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To the memory of Harry Nyquist and Vladimir Kotelnikov,
unsung geniuses

There is no such thing as a moral or an immoral book.
Books are well written, or badly written. That is all.

—Oscar Wilde



Preface

Everything is made of four elements: earth, water, air, and fire. (The ancient
Greeks).

The world is made of atoms. (Physics of the early 20th century).

Our world is made of three building blocks: the up quark, the down quark, and
the electron. (Physics of the 1960’s).

The standard model lists and describes the elementary constituents of the universe.
(Physics of the 1990’s).

The universe consists of normal matter, dark matter, and dark energy. The former
gives rise to the atoms that make up stars, planets, and all other visible objects in the
universe. The latter are still unknown. (Physics of the early 21st century).

The only reality is quantum fields. (Physics of the early 21st century).

The world? It consists of pure waves. (Joseph Fourier, around 1820).

Ripley’s Believe It or Not! was started in 1918 by Robert Ripley. It was initially a
newspaper panel describing unusual sports feats, but it has quickly grown to become a
commercial empire that deals in bizarre events and items so strange and unusual that
readers might question their existence. The book you are now reading is similar. It deals
with strange, hard to believe topics that are nevertheless true—are beautiful, elegant,
and pervasive—and a↵ect modern life in profound ways.

The main subject of this book is Fourier methods. Essentially, these methods take
objects, either one-dimensional (waves) or two-dimensional (images), and break them up
into elementary components that are pure sine waves. In principle, these methods can
also be applied to everyday familiar three-dimensional objects and break them up into
three-dimensional waves. Thus, in some sense, Fourier waves are the basic, elementary
constituents of our universe.

Here are two examples. The left part of Figure 1 shows how a step function, which
consists of straight segments and sharp corners, can be expanded into an infinite sum
of sine waves. The waves have di↵erent frequencies, amplitudes, and phases, but the
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surprising fact is that even though they are all smooth and none has corners, their infinite
sum is identical to the original step function and features the same straight segments
and 90� corners.

A note. The right-hand part of the figure shows how a finite sum of the Fourier
series of the step function features overshoots at the corners. A careful analysis of
this behavior (see, for example, reference [Gibbs 22]) indicates that the height of the
overshoot approaches a finite limit and is never zero, but its width shrinks to zero as
more terms are added. This is known as the Gibbs phenomenon and it exists in the
Fourier expansion of any function with corners.
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Figure 1: A Step Function and its Fourier Series.

The next example, Figure 2, is even more astonishing. Any grayscale image can be
broken up into a (possibly infinite) sum of two-dimensional sine waves. Those waves also
have di↵erent frequencies and amplitudes, but the surprising fact here is that while each
wave is regular and exhibits some symmetry, their sum (finite or infinite) is irregular
and non-symmetric. Section 4.7 lists and explains practical Mathematica code that
implements the discrete Fourier transform. This important mathematical transform is
finite. It can generate an arbitrary digital image by adding together a finite number of
two-dimensional sine waves, each of them regular, ending up with a digital (pixel based)
image that has no regular features. This result is explained on Page 97 under Seeing
and “seeing”.

= + + ...A1 A2 A3

Figure 2: A Grayscale Image and Some 2D Sine Waves.
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The Weirdness of the Infinite

How can an infinite sum di↵er so much from any of its (finite) parts? I would like to
argue that this is only one of the many strange, unexpected, and unexplained properties
of the infinite. We have to realize that the infinite is not always just an extension of
the finite, and that infinity is not a number; it should not be naively manipulated and
operated on as a number. This realization came about after more than a century of
thinking and research, and here are some examples of what can happen when we naively
deal with the infinite as a straight extension of the finite.

Consider the equation

xxx..
.

= 2.

This scary, infinite equation is easy to solve when we write it as xy = 2 and then realize
that y, being an infinite ladder of x’s, equals the entire left-hand side of the equation and
therefore also equals the right-hand side, which is 2. We can then rewrite the equation
as x2 = 2 whose solution is x =

p
2. We have just proved that

p
2
p

2
p

2..
.

