, and 6. The inner product W (a, b) is plotted below each copy of the wavelet.
It is easy to see how the inner products are affected by the increasing frequency.

The table of Figure Ans.34 lists 15 values of W (a, b), for a = 1, 2, and 3 and for
b = 2 through 6. The density plot of the figure, where the bright parts correspond to
large values, shows those values graphically. For each value of a, the CWT yields values
that drop with b, reflecting the fact that the frequency of f(t) increases with t. The five
values of W (1, b) are small and very similar, while the five values of W (3, b) are larger
and differ more. This shows how scaling the wavelet up makes the CWT more sensitive
to frequency changes in f(t).

5.2: Figure Ans.35a shows a simple, 8×8 image with one diagonal line above the main
diagonal. Figure Ans.35b,c shows the first two steps in its pyramid decomposition. It
is obvious that the transform coefficients in the bottom-right subband (HH) indicate a
diagonal artifact located above the main diagonal. It is also easy to see that subband
LL is a low-resolution version of the original image.

1082 Answers to Exercises

4

0 1

35

2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
(1,0) (2,2)

(2,1)
(3,1)

(0,0) (3,0)

(0,0) (3,0)

(0,1) (3,3)

(1,0) (2,2)

(0,1) (3,3)

(1,6)

(0,7)

(0,0) (0,6)

(2,0) (2,6)

(0,0) (0,6)

(2,0) (2,6)

(0,0)

(0,0)

(3,0)

(0,0)
(0,8)

(0,0)
(2,0)

(2,1)
(3,1)

(0,0)
(2,0)

(2,4)

(1,6)

(0,7)

(3,0)

(2,4)

(0,0)
(0,8)

(a)

Start state

0 12

4 5 3

(b)

0(0,0)1 0(3,0)1 0(0,1)2 0(1,0)2 0(2,2)2 0(3,3)2 1(0,7)3
1(1,6)3 1(2,4)3 1(3,0)3 2(0,0)4 2(2,0)4 2(2,1)4 2(3,1)4
3(0,0)5 4(0,0)5 4(0,6)5 4(2,0)5 4(2,6)5 5(0,0)5 5(0,8)5

Figure Ans.31: A GFA for Exercise 4.11.

Answers to Exercises 1083

Original
w2

w1

w3

After 1
iteration

Z Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Figure Ans.32: Another Sierpiński Gasket.

5.3: The Matlab code of Figure Ans.36 calculates W as the product of the three
matrices A1, A2, and A3 and computes the 8×8 matrix of transform coefficients. Notice
that the top-left value 131.375 is the average of all the 64 image pixels.

5.4: Figure Ans.37 lists the Matlab code of the inverse wavelet transform function
iwt1(wc,coarse,filter) and a test.

5.5: Figure Ans.38 shows the result of blurring the “lena” image. Parts (a) and
(b) show the logarithmic multiresolution tree and the subband structure, respectively.
Part (c) shows the results of the quantization. The transform coefficients of subbands
5–7 have been divided by two, and all the coefficients of subbands 8–13 have been
cleared. We can say that the blurred image of part (d) has been reconstructed from the
coefficients of subbands 1–4 (1/64th of the total number of transform coefficients) and
half of the coefficients of subbands 5-7 (half of 3/64, or 3/128). On average, the image
has been reconstructed from 5/128 ≈ 0.039 or 3.9% of the transform coefficients. Notice
that the Daubechies D8 filter was used in the calculations. Readers are encouraged to
use this code and experiment with the performance of other filters.

5.6: We sum Equation (5.13) over all the values of l to get

2j−1−1∑
l=0

sj−1,l =
2j−1−1∑

l=0

(sj,2l + dj−1,l/2) =
1
2

2j−1−1∑
l=0

(sj,2l + sj,2l+1) =
1
2

2j−1∑
l=0

sj,l. (Ans.1)

1084 Answers to Exercises

2 4 6 8 10

Figure Ans.33: An Inner Product for a = 1 and b = 2, 4, 6.

a b = 2 3 4 5 6
1 0.032512 0.000299 1.10923×10−6 2.73032×10−9 8.33866×10−11

2 0.510418 0.212575 0.0481292 0.00626348 0.00048097
3 0.743313 0.629473 0.380634 0.173591 0.064264

3 4

2

1

5 6b=2

a=3

Figure Ans.34: Fifteen Values And a Density Plot of W (a, b).

Answers to Exercises 1085

12 16 12 12 12 12 12 12
12 12 16 12 12 12 12 12
12 12 12 16 12 12 12 12
12 12 12 12 16 12 12 12
12 12 12 12 12 16 12 12
12 12 12 12 12 12 16 12
12 12 12 12 12 12 12 16
12 12 12 12 12 12 12 12

14 12 12 12 4 0 0 0
12 14 12 12 0 4 0 0
12 14 12 12 0 4 0 0
12 12 14 12 0 0 4 0
12 12 14 12 0 0 4 0
12 12 12 14 0 0 0 4
12 12 12 14 0 0 0 4
12 12 12 12 0 0 0 0

13 13 12 12 2 2 0 0
12 13 13 12 0 2 2 0
12 12 13 13 0 0 2 2
12 12 12 13 0 0 0 2
2 2 0 0 4 4 0 0
0 2 2 0 0 4 4 0
0 0 2 2 0 0 4 4
0 0 0 2 0 0 0 4

(a) (b) (c)

Figure Ans.35: The Subband Decomposition of a Diagonal Line.

clear
a1=[1/2 1/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;
0 0 0 0 1/2 1/2 0 0; 0 0 0 0 0 0 1/2 1/2;
1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1/2 -1/2 0 0; 0 0 0 0 0 0 1/2 -1/2];
% a1*[255; 224; 192; 159; 127; 95; 63; 32];
a2=[1/2 1/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;
1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];
a3=[1/2 1/2 0 0 0 0 0 0; 1/2 -1/2 0 0 0 0 0 0;
0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];
w=a3*a2*a1;
dim=8; fid=fopen(’8x8’,’r’);
img=fread(fid,[dim,dim])’; fclose(fid);
w*img*w’ % Result of the transform

131.375 4.250 −7.875 −0.125 −0.25 −15.5 0 −0.25
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75

Figure Ans.36: Code and Results For the Calculation of Matrix W and Transform W ·I ·WT .

1086 Answers to Exercises

function dat=iwt1(wc,coarse,filter)
% Inverse Discrete Wavelet Transform
dat=wc(1:2^coarse);
n=length(wc); j=log2(n);
for i=coarse:j-1
dat=ILoPass(dat,filter)+ ...
IHiPass(wc((2^(i)+1):(2^(i+1))),filter);

end

function f=ILoPass(dt,filter)
f=iconv(filter,AltrntZro(dt));

function f=IHiPass(dt,filter)
f=aconv(mirror(filter),rshift(AltrntZro(dt)));

function sgn=mirror(filt)
% return filter coefficients with alternating signs
sgn=-((-1).^(1:length(filt))).*filt;

function f=AltrntZro(dt)
% returns a vector of length 2*n with zeros
% placed between consecutive values
n =length(dt)*2; f =zeros(1,n);
f(1:2:(n-1))=dt;

Figure Ans.37: Code For the One-Dimensional Inverse Discrete Wavelet

Transform.

