Data Compression by Concatenations of Symbol Pairs

Hirofumi Nakamuraf and Sadayuki Murashimaj
t Computer Center, Miyakonojo National College of Technology, 473-1 Yoshio-Cho, Miyakonojo-Shi, 885 Japan.
Email: ccnakamu@cc.miyakonojo-nct.ac.jp
i Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshxma-Shl 890 Japan
Email: mura@ics.kagoshima-u.ac.jp

Abstract — For lossless data compression, we
propose a method which has analysis and cut-
ting of input symbol string. The analysis is
based on concatenating symbol pair appearing
repeatedly. Encoding and decoding can be ex-
ecuted in time O(N), where N is the length of
compression object.

I. INTRODUCTION

Compression method based on parsing information of
symbol string was proposed by Ziv and Lempel(1][2].
These encoders have the following redundancy:
(1) even if a certain symbol string appears repeatedly,
each appearance is cut in various ways, and
(2) when N is finite, many enrolled symbol strings are
not used later[2].
We tried to improve them as follows|3][4]:
(1) encoder divides symbol strings between the sym-
bols which contact with lower frequency, and
(2) it does not enroll unnecessary symbol strings.

II. ENCODING

We use following terms in this paper.
Symbol pair means a pair of two symbols. We express
Symbol pair i j as i j merely.
S is the symbol string under analysis.
We express count of a symbol pair in S as number of
appearance. We express the greatest number of appear-
ance of S as Nmaz(S).
We express most frequent symbol pair as Pmaz(S).
Here, Pmaz(S) is a symbol pair whose number of ap-
pearance is Nmaz(S). If the candidates of most fre-
quent symbol pair exist more than or equal to 2, one
pair should be chosen as Pmaz(S) by a certain rule.
In order to describe the processes of replacements of
symbol string in this paper, we use production rules
similar to Nevill-Manning et al.[5].
Alphabet of compression object corresponds to termi-
nal symbol. The symbol pair correspond to the digram
of their paper[5]. Code table is equivalent to collection
of production rules.

Proposed encoder consists of analysis, cutting and bit
stream generation.

A. Analysis of Input Symbol String

While the same symbol pair exists at least twice in S,
encoder repeats following two operations:

(1) Encoder finds Pmaz(S).

(2) Encoder concatenates all Pmaz(S) in S. After that

436

encoder treat it as a new symbol. (Encoder replaces
all Pmaz(S) in S by new single symbol. We express
the new symbol as enrolled symbol.)
Enrolled symbol is equivalent to non-terminal symbol
of production rule.
For example, we consider the compression object
Si:=acabbadcaddbaaddcaaddb
consist of alphabet {a,b,c,d}.
On S, number of appearance of symbol pair a d is the
greatest number 4 (=Nmaz(S).) At first, we consider
a d is equivalent to one new symbol A. Encoder re-
places all 2 d (=Pmaz(S)) in S by A. Then
S:=acabbAcAdbaAdcaAdb
Anz=ad
is given. Next, current Pmaz(S)=A d is replaced by
B. Then
S:=acabbAcBbaBcaBb
Az=ad,Ba=Ad
is given. Next, current Nmaz(S) is 2. Number of
appearance of c a and B b is 2. We assume that c a is
selected from these as Pmaz(S). Encoder replaces c a
by C. Then
S:==aCbbAcBbaBCBbD
Ax=ad,B:=Ad,C:i=ca
is given. At last B b is replaced by D. Next, encoder
finishes analysis, because Nmaz(S) is 1. As a result,
we obtain
S:=aCbbAcDaBCD
Az=ad,B:=Ad,Cui=ca,Du=Bb.

B. Cutting of Input Symbol String

Several methods exist in order to code analyzed result

in sequential symbol stream. We show two of them.

At first, we show a simple way to send code table(we

express it as SCT.)

For every enrolled symbol, encoder sends two symbols

that are produced directly from enrolled symbol. After

the code table, encoder sends analyzed result like
adAdcaBbeaCbbAcDaBCDe,

where e is the alphabet(equivalents to non-terminal

symbol) that is introduced to indicate an end of se-

quence.

Next we show another way that does not send code
table (we express it as SED.) It does self-referencing
cutting, and sends only directions of enrollment instead
of code table.

For all of enrolled symbols, at the place of its first
appearance, encoder change back the enrolled symbol

to the symbol pair that is directly produced from the
enrolled symbol. At this time encoder puts symbol 2
(we call this enrollment direction) immediately before
the place. This symbol 2 indicates that decoder should
enroll symbol pair as a new symbol.

Encoder newly assigns enrolled symbol for output to
the symbol pair: Ordinal numbers of enrolled symbol
Jor output can conflict with enrolled symbols of ana-
lyzed result. After the first appearance, enrolled sym-
bols are replaced by assigned enrolled symbols for out-
put.