= 2.

Now consider the similar equation

xxx..
.

= 4.

We can similarly rewrite it as xy = 4 or x4 = 4, with a solution x2 = 2 and x =
p

2. We
have now proved that

p
2
p

2
p

2..
.

= 4.

The conclusion is that either 2 = 4 or that we made a mistake somewhere. The
mistake was to treat infinity naively, without the respect it deserves. It turns out thatp

2 is a solution to the first equation, but the second equation has no solutions because
the solutions of equations of the form

xxx..
.

= constant,

exist only in certain real intervals that do not include 4.

There are various ways to prove that the infinite fraction

0.999 . . .
def= 0.99

equals 1. We now apply one of those proofs to the “opposite” huge number

. . . 9999.0 def= 99.0,
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Let’s denote this number by x (is it infinite). Step 1 is to compute

10x = . . . 99990.0.

In step 2 we add 9 to both sides, obtaining

10x + 9 = . . . 99990.0 + 9 = . . . 99999.0 = x,

or 10x+9 = x, a simple equation whose solution is x = �1. This clearly makes no sense
and is the result of treating the infinite carelessly when we multiplied both sides by 10
in step 1, simply by shifting x to the left.

The second subject of the book (and the topic of Chapter 5) is the unexpected,
magical, Shannon-Nyquist sampling theorem. A concept that started as an intuitive
theory in the 1920’s and 1930’s, and has developed since to become the basis of our
digital world. In essence, this theorem states that an analog signal such as a sound wave,
an electromagnetic wave, an electrical pulse, or an image (black-and-white, grayscale,
or color) can be broken up into individual points (it can be sampled or digitized) and
then fully reconstructed from those points, if the sampling rate is high enough. The
theorem also specifies the ideal rate of sampling and the reconstruction process. This
is surprising, because we feel that once a continuous object is broken up into points, its
values in regions between the points have been permanently lost, and cannot be fully
measured or computed from the known points.

Figure 3 is an example, showing 16 samples equally-spaced over a wave. The bottom
part of the figure shows only the samples, and it is obvious that the task of reconstructing
the original wave from these samples is not trivial. If the samples obey the theorem,
it would be possible to fully reconstruct this complicated wave from just 16 numbers!
It is as if 16 numbers somehow manage to incorporate the infinite information that, in
principle, is contained in the original, analog wave.

Figure 3: Equally-Spaced Samples over an Irregular Wave.
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Chapter 6 is a short survey of convolution. This confusing topic is included in
the book because it is related to the Fourier transform (both continuous and discrete).
The basic idea of convolution is explained in such a way that its confusing aspect (the
reverse direction of the analysing function) comes out naturally. The two-dimensional
convolution is then presented with examples, and the chapter closes with a short section
that illustrates the important convolution theorem.

I’m really hungry for surprises because each one makes us ever-so-slightly but
substantially smarter.

Tadashi Tokieda, tinyurl.com/ycyebzsp

Resources

Because of the importance of the topics discussed in this book, there are myriads of
books, articles, videos, and software applications that discuss, illuminate, and explain
them. Out of this crowd I would like to single out the following, which have inspired
and helped me much:

Goodman, Joseph W., Fourier Transforms Using Mathematica, SPIE, 2020. This
is a large Mathematica notebook that covers many Fourier related topics. It can be a
time saver and helper to anyone interested in implementing the concepts discussed here.
It can be purchased directly from spie.org, and if you buy the paper edition, you get a
pointer to the PDF version as well.

Smith, Alvy Ray, A Biography of the Pixel, The MIT Press: Leonardo series, 2021.
An unusual book that covers, in addition to Fourier concepts and the sampling theorem,
many topics related to pixels and digital media.