A simple test of iwt1 is
n=16; t=(1:n)./n;
dat=sin(2*pi*t)
filt=[0.4830 0.8365 0.2241 -0.1294];
wc=fwt1(dat,1,filt)
rec=iwt1(wc,1,filt)

Therefore, the average of set sj−1 equals

1
2j−1

2j−1−1∑
l=0

sj−1,l =
1

2j−1

1
2

2j−1∑
l=0

sj,l =
1
2j

2j−1∑
l=0

sj,l

the average of set sj .

5.7: The Matlab code of Figure Ans.39 does that and produces the transformed integer
vector y = (111,−1, 84, 0, 120, 25, 84, 3). The inverse transform generates vector z that
is identical to the original data x. Notice how the detail coefficients are much smaller
than the weighted averages. Notice also that Matlab arrays are indexed from 1, whereas
the discussion in the text assumes arrays indexed from 0. This causes the difference in
index values in Figure Ans.39.

Answers to Exercises 1087

(c) (d)

1 2
3 4

(a) (b)

6 7
5

8

10
11

1312

9

H0

H1

↓2

↓2

H0

H1

↓2

↓2

H0

H1

↓2

↓2

H0

H1

↓2

↓2

Figure Ans.38: Blurring As A Result of Coarse Quantization.

clear, colormap(gray);
filename=’lena128’; dim=128;
fid=fopen(filename,’r’);
img=fread(fid,[dim,dim])’;
filt=[0.23037,0.71484,0.63088,-0.02798, ...
-0.18703,0.03084,0.03288,-0.01059];
fwim=fwt2(img,3,filt);
figure(1), imagesc(fwim), axis square
fwim(1:16,17:32)=fwim(1:16,17:32)/2;
fwim(1:16,33:128)=0;
fwim(17:32,1:32)=fwim(17:32,1:32)/2;
fwim(17:32,33:128)=0;
fwim(33:128,:)=0;
figure(2), colormap(gray), imagesc(fwim)
rec=iwt2(fwim,3,filt);
figure(3), colormap(gray), imagesc(rec)

Code For Figure Ans.38.

1088 Answers to Exercises

clear;
N=8; k=N/2;
x=[112,97,85,99,114,120,77,80];
% Forward IWT into y
for i=0:k-2,
y(2*i+2)=x(2*i+2)-floor((x(2*i+1)+x(2*i+3))/2);
end;
y(N)=x(N)-x(N-1);
y(1)=x(1)+floor(y(2)/2);
for i=1:k-1,
y(2*i+1)=x(2*i+1)+floor((y(2*i)+y(2*i+2))/4);
end;
% Inverse IWT into z
z(1)=y(1)-floor(y(2)/2);
for i=1:k-1,
z(2*i+1)=y(2*i+1)-floor((y(2*i)+y(2*i+2))/4);
end;
for i=0:k-2,
z(2*i+2)=y(2*i+2)+floor((z(2*i+1)+x(2*i+3))/2);
end;
z(N)=y(N)+z(N-1);

Figure Ans.39: Matlab Code For Forward and Inverse IWT.

5.8: In the sorting pass of the third iteration the encoder transmits the number l = 3
(the number of coefficients ci,j in our example that satisfy 212 ≤ |ci,j | < 213), followed
by the three pairs of coordinates (3, 3), (4, 2), and (4, 1) and by the signs of the three
coefficients. In the refinement step it transmits the six bits cdefgh. These are the 13th
most significant bits of the coefficients transmitted in all the previous iterations.

The information received so far enables the decoder to further improve the 16
approximate coefficients. The first nine become

c2,3 = s1ac0 . . . 0, c3,4 = s1bd0 . . . 0, c3,2 = s01e00 . . . 0,

c4,4 = s01f00 . . . 0, c1,2 = s01g00 . . . 0, c3,1 = s01h00 . . . 0,

c3,3 = s0010 . . . 0, c4,2 = s0010 . . . 0, c4,1 = s0010 . . . 0,

and the remaining seven are not changed.

6.1: The vertical height of the picture on the author’s 27 in. television set is 16 in.,
which translates to a viewing distance of 7.12×16 = 114 in. or about 9.5 feet. It is easy
to see that individual scan lines are visible at any distance shorter than about 6 feet.

6.2: The golden ratio φ ≈ 1.618 has traditionally been considered the aspect ratio
that is most pleasing to the eye. This suggests that 1.77 is the better aspect ratio.

Answers to Exercises 1089

6.3: Since (4, 4) is at the center of the “+”, the value of s is halved, to 2. The next step
searches the four blocks labeled 4, centered on (4, 4). Assuming that the best match is
at (6, 4), the two blocks labeled 5 are searched. Assuming that (6, 4) is the best match,
s is halved to 1, and the eight blocks labeled 6 are searched. The diagram shows that
the best match is finally found at location (7, 4).

7.1: An average book may have 60 characters per line, 45 lines per page, and 400
pages. This comes to 60×45×400 = 1, 080, 000 characters, requiring one byte of storage
each.

7.2: Assuming that a noise level P1 translates to x decibels

20 log
(

P1

P2

)
= x dB SPL,

results in the relation

20 log

(
3
√

2P1

P2

)
= 20

[
log10

3
√

2 + log
(

P1

P2

)]
= 20(0.1 + x/20) = x + 2.

Thus, increasing the sound level by a factor of 3
√

2 increases the decibel level by 2 dB SPL.

7.3: Table 7.37 shows that the scale factor is 111 and the select information is 2. The
third rule in Table 7.38 shows that a scfsi of 2 means that only one scale factor was
coded, occupying just six bits in the compressed output. The decoder assigns these six
bits as the values of all three scale factors.

8.1: Figure Ans.40 shows the rotations of S and the sorted matrix. The last column,
L of Ans.40b happens to be identical to S, so S=L=“sssssssssh”. Since A=(s,h), a
move-to-front compression of L yields C = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1). Since C contains
just the two values 0 and 1, they can serve as their own Huffman codes, so the final
result is 1000000001, 1 bit per character!

sssssssssh
sssssssshs
ssssssshss
sssssshsss
ssssshssss
sssshsssss
ssshssssss
sshsssssss
shssssssss
hsssssssss

hsssssssss
shssssssss
sshsssssss
ssshssssss
sssshsssss
ssssshssss
sssssshsss
ssssssshss
sssssssshs
sssssssssh

(a) (b)
Figure Ans.40: Permutations of “sssssssssh”.

1090 Answers to Exercises

8.2: Table Ans.41 shows the sorted contexts. Equation (Ans.2) shows the context
ranking at each step.

0
u

, 0
u

→ 2
b

, 1
l

→ 3
b

→ 0
u

,

0
u

→ 2
l

→ 3
a

→ 4
b

, 2
l

→ 4
a

→ 1
d

→ 5
b

→ 0
u

,
(Ans.2)

3
i

→ 5
a

→ 2
l

→ 6
b

→ 5
d

→ 0
u

.

The final output is “u 2 b 3 l 4 a 5 d 6 i 6.” Notice that each of the distinct input symbols
appears once in this output in raw format.

0 λ u
1 u x

(a)

0 λ u
1 ub x
2 u b

(b)

0 λ u
1 ub l
2 ubl x
3 u b

(c)

0 λ u
1 ubla x
2 ub l
3 ubl a
4 u b

(d)

0 λ u
1 ubla d
2 ub l
3 ublad x
4 ubl a
5 u b

(e)

0 λ u
1 ubla d
2 ub l
3 ublad i
4 ubladi x
5 ubl a
6 u b

(f)

Table Ans.41: Constructing the Sorted Lists For ubladiu.