And encoder puts symbol 1 (we call it enrollment di-
Tection, too) immediately before all the symbol in S
except symbol 2. Enrollment direction 1 indicates that
decoder does not need to enroll.

In a former example, each enrolled symbols for output
mean

A'n=C:u=c a ,Bu=A:=

Cu:=B:=B'd,D:=D::
And output is

S:=1a21lclalblb21laldle

221B1d1b1alC1A]lDe.
In following bit stream generation, we call enrolled
symbol for output merely enrolled symbol.

3

ad
Cb .

C. Bit Stream Generation

We examined three methods: the method that takes
[log C] bits for code wards when current code table
size is C, the method([6][7](8] that makes code words
on the basis of complete binary tree(we express it as
CBT) and adaptive arithmetic coding[9]. We express
these generation methods as GLOG, GCBT and GAC,
respectively.

On GAC, we memorize frequency and accumulation
values in a CBT. A frequency value is memorized on a
leaf[9]. All Nodes except leafs memorize a total value
of the child node[9]. Accumulation value is provided by
adding each right brother’s value on a course following
from a leaf to the root (if right brother does not exist,
zero is added.) We prepared two binary trees; one for
enrollment direction and another for enrolled symbol.
We unified output by doing numeration using common
variable to affect output for both data (enrollment di-
rections and enrolled symbols.)

IT1. DEcopiNg
At the decoding side, according to enrollment direc-
tion, decoder can reproduce code table of enrolled sym-
bol for output, and can re-construct original symbol
string.

IV. ALGORITHM

‘We show fundamental encoding and decoding algo-
rithms with SED in Fig. 1.
We show meanings of major symbols in the following.

437

K: Number of alphabet. K is 256 for Byte data. A
symbol of ordinal number K is used to indicate an end
of sequence.

RepeatCheck: Judgment of exit analysis.
Enroll(T,ci,cl,cr): Enroll ¢l cr to code table T as en-
rolled symbol ci.

Replace(S,cl,cr,ci): Replace every cl cr in S by symbol
ci.

WriteDirection(c): Output ¢ (enrollment direction.)
WriteSymbol(c) : Output ¢ (enrolled symbol for out-

put.)

SymbolForOutput(c): Return enrolled symbol for out-
put assigned for enrolled symbol c.

Left(c), Right(c): Left and right side of symbol pair
that enrolled as enrolled symbol c.

Append(T,ci,co): Assign co (enrolled symbol for out-
put) to ci (enrolled symbol.)

ReadDirection: Input of enrollment direction.
ReadSymbol: Input of enrolled symbol for output.

procedure Encode;
begin
Initialize; Readfile(S); Cim:= K;
while RepeatCheck do begin
cl cr:=Pmax(S); Cin:=Cin + 1;
Enroll(T,Cin,cl,cr); Replace(S,cl,cr,Cin);
end;
Cout:= K;
for ci:=each element of S do Write(ci);
Write(K);
end;
function RepeatCheck;
begin return(Nmax(S) >= 2) end;
procedure Write(ci);
begin
if ci <= K then
WriteDirection(1); WriteSymbol(ci);
else if SymbolForQutput(ci)<>nil then
WriteDirection(1); WriteSymbol(SymbolForOutput(ci));
else
WriteDirection(2);
Write(Left(ci)); Write(Right(ci));
Cout:=Cout + 1; Append(T,ci,Cout);
endif;
end;

(a)

procedure Decode;
begin
Initialize; Cout:= K;
while Read <> K do ;
end;
function Read;
begin
t:=ReadDirection;
if t = 1 then
co:=ReadSymbol; WriteString(co);
else
cl:=Read; cr:=Read;
Cout:=Cout + 1; Enter(T,Cout,cl,cr); co:=Cout;
endif;
return(co);
end;
procedure WriteString(co);
begin
if co < K then
WriteAlphabet(co);
else if co > K then
WriteString(Left(co)); WriteString(Right(co));
endif;
end;
(b)

Fig. 1: Algorithms of Encoder and Decoder
(a)Encoding Algorithm (b)Decoding Algorithm

V. TiIME COMPLEXITY

To memorize numbers of appearance of symbol pairs,
we use hashing using two keys (symbol pair which con-
stitutes enrolled symbol.) If the size of hash table is big
enough, complexity of one access is 0o(1).

In order to find Pmaz(S), we prepare two-way lists for
each number of appearance. One two-way list connects
hash table’s buckets whose numbers of appearance are
the same.

On each replacement of symbol pair, encoder renews
numbers of appearance in hash table, and moves buck-
ets among the two-way lists.

Activities of one replacement operation is completed
in time O(1). The length of S decreases by 1 by replace-
ment operation of one place in S. Number of replace-
ment operation doesn’t exceed N. On these account,
the complexity of coding is O(N).