Zach Star, When the FBI had too many fingerprints in storage, is a 2020 video at
youtube.com/watch?v=fRjFwTbJfes

Session 3, Demonstration of 2D Fourier expansion, is 2015 video at
youtube.com/watch?v=a7TUIkn3qjY&t=1394s It uses Matlab to illustrate an imple-
mentation of the two-dimensional discrete Fourier transform, similar to what is discussed
in Section 4.7.

The many references at the end of the book are useful. They cover topics and details
that are outside the scope of this book but might still interest readers. Inside the text,
a reference has the format [name year], where name can be an author’s name or any
text related to the reference.

Target audience

This book is aimed toward those who feel comfortable with mathematical and en-
gineering concepts, who would like to know more about the above topics, and who are
familiar with the Mathematica software. The code snippets included in the book are
mostly in Mathematica and use only the most basic features of this software. They can
serve as basic building blocks on which readers can build more complex programs.
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Errors?

Any comments, suggestions, and corrections are welcome and should be emailed to
the author at dsalomon@csun.edu. However, if you notice something missing, consider
the following quote (from Mark Twain) “A successful book is not made of what is in it,
but of what is left out of it.”

The purpose of a preface is to make the reader want to read the
book, and to convince the reader that he or she will enjoy reading

it. It is also meant to provide some background information
about the book, and to set the stage for the main content

—Anonymous
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What I have to say about this book can be found inside the book.

— Albert Einstein



Introduction

Fourier’s Biography

The name Fourier is familiar to many in science and engineering, mainly because
of his important and original ideas related to waves, as well as his work on heat transfer
and on vibrations. Less known is his discovery of the greenhouse e↵ect. Figure Intro.1,
an engraving, probably from the 1820’s, shows him at the height of his career.

Figure Intro.1: Jean-Baptiste Joseph Fourier.
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Jean-Baptiste Joseph Fourier (born March 21, 1768, in Auxerre) spent his entire
life in France, living in times of great turmoil (the result of the 1789 revolution) in this
country. For many years he was either under the power of temporary, unpredictable,
revolutionary governments or subject to the whims of Napoleon, a powerful dictator.

Fourier became an early orphan of a large, poor family. After a time in an elemen-
tary school at Auxerre (subsidized by the good citizens of that town), he enrolled in the
École royale militaire, also in Auxerre, also helped by the same local citizens. It was
there that Fourier met his great love, mathematics. So great was his attachment to this
lady, that (so legend has it) he used to collect candle stubs so he could study late at
night.

However, the army has never benefitted from Fourier’s services. Being a mathemat-
ical geek as well as unhealthy, in 1787, after graduating from the École royale militaire,
he changed direction and entered an abbey in Auxerre, aiming for the priesthood. Teach-
ing mathematics in the abbey to novices, he initially ignored the historic events of July
14, 1789, while trying to publish early math works in the Academy of Science in Paris.
Nevertheless, the revolution and its consequences became impossible to ignore, and so,
three years later, Fourier left the Abbey before taking his final vows.

In 1793, Fourier has suddenly decided to become involved in politics. His debut
speech, in Auxerre in February of that year, described his plan to convince local youth
to serve in the new republican army. The town revolutionary politicians were duly
impressed and invited him to join the revolution. Considering that 1793 saw the height
of the famous reign of terror, even Fourier could see that it was unwise to refuse such
an invitation.

Encouraged by his easy success in Auxerre, Fourier traveled to Orléans in an attempt
to defend three local citizens wrongly accused. Unfortunately, the three were already
on the list of perceived enemies of Roberspierre, which is why defending them cost
Fourier his freedom. Being under arrest during the terror almost always led to the
guillotine, but luckily for future science, Fourier was saved because just 10 days after his
arrest, Robespierre, the leader of the terror, himself became its victim. After causing
the execution, mostly by guillotine, of more than 17,000 “enemies of the Revolution”
Robespierre was arrested, on July 27, 1794, and executed the very next day, thereby
indirectly saving Fourier’s life.