8.3: The input stream consists of:
1. A run of three zero groups, coded as 10|1 since 3 is in second position in class 2.
2. The nonzero group 0100, coded as 111100.
3. Another run of three zero groups, again coded as 10|1.
4. The nonzero group 1000, coded as 01100.
5. A run of four zero groups, coded as 010|00 since 4 is in first position in class 3.
6. 0010, coded as 111110.
7. A run of two zero groups, coded as 10|0.

The output is thus the 31-bit string 1011111001010110001000111110100.

8.4: The input stream consists of:
1. A run of three zero groups, coded as R2R1 or 101|11.
2. The nonzero group 0100, coded as 00100.
3. Another run of three zero groups, again coded as 101|11.
4. The nonzero group 1000, coded as 01000.
5. A run of four zero groups, coded as R4 = 1001.
6. 0010, coded as 00010.
7. A run of two zero groups, coded as R2 = 101.

The output is thus the 32-bit string 10111001001011101000100100010101.

Answers to Exercises 1091

8.5: The input stream consists of:
1. A run of three zero groups, coded as F3 or 1001.
2. The nonzero group 0100, coded as 00100.
3. Another run of three zero groups, again coded as 1001.
4. The nonzero group 1000, coded as 01000.
5. A run of four zero groups, coded as F3F1 = 1001|11.
6. 0010, coded as 00010.
7. A run of two zero groups, coded as F2 = 101.

The output is thus the 32-bit string 10010010010010100010011100010101.

8.6: Figure Ans.42 shows how state A feeds into the new state D′ which, in turn, feeds
into states E and F . Notice how states B and C haven’t changed. Since the new state
D′ is identical to D, it is possible to feed A into either D or D′ (cloning can be done in
two different but identical ways). The original counts of state D should now be divided
between D and D′ in proportion to the counts of the transitions A → D and B, C → D.

0

1

0B

A
E

C

D F

D’

1

1

0

1

0B

A
E

C

FD’

D
0

0

0

0

Figure Ans.42: New State D’ Cloned.

8.7: In each of these cases, the encoder removes one edge from the boundary and
inserts two new edges. There is a net gain of one edge.

8.8: They create triangles (18, 2, 3) and (18, 3, 4), and reduce the boundary to the
sequence of vertices

(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18).

A.1: It is a combination of "4x and "9, or "49.

B.1: The values of X are listed below. Each has a probability of 1/8.

X(HHH) = 3, X(HHT) = 2, X(HTH) = 2, X(HTT) = 1,

X(THH) = 2, X(THT) = 1, X(TTH) = 1, X(TTT) = 0.

1092 Answers to Exercises

B.2: The definition of expectation implies that E(X) = v. The expected value of a
constant random variable is the constant value.

B.3: Denote m = E(X). From Var(X) = E[(X − m)2] we get

Var(X) = E(X2 − 2Xm + m2)

= E(X2) − E(−2mX) + E(m2)

= E(X2) − 2mE(X) + m2

= E(X2) − 2m2 + m2

= E(X2) − m2.

B.4: The probability of rolling a double-six with two dice is 1/36. The complement
probability is 35/36. The probability of rolling a double-six in the first throw, or the
second throw,. . . , or the 24th throw is

1 − (35/36)(35/36) · · · (35/36)︸ ︷︷ ︸
24

≈ 1 − 0.5086 = 0.4914.

For game B, the probability of rolling a six is 1/6, its complement is 5/6, so the
probability of rolling a six in four tries is

1 − (5/6)(5/6)(5/6)(5/6) ≈ 1 − 0.482 = 0.518;

slightly higher than the winning probability of game A.

B.5: This problem is easy to solve intuitively. Once B has withdrawn, one of the
remaining two companies will win the contract. All we have to do to find their new
chances is to scale their old chances such that they add up to 1. Since the old chances
add up to 3/5, they have to be scaled by 5/3 to bring their new sum to 1. The new
chances are therefore (2/5)(5/3) = 2/3 and (1/5)(5/3) = 1/3.

Next, we use conditional probabilities to solve the same problem. We are looking
for the conditional probabilities P (A|B̄) and P (C|B̄). We know that P (B) was 2/5, so
P (B̄) = 1 − P (B) = 3/5. The quantity P (A · B̄) is the probability that A will win and
B will not win. It equals P (A), since if A wins, B cannot win. Equation (B.2) therefore
yields the conditional probabilities

P (A|B̄) =
P (A · B̄)

P (B̄)
=

(2/5)
(3/5)

=
2
3
,

P (C|B̄) =
P (C · B̄)

P (B̄)
=

(1/5)
(3/5)

=
1
3
.

Answers to Exercises 1093

B.6: Applying Bayes’ theorem, the results are 0.24, 0.24, and 0.36, respectively. The
knowledge that the student got an A made is less likely that he selected mathematics,
more likely that he selected biology, and did not much affect the probabilities that he
selected physics or chemistry.

B.7: Using appropriate mathematical software it is easy to obtain this integral sepa-
rately for negative and nonnegative values of x.

∫
L(V, x) dx =




−1

V exp
(√

2
V x

) , x ≥ 0,

1√
2V

exp
(√

2
V x

)
, x < 0.

C.1: A straight line segment from a to b is an example of a one-dimensional curve
that passes through every point in the interval a, b.

C.2: The key is to realize that P0 is a single point, and P1 is constructed by connecting
nine copies of P0 with straight segments. Similarly, P2 consists of nine copies of P1, in
different orientations, connected by segments (the dashed segments in Figure Ans.43).

(a) (b) (c)

P0 P1

Figure Ans.43: The First Three Iterations of the Peano Curve.

C.3: Written in binary, the coordinates are (1101, 0110). We iterate four times, each
time taking 1 bit from the x coordinate and 1 bit from the y coordinate to form an
(x, y) pair. The pairs are 10, 11, 01, 10. The first one yields [from Table C.12(1)] 01.
The second pair yields [also from Table C.12(1)] 10. The third pair [from Table C.12(1)]
11, and the last pair [from Table C.12(4)] 01. The result is thus 01|10|11|01 = 109.

C.4: Table C.2 shows that this traversal is based on the sequence 2114.

C.5: This is straightforward

(00, 01, 11, 10) → (000, 001, 011, 010)(100, 101, 111, 110)
→ (000, 001, 011, 010)(110, 111, 101, 100)
→ (000, 001, 011, 010, 110, 111, 101, 100).

1094 Answers to Exercises

D.1: It is j · m + (i + 1).

D.2: It makes sense to store the degree n of the polynomial in the first array location.

D.3: Yes. In a ternary tree, the three children of node a are stored in locations 2a,
2a + 1, and 2a + 2 and the parent of a can be found at array location �a/3�.

D.4: The pre-order, in-order, and level-order traversals are, respectively

A, ((B, (D, E)), (C, (F, (G, H)))),
((D, B, E), A, (null, C, (G, F, H))),

(A, (B, C), (D, E, F), (G, H)).

D.5: Each of the 8 characters of a name can be one of the 26 letters or the ten digits,
so the total number of names is 368 = 2, 821, 109, 907, 456; close to 3 trillion.

E.1: A direct check shows that when only a single bit is changed in any of the code-
words of code2, the result is not any of the other codewords.

E.2: A direct check shows that code4 has a Hamming distance of 4, which is more
than enough to detect all 2-bit errors.

E.3: b2 is the parity of b3, b6, b7, b10, and b11. b4 is the parity of b5, b6, and b7. b8 is
the parity of b9, b10, and b11.