Complexity of decoding mainly depends on the deci-
sion of original symbols. It is O(IV).

When the Arithmetic Coding with CBT is used, com-
plexity of Arithmetic Coding is O(Rlog C), where R
denotes cutting number and C denotes number of sym-
bols including rolled symbol. It is equal to order of
output length except a code table. We do not know
orders of R and C yet. But, if output of coding does
not expand in extreme, output length is O(N).

V1. COMPARISON WITH SIMILAR METHODS

In the method of Nevill-Manning et al.[5], S begins
with null, and input symbols are added to S by one
symbol. On each adding, encoder finds a symbol pair
that appears twice in S and production rules made al-
ready. If such a symbol pair exists, encoder makes new
production rule, and replaces symbol pair by the new
non-terminal symbol. It does integration and abolition
of production rules if possible.

For the example mentioned above, next result is pro-
vided

S:=aAbBdACBDADD

Ax=ca,Bi=ba,Cui=dd,Du=2C.

This method can output after having analyzed whole
of compression object. It uses Arithmetic Coding for
bit stream generation.

Proposed method and their method sometimes give
the same analyzed result. For example, input string
treated in their paper{5] gives the same result.

In the method of Nagayama et al.[10], S begins with
null, and input symbols are added to S by one sym-
bol. On each adding, encoder looks for a symbol pair
that appear twice in only S. If such 2 symbol pair ex-
ists, encoder replaces second (and after second, too)
appearance by a symbol whose ordinal number corre-
sponds to the location of the first appearance in S.

This method does not send code table, and does not
need to send any direction for enrollment. This is the
adaptive method that can output while inputting. By
this method, next analyzed result is provided

498

Se:=acabbad2dd5676db
1::=ac,2::=ca,3::=ab,4::=bb,5::=ba,
gr=ad,7z=d2,8:=2d,9:=dd, ...

Numerals are used as non-terminal symbols here.
This method uses the encoder for positive integers[11]
for bit stream generation. It does not use appearance
frequency of output symbols.

We show the structure of result analyzed by proposed
method in the following

acab~badcaddbaaddcaaddb
vV Vv V/V YV
A, B) B) B) A) B}
c’ c’ c’

D’ b’

Proposed method always watches the whole S, and pro-
duction rules are settled in order of number of appear-
ance. Production rules only increase, and need not be
modified during the analysis.

Proposed method replaces most frequent symbol pair
first. In the present algorithm, this does not guarantee
of best results.

We examined 2 method which selects symbol pair for
replacement independent of the number of appearance.
But the performance of this method was approximately
10 percent worse than the proposed method.

VII. EXPERIMENTAL RESULT

We experimented for 14 files of Calgary Text Com-
pression Corpus (we express it as TCC) [9]. Unit of
measure of compression ratio is bits/char. Processing
time (second) of coding and decoding is 2 value mea-
sured on the workstation Fujitsu S-4/20H. They are
average values of 10 trials. When we do not mention
file name later on, compression ratio is the average
value of TCC 14 files, and processing time is the total

Tab. 1: Compression Performance for TCC 14 Files
by Proposed Method (SED+GAC)

file size | ratio encode decode
name (bytes) time time
bib 111261 | 2.175 2.5 0.3
book1 768771 | 2.629 15.4 2.5
book2 610856 | 2.265 11.8 1.7
geo 102400 | 4.454 2.7 0.4
news 377109 | 2.611 7.9 1.2
objl 21504 | 3.871 0.9 0.1
obj2 246814 | 2.577 5.2 0.8
paperl 53161 | 2.625 1.5 0.2
paper2 82199 | 2.573 2.0 0.3
pic 513216 | 0.802 6.5 0.6
proge 39611 | 2.632 1.3 0.2
progl 71646 | 1.847 1.7 0.2
progp 49379 | 1.758 1.4 0.2
trans 93695 | 1.584 2.2 0.3
average or total | 2.472 62.9 9.1

value of TCC 14 files.

Compression ratio of proposed method is good com-
pared with the methods of Nevill-Manning et al. and
Nagayama et al.

Tab. 2: Compression Ratio for TCC

method sending not sending
code table code table
Nevill-Manning et al.[5] | 3.13[3] 2.70(5]
Nagayama et al.[10] - 3.29(10]
Prop(SCT/SED+GLOG) 3.328 2.871
Prop(SCT/SED+GCBT) 3.254 2.806
Prop(SCT/SED+GAC) 3.018 2.472

Tab. 3: Compression Performance for TCC

method ratio encode decode
time time
LZ78[2](GLoG)* 4.279 76 43
LZW([12]13](cLOG) 3.610 8.6 4.5
compress[14] 3.632 . 4.5 3.0
gzip[15] 2.708 15.3 2.9
comp-2[16] 2.467 145.6 140.0
(with 4th order)

Block-sorting[17] 2.42817) - -

Prop(SED+GLOG) 2.871 58.6 34
Prop(SED+GCBT) 2.806 60.0 3.5
Prop(SED+GAC) 2.472 62.9 9.1
Prop(SED+GAC+NAT) | 2.466 63.3 9.1
Prop(SED+GAC+EST) | 2.465 62.9 9.0
Prop(SED+GAC 2.459 63.3 9.0

+NAT+EST)

*:Program was prepared by us.