In addition to being free, Fourier was now a professor in Paris. First, in 1795, at
the École Normale and later, in 1797, at the École Centrale de Travaux, which quickly
became the new École Polytechnique. There Fourier succeeded Joseph-Louis Lagrange
and became a colleague of Monge and Laplace. It was at the polytechnique, where
he gained the reputation of a gifted teacher, that his name came to the attention of
Napoleon, thereby starting a whole new chapter in Fourier’s life.

In 1798, Napoleon, already an important general with impressive successes in Italy,
decided to drive the British out of India and establish France as a power there instead.
His first step was an expedition to Egypt, which was then under British influence. In
May 1798 he left at the head of a large expedition that included, in addition to 25,000
soldiers, also Joseph Fourier, one of 167 scientists (savants) specializing in a variety of
fields.

History relates that this campaign came to a bad end when admiral Nelson discov-
ered the French fleet at Aboukir and had it captured and destroyed. Napoleon himself
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managed to escape back to France in August 1799, but his army got trapped in Egypt
and the middle east and was greatly reduced in numbers. Two years later, Fourier also
managed to get back to France, where he resumed his career as a professor at the École
Polytechnique.

In 1801, Napoleon, then a self-appointed first consul of France, appointed him
prefect (provincial governor) of the department of Is̀ere in Grenoble. It was during
his tenure in Grenoble that Fourier succeeded in constructing an important highway
between Grenoble and Turin and in draining the swamps of Bourgoin. For these works,
as well as a book on the French Egyptian campaign, he was made a Baron.

Of more interest to us, it was during his tenure in Grenoble that Fourier developed
his interest in heat flow. In his 1807 memoir “On the propagation of heat in solid bodies”
he included the visionary sentence “Any function of a variable, whether continuous or
discontinuous, can be expanded in a series of sines of multiples of the variable.” This is
recognized today as the Fourier series, but at the time, several French mathematicians
objected to Fourier’s ideas. They correctly claimed that his ideas did not rest on a firm
mathematical foundation and may have been wrong. It was not until 1829, that Dirichlet,
in Germany, has provided rigorous proofs of Fourier’s ideas and techniques. Dirichlet’s
work has also provided the basis for the Fourier transform, which is so important to us.

Today, we use the term “signal” instead of Fourier’s function. Common signals are
sound, electrical voltage, and images (the latter are two-dimensional). Also, Fourier was
interested in heat flow, so his variable was distance. To us, a more important variable
is time. Thus, the statement above can be rewritten “Any sound can be broken down
into a series of sine waves of di↵erent frequencies.”

In 1822, Fourier became the permanent secretary of the French Academy of Sciences.
In 1830, his health problems (attacks of aneurysm of the heart) became serious and he
died on 4th May of that year.

The inner product

A vector is a mathematical entity that has two attributes, direction and magnitude.
In particular, a vector does not have a location in space. Vectors are defined for Euclidean
vector spaces, spaces whose elements are numbers (real or complex).

The dot product of two vectors v and u is the sum
P

n vi ui of the products of their
components. It is a number (a scalar, which is why the dot product is sometimes referred
to as a scalar product) and it also equals the product of the absolute values (magnitudes)
of the vectors and the cosine of the angle between them. Thus v ·u = |v| |u| cos ✓. This
property, together with the definition of the dot product, implies the following results:

Since cos 90� is zero, the dot product of perpendicular vectors is zero.

The dot product of a vector with itself is the sum of the squares of the vector’s
components.

When dealing with matrices, a vector can be a row or a column. In such a case,
one of the vectors may have to be transposed before they can be multiplied

The inner product is a generalization of the basic concept of the dot product and
is defined for vector spaces whose elements are not numeric vectors. Examples of such
spaces are polynomials, Riemann, and functions. The dot product is therefore a special
case of the inner product.
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In a vector space whose elements are functions, the inner product of two space
elements (two functions) is an integral of the form

hf(x), g(x)i def=
Z b

a
f(x) g(x) dx.

This is a definite integral, a number, and the integration limits a and b are chosen
depending on the specific case.