E.4: Table Ans.44 summarizes the definitions of the five parity bits required for this
case.

Parity Data bits
bits 3 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21
1 x x x x x x x x x x
2 x x x x x x x x x
4 x x x x x x x x x
8 x x x x x x x
16 x x x x x

Table Ans.44: Hamming Code for m = 16.

E.5: It is a variable-size code (Chapter 2). It’s easy to see that it satisfies the prefix
property.

F.1: Yes. It alternates between states 1, 2, 3, 4, and 1.

H.1: All the shades of gray.

Answers to Exercises 1095

H.2: A yellow surface absorbs blue and reflects green and red.

H.3: Yes! These are three colors that produce white when mixed. Examples are red,
green, and blue; cyan, magenta, and yellow.

H.4: For point 1, it is easy to see that R = 0 and G = 1. Since it is on the U = 0
plane, where Y = B, it is easy to calculate that B = 0.663. For point 2 we have R = 0
and B = 1. Since it is on the Y = 0.3 plane, we get G = 0.317. Similarly, point 3 has
R = 0 and the two equations Y = 0.3 and U = 0 are solved to yield G = 0.453 and
B = 0.3.

H.5: Because white isn’t a pure color; it is a mixture of all colors.

H.6: Recall that the sum of a dyad is white. Since illuminant white is in the middle of
the line connecting c and d, it is obtained by adding equal amounts of them (0.5c+0.5d).
This is why they are complementary.

H.7: Saturation refers to the amount of white in a color. Point f corresponds to full
saturation, whereas illuminant white corresponds to no saturation. The saturation of
the color of point e is, therefore, the ratio of the distances fw/ew.

H.8: If we continue the line from w to g, it intercepts the pure spectral curve at the
bottom, an area that does not correspond to any wavelength. We therefore continue the
line in the opposite direction until it intercepts the pure spectral curve at h and we say
that the dominant wavelength of point g is 497c (where c stands for “complement”).

H.9: Direct calculations using matrix D44 produce the areas in Figure Ans.45. The
three areas have black pixel percentages of 1/16, 2/16, and 16/16, respectively.

A[x, y] = 0 1 15

10001000. . .
00000000. . .
00000000. . .
00000000. . .

10001000. . .
00000000. . .
00100010. . .
00000000. . .

11111111. . .
11111111. . .
11111111. . .
11111111. . .

Figure Ans.45: Ordered Dither: Three Uniform Areas

H.10: A direct application of Equation (H.2) yields

D88 =

0 32 8 40 2 34 10 42

48 16 56 24 50 18 58 26

12 44 4 36 14 46 6 38

60 28 52 20 62 30 54 22

3 35 11 43 1 33 9 41

51 19 59 27 49 17 57 25

15 47 7 39 13 45 5 37

63 31 55 23 61 29 53 21

.

1096 Answers to Exercises

H.11: A checkerboard pattern. This can be seen by manually simulating the algorithm
of Figure H.22b for a few pixels.

H.12: We assume that the test is
if p ≥ 0.5, then p := 1 else p := 0; add the error 0.5 − p to the next pixel q.

The first pixel is thus set to 1 and the error of 0.5 − 1 = −0.5 is added to the second
pixel, changing it from 0.5 to 0. The second pixel is set to 0 and the error, which is
0 − 0 = 0, is added to the third pixel, leaving it at 0.5. The third pixel is thus set to 1
and the error of 0.5 − 1 = −0.5 is added to the fourth pixel, changing it from 0.5 to 0.
The results are

.5 .5 .5 .5 .5→ 1 0 .5 .5 .5→ 1 0 1 0 .5→ 1 0 1 0 1

H.13: Direct examination shows that the barons are 62 and 63 and the near-barons
are 60 and 61.

H.14: A checkerboard pattern, similar to the one produced by diffusion dither. This
can be seen by manually executing the algorithm of Figure H.24 for a few pixels.

H.15: Classes 14, 15, and 10 are barons. Classes 12 and 13 are near-barons. The class
numbers in positions (i, j) and (i, j + 2) add up to 15.

I.1: This is straightforward

A + B =


 8 10 12

8 10 12
8 10 12


 ,A − B =


−6 −6 −6

0 0 0
6 6 6


 ,A × B =


 18 24 30

54 69 84
90 114 138


 .

I.2: Equation (I.5) gives

T−1 =
1

1 · 1 − 1 · 1
(
· · ·

)
,

which is undefined. Matrix T is thus singular ; it does not have an inverse! This
becomes easy to understand when we think of T as the coefficients matrix of the system
of equations (I.4) above. This is a system of three equations in the three unknowns x,
y, and z, but its first two equations are contradictory. The first one says that x − y
equals 1, while the second one says that the same x − y equals −2. Mathematically,
such a system has a singular coefficients matrix.

I.3: This is easily proved by showing that both dot products (P×Q)•P and (P×Q)•Q
equal zero.

(P × Q) • P = P1(P2Q3 − P3Q2) + P2(−P1Q3 + P3Q1) + P3(P1Q2 − P2Q1) = 0.

And similarly for (P × Q) • Q.

Answers to Exercises 1097

I.4: In the special case where i = (1, 0, 0) and j = (0, 1, 0) it is easy to verify that the
product i×j equals (0, 0, 1) = k. The triplet (i, j, i × j = k) thus has the handedness
of the coordinate system (it is either right-handed or left-handed, depending on the
coordinate system). In a right-handed coordinate system, the right hand rule makes it
easy to predict the direction of P×Q. The rule is: if your thumb points in the direction
of P and your second finger, in the direction of Q, then your middle finger will point
in the direction of P×Q. In a left-handed coordinate system, a similar left-hand rule
applies.

I.5: They either have the same direction, or they point in opposite directions.

I.6: We are looking for a vector P(t) that is linear in t and that satisfies P(0) = P1

and P(1) = P2. It is easy to guess that

P(t) = (1 − t)P1 + tP2 = t(P2 − P1) + P1

satisfies both conditions.

I.7: This is not especially hard

c =
2 · 1 + 1 · 0 + 3 · (−1)

12 + 02 + (−1)2
(1, 0,−1) = (−1/2, 0, 1/2),

d =a − c = (2.5, 1, 2.5).

I.8: Because of the wide spread use of computers, the world of science and engineering
has moved from analog to digital. Instead of a continuous function f(t) we now have
an n-tuple (f1, f2, . . . , fn), and this is a vector (in n dimensions).

I.9: The multiplication rule yields (0, 1)×(0, 1) = (−1, 0) or i×i = −1. The strange
rule of complex number multiplication results in i2 = −1 or

√
−1 = i.

I.10: The multiplication rule yields (a, b)×(−a,−b) = (0, 0), which justifies calling
(−a,−b) the opposite of (a, b).

I.11: We start with i = cos(π/2) + i sin(π/2), from which we get

√
i =

(
cos

π

2
+ i sin

π

2

)1/2

.

By DeMoivre’s theorem, this equals

cos
π

4
+ i sin

π

4
=

1√
2

+ i
1√
2

=
1 + i√

2
. (Ans.3)

1098 Answers to Exercises

A simple check gives (
1 + i√

2

)2

=
1 + 2i + i2

2
= i.

(DeMoivre’s theorem states that sin(nx) + i cos(nx) is one of the values of (sinx +
i cos x)n.)

I.12: We start with the elegant formula

eit = cos t + i sin t.

Substituting t = π/2 yields
eiπ/2 = i sin(π/2) = i.