NAT: Encoder and decoder enroll enrolled symbols for
output based on list structure instead of binary tree
(number of child is limited to best value.)

EST: RepeatCheck decides its return value by rough
estimation of effect of replacement.

VIII. CONCLUSIONS

We described a data compression method based on
concatenation of symbol pair. Encoder reads whole
input data at first and enrolls only necessary symbol
strings into code table. Encoder does not send a code
table to decoder. It sends only directions of enrollment
instead of code table. Processing time of encoding and
decoding is O(NV). Decoding is fast. Now we are trying
adaptive method that can output while inputting.

Themes for future study are theoretical analysis of
performance and modification of the proposed method
so that it includes concatenations of two symbols which
exist apart.

REFERENCES

[1] J.Ziv and A Lempel: “A Universal Algorithm for Se-
quential Data Compression,” IEEE Information The-
ory, 23, 3, pp.337-343, 1977.

499

[2] J.Ziv and A.Lempel: “Compression of Individual Se-
quences via Variable-rate Coding,” IEEE Information
Theory, 24, 5, pp.530-536, 1978.

H.Nakamura and S.Murashima: “The Data Compres-
sion based on Concatenation of Frequentative Code
neighbor,” The 14th Sympo. on Information The-
ory and Its Application, pp.701-704, Dec. 1991, in
Japanese.

B8l

(4] H.Nakamura and S.Murashima: “The Data Compres-
sion based on Concatenation of Neighboring Charac-
ters Which Emerge Repeatedly,” IEICE Trans. (A), in

Japanese, in print.

[5] C.G. Nevill-Manning, I.H. Witten and D.L. Maulsby:
“Compression by Induction of Hierarchical Gram-

mars,” Proc. of Data Comp. Conf., pp.244-253, 1994.

[6] H.Yokoo: “An Improved Ziv-Lempel coding Scheme for
Universal Source Coding,” IEICE Trans. (A), J68-A,

no.7, pp.644-671, Jul. 1985, in Japanese.

H.Yamamoto and K.Nakata: “On the Improvement of
Ziv-Lempel code and its Evaluation by Simulation-(I1},”
IEICE Tech. Report, CS84-135, pp.1-8, Jan. 1985, in
Japanese.

(71

[8] P.Tischer: “A Modified Lempel-Ziv-Welch Data Com-
pression Scheme,” Austrian Computer Science Commu-

nications, vol.9, no.1l, pp.262-272, 1987.

[9] T.C.Bell, J.G.Cleary and LH.Witten: Text Compres-

sion, Printice-Hall, 1990.

[10] Y.Nagayama, S.Ito and T.Hashimoto: “A Lossless
Data Compression Algorithm Based on Digram,” The
18th Sympo. on Information Theory and Its Applica-
tion, pp.573-576, Oct. 1995, in Japanese.

(11] H.Yamamoto and H.Ochi, “A New Asympotically Op-
timal Code for the Positive Integers,” J/EEE Trans.
on Inform. Theory, vol.IT-37, no.5, pp.1420-1429, sep.
1991.

[12] T.A.Welch: “Technique for High- performance Data
Compression,” Computer, 17, 6, pp.8-19, 1984.

[13] X1 Player’s Zun: “Data Compression Program using
Lempel-Ziv method,” I/0, 13, 5, 1988, in Japanese

(14] P.Jannesen, D.Mack, J.Orost, J.A.Woods,
K.Turkowski, S.Davies, J.McKie and S.W.Thomas:
Compress Version 4.2.3, Anonymous ftp gatekeeper.
dec.com: /pub/misc/ ncompress-4.2.3 -

(15] J.Gailly: Gzip Version 1.2.4, Anonymous ftp from
prep.ai.mit.edu: /pub/gnu/gzip-1.2.4.tar.gz

[16] Mark Nelson: “Arithmetic coding and statistical mod-
eling,” Dr. Dobbs Journal, Feb. 1991, Anonymous ftp

from ftp.web.ad.jp:
/pub/mirrors/Coast/msdos/ddjmag/ddj9102.zip

[17] M.Burrows and D.J.Wheeler: “A Block-sorting Loss-
less Data Compression Algorithm,” System Research
Center Research Report, 124, May 1994.