If the functions are complex, their inner product is defined as

hf(x), g(x)i def=
Z b

a
f(x) g(x) dx,

where g(x) is the complex conjugate of g(x).
Inner products are used as a measure of the “distance” between functions. Given

two functions f(x) and g(x), we first decide on the interval [a, b] that is of interest to
us, and then compute the inner product of the functions over that interval. The bigger
the result, the more similar the functions are at the given interval. If f(x) 6= g(x) but
hf(x), g(x)i = 0, we say that the functions are orthogonal.

Figure Intro.2 is an example. The simple sinusoid c1 (displayed in cyan) is compared
to a basic cosine (in orange). Four versions with frequencies 1, 2, 3, and 4 radians/sec
are shown. The inner products of the two functions are displayed in gray, and all that
remains to be done (see Figure Intro.3) is to determine the sum of the gray areas by
integration. The results of the four integrals are similarity measures (or similarity scores)
that indicate how close c1 is to the corresponding cosine.

Clear["Global‘*"];
c1[t_] := 0.5 Cos[2t+Pi/6] + 0.4 Cos[3t+Pi/3];
g0 = Plot[c1[t], {t, 0, 2 Pi}, PlotStyle -> Cyan];
Do[g1 = Plot[c1[t] Cos[fr*t], {t, 0, 2Pi}, PlotStyle->Gray, Filling->Axis];
g2 = Plot[Cos[fr*t], {t, 0, 2Pi}, PlotStyle -> Orange];
Print[Show[g0, g1, g2, AspectRatio -> 1/Pi, PlotRange -> All,
Ticks -> {{Pi/6, Pi, 2Pi}, Automatic}]], {fr, 1, 4}]
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Figure Intro.2: The Inner Product as a Similarity Measure.



Introduction 5

Fourier methods are based on inner product of functions as illustrated by the fol-
lowing example, where we try to analyze the simple sum (line 2 of Figure Intro.3)

c1(t) = 0.5 cos(2⇡2t + ⇡/6) + 0.4 cos(2⇡3t + ⇡/3).

The amplitude of this sum is
p

0.52 + 0.42 ⇡ 0.64. Since this is an example, we know in
advance the two terms that make up c1(t), so we start (line 4) with an inner product
fi(ph) of c1(t) with a cos(2⇡3t + ph) and we perform it for phases ph ranging from 0
to 2⇡ in steps of ⇡/12. The resulting 25 values are collected (line 5) in table tb and
are listed and plotted (lines 6,7 and the table in the figure). Notice that the integration
interval is [0, 2⇡], a full cycle. Both the list and the plot indicate that the biggest inner
product, 1.24799, is obtained for phase ph = ⇡/3, suggesting that a cosine function with
this phase, a frequency of 3 Hz, and an amplitude of 2 ⇥ 1.24799/(2⇡) = 0.4 is one of
building blocks of our c1(t).

To compute the amplitude, we need to multiply the biggest inner product by 2
(because of the existence of negative frequencies, see Pages 61 and 72) and divide by the
length 2⇡ of the integration interval.

The next test is an inner product of c1(t) with a cos(2⇡2t + ph), performed for the
same 25 values of ph. This time, the biggest inner product, 1.56755 (not shown in the
figure), is obtained for phase ph = ⇡/6, suggesting that a cosine function with this phase,
a frequency of 2 Hz, and an amplitude of 1.56755/⇡ = 0.5 is another major component
of c1(t).

More tests, with cos(2⇡ft + ph) and frequencies f of 0, 1, 4, and 5 Hz, yield
biggest inner products of 0.0682589 (at a phase of ⇡), 0.0718558 (at 2⇡/3), 0.0606261
(at 11⇡/6), and 0.0387279 (at 19⇡/12), respectively. These correspond to cosines with
small amplitudes, in the range of 0.01–0.02.

This simple example illustrates the intimate relation between Fourier analysis and
the inner product. The latter lies at the heart of the process of identifying the component
waves of periodic functions as well as transforming functions from the time domain to
the frequency domain.