Both sides are now raised to the ith power, yielding

ii = (eiπ/2)i = ei2π/2 = e−π/2.

Surprisingly, this is a real number. In the past, calculating many digits of this number
(or others like it) involved years of toil. Today, however, the single Matlab statement
vpa(’i^i’,140) produces, in less than a second, the 140-digit number

0.20787 95763 50761 90854 69556 19834 97877 00338 77841
63176 96080 75135 88305 54198 77285 48213 97886 00277
86542 60353 40521 77330 72350 21808 19061 97303 74663
98700

Since a = exp(ln a) for any a, we also get

eln i = i = eiπ/2,

from which it is clear that ln i = iπ/2.
By the way, the exponential function ez is defined for any complex number z = x+iy

by

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · .

Leonhard Euler, the great Eighteenth century mathematician, intro-
duced the notation i for

√
−1 in 1777. It is interesting to note that electrical

engineers use the notation j instead, since they deal with electrical voltages
and currents and find it convenient to reserve i to indicate current.

Answers to Exercises 1099

I.13: The axiom and the production rules stay the same. Only the initial heading and
the turn angle change. The initial heading can be either 0 or 90◦, and the turn angle
either 90◦ or 270◦.

I.14: Such a polynomial depends on three coefficients b, c, and d that can be consid-
ered three-dimensional points, and any three points are on the same plane.

I.15:
P(2/3) =(0,−9)(2/3)3 + (−4.5, 13.5)(2/3)2 + (4.5,−3.5)(2/3)

=(0,−8/3) + (−2, 6) + (3,−7/3)
=(1, 1) = P3

I.16: We use the relations sin 30◦ = cos 60◦ = .5 and the approximation cos 30◦ =
sin 60◦ ≈ .866. The four points are P1 = (1, 0), P2 = (cos 30◦, sin 30◦) = (.866, .5),
P3 = (.5, .866), and P4 = (0, 1). The relation A = N · P becomes




a
b
c
d


 = A = N · P =




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0







(1, 0)
(.866, .5)
(.5, .866)

(0, 1)




and the solutions are

a = −4.5(1, 0) + 13.5(.866, .5) − 13.5(.5, .866) + 4.5(0, 1) = (.441,−.441),
b = 19(1, 0) − 22.5(.866, .5) + 18(.5, .866) − 4.5(0, 1) = (−1.485,−0.162),
c = −5.5(1, 0) + 9(.866, .5) − 4.5(.5, .866) + 1(0, 1) = (0.044, 1.603),
d = 1(1, 0) − 0(.866, .5) + 0(.5, .866) − 0(0, 1) = (1, 0).

The PC is thus P(t) = (.441,−.441)t3 + (−1.485,−0.162)t2 + (0.044, 1.603)t + (1, 0).
The midpoint is P(.5) = (.7058, .7058), only 0.2% away from the midpoint of the arc,
which is at (cos 45◦, sin 45◦) ≈ (.7071, .7071).

I.17: The new equations are easy enough to set up. Using Mathematica, they are also
easy to solve. The following code

Solve[{d==p1,
a al^3+b al^2+c al+d==p2,
a be^3+b be^2+c be+d==p3,
a+b+c+d==p4},{a,b,c,d}];
ExpandAll[Simplify[%]]

(where al and be stand for α and β, respectively) produces the (messy) solutions

1100 Answers to Exercises

a = −P1

αβ
+

P2

−α2 + α3 + αβ − α2β
+

P3

αβ − β2 − αβ2 + β3
+

P4

1 − α − β + αβ

b = P1

(
−α + α3 + β − α3β − β3 + αβ3

)
/γ + P2

(
−β + β3

)
/γ

+ P3

(
α − α3

)
/γ + P4

(
α3β − αβ3

)
/γ

c = −P1

(
1 +

1
α

+
1
β

)
+

βP2

−α2 + α3 + αβ − α2β

+
αP3

αβ − β2 − αβ2 + β3
+

αβP4

1 − α − β + αβ

d = P1.

where γ = (−1 + α)α(−1 + β)β(−α + β).

From here, the basis matrix immediately follows




− 1
αβ

1
−α2+α3αβ−α2β

1
αβ−β2−αβ2+β3

1
1−α−β+αβ

−α+α3+β−α3β−β3+αβ3

γ
−β+β3

γ
α−α3

γ
α3β−αβ3

γ

−
(
1 + 1

α + 1
β

)
β

−α2+α3+αβ−α2β
α

αβ−β2−αβ2+β3
αβ

1−α−β+αβ

1 0 0 0




A direct check, again using Mathematica, for α = 1/3 and β = 2/3, reduces this matrix
to matrix N of Equation (I.23).

I.18: The missing points will have to be estimated by interpolation or extrapolation
from the known points before our method can be applied. Obviously, the fewer points
are known, the worse the final interpolation. Note that 16 points are necessary, since a
bicubic polynomial has 16 coefficients.

I.19: Figure Ans.46a shows a diamond-shaped grid of 16 equally-spaced points. The
eight points with negative weights are shown in black. Figure Ans.46b shows a cut
(labeled xx) through four points in this surface. The cut is a curve that passes through
pour data points. It is easy to see that when the two exterior (black) points are raised,
the center of the curve (and, as a result, the center of the surface) gets lowered. It is
now clear that points with negative weights push the center of the surface in a direction
opposite that of the points.

Figure Ans.46c is a more detailed example that also shows why the four corner
points should have positive weights. It shows a simple symmetric surface patch that
interpolates the 16 points

P00 = (0, 0, 0), P10 = (1, 0, 1), P20 = (2, 0, 1), P30 = (3, 0, 0),
P01 = (0, 1, 1), P11 = (1, 1, 2), P21 = (2, 1, 2), P31 = (3, 1, 1),
P02 = (0, 2, 1), P12 = (1, 2, 2), P22 = (2, 2, 2), P32 = (3, 2, 1),
P03 = (0, 3, 0), P13 = (1, 3, 1), P23 = (2, 3, 1), P33 = (3, 3, 0).

Answers to Exercises 1101

(a)

x

x

(b)

1

2
3

0

1
2

3
0

0

1

2

0

1

2
3

0

1
2

3

2

0

1

0

1

2

3

0

1

2
3

1

2

(c) (d) (e)
Figure Ans.46: An Interpolating Bicubic Surface Patch

We first raise the eight boundary points from z = 1 to z = 1.5. Figure Ans.46d shows
how the center point P(.5, .5) gets lowered from (1.5, 1.5, 2.25) to (1.5, 1.5, 2.10938). We
next return those points to their original positions and instead raise the four corner
points from z = 0 to z = 1. Figure Ans.46e shows how this raises the center point from
(1.5, 1.5, 2.25) to (1.5, 1.5, 2.26563).

the talk of the ordinary Englishman made me sick, I couldn’t get

enough exercise, and the amusements of London seemed as

flat as soda-water that has been standing in the sun.