⇧ Exercise Intro.1: Perform similar tests with simple periodic functions and show that
the inner product of two such functions that have di↵erent frequencies results in a graph
where the red dots are all on the x axis and the curve connecting them is the straight
horizontal line y = 0.

Euler’s Identity and Formula

It has been called “The most beautiful math expression,”

θ

sin(θ)

cos(θ)

1
“The most remarkable formula in Mathematics,” and has received
much other praise. This short expression, known as Euler’s iden-
tity, connects five fundamental mathematical constants 0, 1, ⇡, e,
and i, as well as addition, exponentiation, and equality. The iden-
tity is ei⇡ + 1 = 0 (the blue dot in the figure), which is a special
case of the more general formula eit = cos(t) + i sin(t). The gen-
eral formula provides a connection between complex exponents,
the trigonometric functions sin and cos, and circular motion. This is because the abso-
lute value of the complex number eit is

p
cos2 t + sin2 t = 1 for any t. The figure here
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1 ClearAll[c1, fi, tb, g1, g2]
2 c1[t_] := 0.5 Cos[2Pi 2t + Pi/6] + 0.4 Cos[2. Pi 3 t + Pi/3];
3 Plot[c1[t], {t, 0, 2 Pi}]
4 fi[ph_] := Integrate[c1[t] Cos[2Pi 3t + ph], {t, 0, 2 Pi}];
5 tb = Table[{ph, fi[ph]}, {ph, 0, 2 Pi, Pi/12}]
6 g1 = ListLinePlot[tb, InterpolationOrder -> 3];
7 g2 = ListPlot[tb, PlotStyle -> {Red, PointSize[0.015]}];
8 tickMarks = Table[i, {i, Pi/6, 2 Pi, Pi/3}];
9 Show[{g1, g2}, Ticks -> {tickMarks, Automatic}]

0, 0.673544 ⇡/12, 0.922918 ⇡/6, 1.1094 ⇡/4, 1.22027
⇡/3, 1.24799 (5⇡)/12, 1.19065 ⇡/2, 1.05218 (7⇡)/12, 0.842

(2⇡)/3, 0.574441 (3⇡)/4, 0.267735 (5⇡)/6,�0.0572174 (11⇡)/12,�0.37827
⇡,�0.673544 (13⇡)/12,�0.922918 (7⇡)/6,�1.1094 (5⇡)/4,�1.22027

(4⇡)/3,�1.24799 (17⇡)/12,�1.19065 (3⇡)/2,�1.05218 (19⇡)/12,�0.842
(5⇡)/3,�0.574441 (7⇡)/4,�0.267735 (11⇡)/6, 0.0572174 (23⇡)/12, 0.37827

2⇡, 0.673544

π

6

π

2

5 π

6

7 π

6

3 π

2

11 π

6

- 1.0

- 0.5

0.5

1.0

1 2 3 4 5 6

- 0.5

0.5

Figure Intro.3: Relation between Fourier Methods and Inner Products: An Example.

is an Argand diagram where the real and imaginary axes are labeled cos ✓ and sin ✓,
respectively. Any point on the radius-1 circle has coordinates a + ib, and the red point
in the figure has coordinates (cos ✓, sin ✓). Thus, Euler’s formula tells us that this sum
equals ei✓.

The absolute value of eik is 1, which is why this term corresponds to a point on the
radius-1 circle. Similarly the term Aeik corresponds to a point at distance A from the
center. This is important because the term Aeik appears often in Fourier theory, where
A and k correspond to the amplitude and phase of a sinusoid, respectively. Here are
some identities that derive from Euler’s formula

eix = cos(x) + i sin(x), e�ix = cos(x)� i sin(x),

cos(x) =
eix + e�ix

2
, sin(x) =

eix � e�ix

2i
.
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Here is a short and elegant derivation of Euler’s formula. We start with the infinite
sum representation of e, derived by the Taylor series:

e
taylor=

1X

k=0

1
k!

,

from which we immediately get

ex =
1X

k=0

xk

k!
.

Next, we include i in the exponential to end up with

eix =
1X

k=0

(ix)k

k!

= 1 +
ix

1!
+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+ . . .

= 1 +
ix

1!
� x2

2!
� ix3

3!
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Like a Shakespearean sonnet that captures the very essence of love, or a painting that
brings out the beauty of the human form that is far more than just skin deep, Euler’s
equation reaches down into the very depths of existence.

—Keith Devlin
The nth Roots of Unity

I assume that the reader is familiar with the basics of complex numbers, but the
roots of unity are discussed here because they play an important role in the FFT algo-
rithm (see Page 117).

The English word “unity” is typically defined in a dictionary as “the quality or
state of being made one (unification).” In mathematics, the nth root of unity is any
number z such that zn = 1 for a positive integer n. However, it is easier to understand
this concept by considering the equivalent definition which says: the nth roots of unity
are the roots of the polynomials of the form xn � 1. For n = 2, we factor the equation
x2 � 1 = 0 into (x + 1)(x � 1) = 0 to immediately obtain the two roots +1 and �1.
However, for larger n, things quickly get more complicated. For n = 4, the roots of
unity are the solutions to x4� 1 = 0, so we factor (x + 1)(x� 1)(x2 + 1) to immediately
obtain the three roots 1, �1, and i. A little thinking may convince the reader that �i
is also a solution because (�i)2 = i2 = �1.

It turns out that most roots of unity are complex numbers, and are governed by
the fundamental theorem of algebra. This important statement proves that every nth-
degree polynomial has exactly n complex roots (although some of them may have a zero
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imaginary part and may therefore be real). As a result, we conclude that the equation
xn = 1 has n complex solutions, which are nth roots of unity and also constitute ALL
the nth roots of unity. Figure Intro.4 shows examples of the roots for several values of
n.

ω1

ω2

ω7

ω3

ω4

ω 5

ω6=i

ω0=1eω      =ω       =8 -2πi/8

1i

-1

-1i

1
n=2

1i

-1

-1i

1n=4

1i

-1

-1i

1

n=3

Figure Intro.4: Several Roots of Unity.

The figure suggests that the roots are uniformly distributed over the unit circle
(even if they don’t form opposite pairs) and that the complex number 1 +0i is always a
root. The angle between consecutive roots on the circle is 2⇡/n, so we define ! = e2⇡i/n

and spread the roots over the circle at points that correspond to powers of !. Another
interesting algebraic property of the roots is that their sum is zero for any n.

⇧ Exercise Intro.2: What are the roots of unity for n = 8?

A good introduction is half the battle.

—Proverb



1
Fourier Methods

The terms “Fourier methods” and “Fourier analysis” refer to two di↵erent mathematical
techniques, namely Fourier series and the Fourier transform. The former is used to break
up a periodic function into a sum of sinusoids, while the latter is used to compute the
frequency components of an arbitrary, aperiodic function or of a sequence of numbers.
Knowing the frequency components of a function is very similar to breaking it up into
its component sinusoids, which is why the Fourier transform, Chapter 4, can be viewed
as the limit of the Fourier series of a function when its period approaches infinity.

1.1 Basic Terms

Among many other topics, mathematics deals with real functions. The domain and
range (input and output, respectively) of a function may be continuous or not, and they
often consist of infinitely many points. In engineering applications, which are practical
and are based on experiments and measurements, it is common to have as the domain
of a function a finite set of input values, often sampled from an infinite set of values.
Examples of such discrete sets of inputs are (1) a sound wave that is sampled (digitized)
and is converted to many audio samples, and (2) a painting that it digitized and is
converted to pixels. In the one-dimensional case, such a finite set of input values is
referred to as a time signal, while in the two-dimensional case it is a spatial signal. This
is why Fourier methods have two varieties, one for continuous functions and one for
discrete data. The following paragraphs o↵er more detail,

The technique of Fourier series is used to decompose an arbitrary periodic function
into a (usually infinite) linear combination of sinusoids with di↵erent frequencies and
amplitudes. This technique is based on the orthogonality of the trigonometric functions
sine and cosine, and is referred to as harmonic analysis. Intuitively, it is not obvious
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that any periodic function, especially one with straight segments and sharp corners, can
be decomposed in this way, which is why Fourier’s work comes as a surprise.