John Buchan, 1915, The Thirty-nine Steps

1102 Answers to Exercises

Clear[Nh,p,pnts,U,W];
p00={0,0,0}; p10={1,0,1}; p20={2,0,1}; p30={3,0,0};
p01={0,1,1}; p11={1,1,2}; p21={2,1,2}; p31={3,1,1};
p02={0,2,1}; p12={1,2,2}; p22={2,2,2}; p32={3,2,1};
p03={0,3,0}; p13={1,3,1}; p23={2,3,1}; p33={3,3,0};
Nh={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},
{-5.5,9,-4.5,1},{1,0,0,0}};
pnts={{p33,p32,p31,p30},{p23,p22,p21,p20},
{p13,p12,p11,p10},{p03,p02,p01,p00}};
U[u_]:={u^3,u^2,u,1}; W[w_]:={w^3,w^2,w,1};
(* prt [i] extracts component i from the 3rd dimen of P *)
prt[i_]:=pnts[[Range[1,4],Range[1,4],i]];
p[u_,w_]:={U[u].Nh.prt[1].Transpose[Nh].W[w],
U[u].Nh.prt[2].Transpose[Nh].W[w], \
U[u].Nh.prt[3].Transpose[Nh].W[w]};
g1=ParametricPlot3D[p[u,w], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2],
Table[Point[pnts[[i,j]]],{i,1,4},{j,1,4}]}];
Show[g1,g2, ViewPoint->{-2.576, -1.365, 1.718}]

Code For Figure Ans.46

Index

I have attempted to make the index items as complete as possible, including middle
names and dates. Any errors and omissions brought to my attention are welcome and
will be added to the errata list.

2-pass compression, 1051

Abelson, Harold, 1020
ACB, 1033
adaptive frequency encoding, 1047
adaptive Huffman coding, 1033, 1046, 1047
additive colors, 976–977
ALGOL60, 1020
alphabet (definition of), 1033
alphabet, Greek, 1024
analog data, 1051
ARC, 1033, 1034
archive (archival software), 1033
arg (of a complex number), 1013
Argand diagram, 1013
Argand, Jean Robert (1768–1822), 1013
ARIES, 991
arithmetic coding, 1033, 1044, 1048, 1052

in JPEG, 1050
QM coder, 911, 1050

ARJ, 1034
array (data structure), 934–935, 1038
ASCII, 1034, 1036, 1054

code table, 901
audio compression

LZ, 1046
MLP, 1047

AVL tree, 939

B-tree, 940

Babbage, Charles (1792–1871), 958

background pixel (white), 1034

Backus, John Warner (1924–), 1020

Baeyer, Hans Christian von, 914, 1059

Bark (unit of critical band rate), 1034

Barkhausen, Heinrich Georg (1881–1956),
1034

barycentric functions, 1027, 1028

basis matrix, 1028

Baum, L. Frank (1856–1919), 1001

Bayes, Thomas (1702–1761), 909, 911, 912,
1037

Bayesian statistics, 909–912, 1037

Bellard, Fabrice, 1041

Bernoulli experiment, 917

Bernoulli Jacob (Jacques 1654–1705), 916

Bernoulli trial, 917

bi-level image, 1034, 1042, 1044

bicubic interpolation, 1029

bicubic polynomial, 1029

bicubic surface, 1029

algebraic representation of, 1029

geometric representation of, 1030

Bierce, Ambrose (1842–1914), 961

binary search

tree, 938, 1047

binary tree

1104 Index

complete, 938
empty, 939
height balanced, 939
implementing, 938
skewed, 938
traversal, 938

BinHex, 1034
binomial distribution, 917–918
bintrees, 1034, 1036
bisection, 1050
bitplane, 1034
bitrate (definition of), 1034
bits/char (bpc), 1034
bits/symbol, 1034
Blelloch, Guy, 1060
blending functions, 1027
Blinn, James F., 1005
block coding, 1035
block decomposition, 1035
block matching (image compression), 1035
block truncation coding, 1035
Bloom, Charles R., 1047
BMP file compression, 1035
BNF (Backus Naur Form), 1020
BOCU-1 (Unicode compression), 1035
Boltzman, Ludwig Eduard (1844–1906), 1059
bpc (bits per character), 1034
Buchan, John (1875–1940), 1101
Burrows-Wheeler method, 1035
Buyanovsky, George (Georgii) Mechislavov-

ich, 1033

C (arrays in), 934
Calgary Corpus, 963
CALIC, 1035
Canterbury Corpus, 963
Cartesian product, 1029
CCITT, 1035, 1044, 1045
cell encoding (image compression), 1035
Chambord (Château, 1526), 913
Chomsky, Noam (1928–), 1020
chrominance, 980–984
CIE, 969, 1036

color diagram, 987–989
circular queue, 935, 1036
CMYK color model, 971, 976, 977, 989, 996
codec, 1036
codes

ASCII, 1036

definition of, 1036

EBCDIC, 1036

error-correcting, 947–958, 1041

error-detecting, 947–958

Hamming, 954, 955

Hamming distance, 952–954

overhead of, 951

SEC-DED, 956

Unicode, 1036

variable-size, 1051, 1060

unambiguous, 1045

voting, 949

color, 969–989

adding, 976

additive, 976–977

as wavelength, 970

complementary, 978–979

cool, 979

gamut, 974, 989

model, 971

primary, 974

pure, 971

secondary, 974

spectral density, 984–986

subtracting, 976

subtractive, 976–977

warm, 979

color lookup table, 974, 995

color printing, 976

and dithering, 996

complementary colors, 978–979

complete binary tree, 938

complex numbers, 1012–1014

composite values for progressive images, 1036

compression factor, 1036

compression gain, 1036

compression ratio, 1036

Compuserve Information Services, 1042

conditional image RLE, 1037

conditional probability, 909–912, 1037

cones (in the retina), 978

constrained average dithering, 991, 994

context (definition of), 1037

context-free grammars, 1037

context-tree weighting, 1037

continuous wavelet transform (CWT), 1038

continuous-tone image, 963, 1038, 1042, 1044

convolution, 1015–1018, 1038

Index 1105

cool colors, 979
correlation, 1038

definition of, 908
covariance (definition of), 907
CRC, 958, 1038
Crichton, Michael (1942–), 907
cross product, 1010
CRT, 1038

and RGB, 974
gamma, 980

curves
Hilbert, 921
Peano, 926, 930–931
Sierpiński, 922
space-filling, 921–931

da Vinci, Leonardo (1452–1519), 913
data compression

and redundancy, 948
and reliability, 947
lossless, 1046
lossy, 1046
model, 1048
patents, 1049
semiadaptive, 1051
two-pass, 1051

data structures, 933–945, 1036, 1038
arrays, 934–935, 1038
definition of, 933
graphs, 940–941, 1038
hashing, 942–945, 1038
lists, 936, 1038
queues, 935, 1038
stacks, 935, 1038
trees, 936–940, 1038

decibel (dB), 1038
decoder, 1039
decorrelated values (and covariance), 908
Deflate, 1039, 1042, 1055
DeMoivre’s theorem, 1008, 1098
determinants, 1004–1007

and cross-product, 1010
row interchange, 1011

Deutsch, David (1953–), 975
diagonal matrix, 1004
Dickens, Charles (1812–1870), 1055
dictionary-based methods, 1039
difference values for progressive images, 1036
differencing, 1051

file, 1041

differential encoding, 1040

differential image compression, 1039

differential pulse code modulation, 1040

and sound, 1040

diffusion dither, 991, 995–998

digital camera, 978

digital video, 1039

digitally sampled analog data, 1054

digram, 1039

direction cosines, 1009

directory (of a disk), 940

Dirichlet tessellations, see Voronoi diagrams

discrete cosine transform, 1039

discrete distributions, 916–919

discrete random variable (definition of), 905

discrete wavelet transform (DWT), 1039

discrete-tone image, 963, 964, 1035, 1039

disk (directory of), 940

dithering, 991–1001, 1039

ARIES, 991

color printing, 996

constrained average, 994

diffusion dither, 995–998

dot diffusion, 998–1000

minimized average error, 996

ordered dither, 991–994

DjVu document compression, 1040

dot diffusion, 991, 998–1000

dot product, 1009

dynamic Markov coding, 961

Dyson, George Bernard (1953–), 913

EBCDIC, 1036

edgebreaker, 1053

EIDAC, simple image compression, 1052

eigenvalues of a matrix, 1007

eigenvectors of a matrix, 1007

Einstein, Albert (1879–1955), 1003

electromagnetic spectrum, 970

embedded coding in image compression, 1040

embedded coding using zerotrees (EZW),
1041

encoder, 1040

entropy

definition of, 1040

Erdős-Kac theorem, 914

error-correcting codes, 947–958, 1041

1106 Index

error-detecting codes, 947–958
Euler, Leonhard (1707–1783), 1013, 1098
Euler’s formula, 1013
EXE compressors, 1041
eye

and spatial integration, 974, 989, 996
resolution of, 978

facsimile compression, 1041
factor of compression, 1036
FBI fingerprint compression standard, 1055
FELICS, 1041
FHM compression, 1041
Fiala, Edward R., 1047
Fibonacci numbers, 1041
FIFO (first-in first-out), 935
file differencing, 1041
file directory (of a disk), 940
fingerprint compression, 1055
finite automata, 959–961

nondeterministic, 961
regular expressions, 961

finite-state machines, 959–961
nondeterministic, 961

Floyd-Steinberg filter, 995
foreground pixel (black), 1034
Fortran (arrays in), 934
Foster, Jodie (1962–), 1009
four-color process, 976
Fourier transform, 1039, 1041, 1053
Fourier, Jean Baptiste Joseph (1768–1830),

1041
fractal image compression, 1043
Freed, Robert A., 1033
frequencies

of symbols, 1048
functions

barycentric, 1027, 1028
blending, 1027

gain of compression, 1036
Galois fields, 957
gamma correction, 981–982
gas molecules (and normal distribution), 913
Gaussian distribution, 907, 913–916, 1041,

1046, 1048
Gaussian random numbers, 916
generalized finite automata, 1042
generating polynomials, 957, 1041

geometric distribution, 918–919

GIF, 1042

and LZW patent, 1049

Gogh, Vincent Van (1853–1890), 979

golden ratio, 1041, 1088

Golomb code, 1041, 1042

and JPEG-LS, 1045

grammars, context-free, 1037

graphs (data structure), 940–941, 1038

grayscale image, 1042, 1044, 1047, 1050

Greek alphabet, 1024

Greene, Daniel H., 1047

group 3 fax compression, 1041

group 4 fax compression, 1041

growth geometry coding, 1042

gzip (compression software), 1039, 1042

H.261 video compression, 1042

Hadamard, Jacques (1865–1963), 1013

halftones, 977, 989–991

halftoning, 1042

Halmos, Paul Richard (1916–), 1007

Hamming codes, 954–956, 1043

16 bits, 955

Hamming distance, 952–954

Hamming, Richard Wesley (1915–1998), 952,
954

hashing, 942–945, 1038

HDTV

and MPEG-3, 1048

standards used in, 1043

heap (data structure), 938

Hempel, Carl G., ii

Henderson, J. Robert, 912

hierarchical image compression, 1043

Hilbert curve, 921–922

traversing of, 926–930

Hilbert, David (1862–1943), 921

HLS color model, 971–972

HSV color model, 972

HTML (as semi-structured text), 1051

hue, 972

definition of, 971

primary, 974

secondary, 974

Huffman coding, 1039, 1042, 1043, 1051,
1052, 1055

adaptive, 1033, 1046

Index 1107

human vision, 978–979
human visual system, 969–1001

identity matrix, 1004, 1005
IFS compression, 1043
image

bi-level, 1034, 1042, 1044
bitplane, 1034
continuous-tone, 963, 1038, 1044
discrete-tone, 963, 964, 1035, 1039
grayscale, 1042, 1044, 1047, 1050
simple, 1052

image compression
differential, 1039
progressive, 1049
self similarity, 1042, 1055
WFA, 961

image transforms, 1053
images (standard), 963–967
inequality (Kraft-MacMillan), 1045
information theory, 950, 1043
infrared, 970
inkjet color printing, 989, 996
interpolating polynomials, 1025–1031, 1043
ISO, 1043, 1045, 1048

recommendation CD 14495, 1045
iterated function systems, 1043
ITU, 1035, 1041, 1043, 1044
ITU-R

recommendation 709, 984
recommendation BT.601, 984

ITU-T
and fax training documents, 963
and MPEG, 1048
recommendation H.261, 1042
recommendation T.6, 1041
V.42bis, 1054

JBIG, 911, 1044, 1050
JBIG2, 911, 1044

and DjVu, 1040
JFIF, 1044
Jonson, Ben (1572–1637), 977
JPEG, 911, 1035, 1043–1045, 1050
JPEG-LS, 1045
Jung, Robert K., 1034

Kaplansky, Irving, 1007
Katz, Philip (1962–2000), 1049

Koch snowflake curve, 1020

Kraft-MacMillan inequality, 1045

KT probability estimate, 1045

L Systems, 1020–1024, 1045

Laplace distribution, 916, 1046, 1047, 1050

Laplace, Pierre Simon de (1749–1827), 919

Laplacian pyramid, 1046

large numbers (law of), 915, 919

Lau, Daniel Leo, 929

law of large numbers, 915, 919

Lempel, Abraham, 1046

Lempereur, Yves, 1034

Lena (image), 963–964

blurred, 1083

LHA, 1046

LHArc, 1046

Libri, Guglielmo Carrucci (1803–1869), 920

LIFO, 935

lifting scheme, 1046

light, 969–971

visible, 970, 978

lightness, 972

definition of, 972

Lindenmayer, Aristid (1925–1989), 1020,
1045

line

as a space-filling curve, 1093

vector equation of, 1011

linear systems, 1015–1018, 1038

list (data structure), 936, 1038

logarithm (and luminance), 982

lossless compression, 1046

lossy compression, 1046

luminance, 980–984

definition of, 971

LZ77, 1035, 1039, 1042, 1046, 1047, 1052,
1055

LZ78, 1046, 1047

LZAP, 1047

LZEXE, 1041

LZFG, 1047

LZMW, 1047

LZP, 1047

LZRW1, 942

LZSS, 1046, 1047

LZW, 1047, 1054

patented, 1049

1108 Index

LZX, 1047
LZY, 1047

mandril (image), 963
matrices

definition and operations, 1004–1007
eigenvalues, 1007
eigenvectors, 1007
orthogonal, 1007
orthonormal, 1007
rotation, 1007

Maugham, William Somerset (1874–1965),
945

Microcom, Inc., 1047
minimized average error, 996
MLP, 1046, 1047, 1050

and Laplace distribution, 916
MLP (audio), 1047
MNP class 5, 1047
MNP class 7, 1047
model

Gaussian, 913
modem, 1047, 1054
Moivre, Abraham de (1667–1754), 915, 1098
Morley, Christopher (1890–1957), 1031
move-to-front method, 1035, 1046, 1048
MPEG, 1043, 1048
multinomial distribution, 918
multiresolution decomposition, 1048
multiresolution image, 1048

Naur, Peter (1928–), 1020
nondeterministic finite automata, 961
normal distribution, 907, 913–916, 1041,

1048
numerical history (mists of), 1031

octasection, 1050
Okumura, Haruhiko, 1046
ordered dither, 991–994
orthogonal

matrix, 1007
vectors, 1009

orthonormal matrix, 1007

painter’s pigments, 976
palette, 995
panda (black and white image), 992
PANTONE matching system, 977

paper tape (punched), 902

parametric cubic polynomial (PC), 1026

Pareto, Wilfredo (1848–1923), 958

Pascal (arrays in), 934

Pascal, Blaise (1623–1662), 909

patents of algorithms, 1049

Peano curve, 926, 1022

traversing, 930–931

peppers (image), 963

Perella, P. E., 1014

petri dish, 1019, 1054

Petty, Lori (1963–), 989

phrase, 1049

Picasso, Pablo (1881–1973), 979

pixels

background, 1034

definition of, 1049

foreground, 1034

PKArc, 1049

PKlite, 1049

PKunzip, 1049

PKWare, 1049

PKzip, 1049

Poisson distribution, 919

Poisson, Siméon Denis (1781–1840), 920

polynomial

definition of, 1025

parametric cubic, 1026

parametric representation, 1026

polynomials (bicubic), 1029

polynomials (interpolating), 1025–1031, 1043

portable network graphics (PNG), 1049

PPM, 1050

PPPM, 1050

prediction, 1049

prefix compression

images, 1049, 1050

prefix property, 1049, 1054, 1094

primary hue, 974

prime factors (and normal distribution), 914

printing in color, 996

printing pigments, 976

prisoners’ problem, 911

probability

concepts, 905–919

conditional, 909–912, 1037

distributions, 913–919

model, 1048

Index 1109

of joint and union, 909
three prisoners problem, 911

process color, 976
Prochnow, Jürgen (1941–), 986
progressive FELICS, 1049
progressive image compression, 1049
psychoacoustic model (in MPEG audio),

1050
pure color, 971

QIC-122, 1050
QM coder, 911, 1050
quadrisection, 1050
quadtrees, 1034, 1042, 1049, 1050, 1055

prefix compression, 1050
quantization

block truncation coding, 1035
image transform, 1053
scalar, 1051
vector, 1054

quaternary (base-4 numbering), 1050
queue (data structure), 935, 1036, 1038

as a list, 936
Quinton, R. E., 1020

radio waves, 970
RAND Corp., 915
random data, 1054, 1060
random variable, 905
ratio of compression, 1036
redundancy, 949

and data compression, 948
and error-correction, 947, 954
spatial, 1054
temporal, 1054

reflected Gray code, 930, 1042
regular expressions, 961
relative encoding, 1040, 1051
reliability, 947
resolution of the eye, 978
RGB

color model, 971, 974
cube, 965, 974
reasons for using, 974, 978, 989

right hand rule, 1097
RLE, 1051

and BW method, 1035
BMP image files, 1035
QIC-122, 1050

rods (in the retina), 978

rotation matrix (orthonormal), 1007

Rozenberg, Grzegorz, 931, 1020

run length encoding, 1047

saturation, 972, 989

definition of, 971

full, 1095

scalar quantization, 1051

Scott, Paul Mark (1920–1978), 1017

SCSU (Unicode compression), 1051

SEC-DED code, 956

secondary hue, 974

self similarity in images, 1042, 1055

semi-structured text, 1051

semiadaptive compression, 1051

sequitur, 1037, 1051

set partitioning in hierarchical trees (SPIHT),
1041, 1052

Shannon, Claude Elwood (1916–2001), 948,
1040, 1043

Shannon-Fano method, 1043, 1051, 1052

shift invariance, 1015–1018, 1038

shorten (speech compression), 1051

Sierpiński

curve, 922–926

gasket, 1081, 1083

Sierpiński, Wac�law (1882–1969), 922

simple images, EIDAC, 1052

skewed binary tree, 938

sliding window compression, 1035, 1052

Smith, Alvy Ray (1943–), 1020

Soderberg, Lena (of image fame), 964

space-filling curves, 921–931, 1052

Hilbert, 921–922

Peano, 926, 1022

Sierpiński, 922–926

sparse strings, 1052

spatial redundancy, 1054

spectral density, 984–986

speech compression

shorten, 1051

stack (data structure), 935, 1038

standard deviation

and normal distribution, 907, 914

definition of, 906

standard test images, 963–967

statistical distributions

1110 Index

binomial, 917–918
continuous, 913–916
discrete, 916–919
geometric, 918–919
Laplace, 916
multinomial, 918
normal, 913–916
Poisson, 919
trinomial, 918

statistical methods, 1052
statistical model, 1048
Storer, James Andrew, 1047
string compression, 1052
subsampling, 1052
subtractive colors, 976–977
sums (of series), 1003–1004
symbol ranking, 1053
symmetric matrix, 1004
Szilard, Andy, 1020
Szymanski, Thomas G., 1047

taps (wavelet filter coefficients), 1053
TAR (Unix tape archive), 1053
Tektronics (and the HLS model), 972
temporal redundancy, 1054
ternary tree, 938, 1094
text

random, 1060
semi-structured, 1051

text compression
LZ, 1046
QIC-122, 1050

textual image compression, 1053
thread (a pointer), 938
three prisoners problem, 911
TIFF

and JGIB2, 1044
token (definition of), 1053
training (in data compression), 963
transforms

discrete cosine, 1039
images, 1053

tree
AVL, 939
B, 940
binary search, 938, 1047
data structure, 936–940, 1038
Huffman, 1043
lazy deletion, 937

threads, 938
triangle mesh compression, edgebreaker,

1053
trigonometric identities, 1008–1009
trinomial distribution, 918
trit (ternary digit), 930, 1053
Twain, Mark (1835–1910), 945
two-pass compression, 1051

ultraviolet, 970
unary code, 1041, 1053, 1059

general, 1053
Unicode, 1036, 1053
Unicode compression, 1051
UNIX

compress, 1036, 1049

V.32bis, 1054
V.42bis, 1054
variable-size codes, 1049, 1052, 1054, 1060,

1094
and reliability, 1051
unambiguous, 1045

variance (definition of), 906
vector quantization, 1054
vectors, 1009–1012

absolute value, 1009
addition, 1009
cross product, 1010

direction of, 1010, 1097
direction cosines, 1009
dot product, 1009
orthogonal, 1009
projecting, 1011–1012
unit, 1009
vector product, 1010

video
digital, 1039

video compression, 1054
H.261, 1042
MPEG-1, 1048

vision (human), 978–979
visual acuity, 989
Voronoi diagrams, 1019, 1054
voting codes, 949

warm colors, 979
Warren, Robert Penn (1905–1989), 1011

Index 1111

wavelet scalar quantization (WSQ), 1055

wavelets

continuous transform, 1038

Daubechies

D8, 1083

discrete transform, 1039

fingerprint compression, 1055

lifting scheme, 1046

multiresolution decomposition, 1048

weighted finite automata, 961, 1055

Welch, Terry A., 1047

Wells, Herbert George (1866–1946), 1111

Wigner, Eugene Paul (1902–1995), 917

Wing-Davey, Mark, 972

Wirth, Niklaus (1934–), 921
Wright, Amy, 944
www (web), 1019, 1045

X-rays, 970
XML compression, XMill, 1055

Yoshizaki, Haruyasu, 1046
Young, Daniel, 976
Young, Roland, 995

zero-probability problem, 1055
Zip (compression software), 1039, 1055
Ziv, Jacob, 1046

A transparent thing becomes invisible if it is put in

any medium of almost the same refractive index.

—H. G. Wells, The Invisible Man