The Fourier transform is a mathematical operation that breaks a time-signal x(t)
into its constituent frequencies and ends up with a function X(!) that indicates the
strength of each frequency ! in the original signal. This operation transforms the original
signal, which can be periodic or aperiodic, from the time domain, where it looks familiar,
to the frequency domain, where we can examine the frequencies that constitute it and can
also edit them in order to improve the signal in various ways. The inverse operation also
exists. Given a function X(!), it is possible to compute its inverse Fourier transform
and end up with the corresponding time-signal x(t). These concepts and techniques
apply also to two-dimensional, spatial signals.

The Fourier series has to do with waves, so we start with a simple definition of this
important term.

A wave is a disturbance that travels through space and carries with it energy but not
matter. If the wave propagates through matter, it undulates or disturbs that matter; the
wave moves it back and forth, periodically and temporarily. If the disturbance created
by the wave undulates in the direction of the wave, as in sound waves through air or
water, then the wave is longitudinal. If the disturbance is perpendicular to the direction
of the wave, as in ocean waves or electromagnetic waves, the wave is transverse.

The case where an ocean wave crashes on the beach is di↵erent and it does involve
moving matter, but as long as a wave moves in the sea, the water is only disturbed
vertically and in a periodic fashion.

Electromagnetic waves are transverse. What undulates in those waves is the electric
and magnetic fields it carries and they vary in directions that are perpendicular to the
direction of the wave. When we are interested in the energy carried by an electromagnetic
wave, it is best to consider the wave a stream of photons, massless particles that move
at the speed of light and carry both energy and momentum.

We also need the concept of a mathematical function. This is simply a rule of
calculation. Given a quantity x, the function y = f(x) tells how to obtain quantity y
from x by means of calculations. A simple example is y = x2 + 1. Given a number x,
square it and add 1 to obtain the result y. This can be done for any number x, and can
therefore be illustrated graphically as a two-dimensional curve where each point has the
two coordinates (x, x2 + 1). Clearly, there can be infinitely many functions and curves,
with all kinds of shapes, which is why the Fourier series comes as a surprise. It says
that any function can be expressed as the sum of the trigonometric functions sine and
cosine; a very unintuitive claim.

A mathematical function may be simple or complicated, continuous or discontinu-
ous. It may be defined over a narrow or a wide interval of x values (its domain), but
in practice, we can obtain, measure, or compute the values of a function in only a finite
number of x values. Thus, functions used in engineering are often discrete; they are
known only at a finite number of points and require the discrete version of the Fourier
transform, Section 4.4, to compute their frequency components.
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L’étude profonde de la nature est la source la plus féconde de découvertes
mathématiques.
The deep study of nature is the most fertile source of mathematical dis-
coveries.

—Joseph Fourier.

The Trigonometric Sine and Cosine Functions. The term sine comes from
the Latin sinus, meaning bay, but historians tell us that it came to Latin from Arabic,
which in turn had inherited it from Sanskrit.

The well-known sine and cosine functions are the building blocks of the Fourier
series, but they originate in trigonometry (the study of triangles and especially right-
angled, orthogonal triangles). Ancient mathematicians and astronomers have long ago
noted that the ratio of the lengths of two sides of a right-angled triangle depends only
on one acute angle of the triangle. Figure 1.1 shows how the two important sin and
cos functions are defined geometrically as ratios of triangle sides divided by the length
of the hypotenuse. In the special case where the hypotenuse equals 1, those functions
equal the lengths of the two right-angled triangle sides. As the angle ✓ varies from 0 to
360� (or 2⇡ radians), the graph of the sine function becomes the familiar wave, and that
of the cosine function is identical in shape but lags 90� behind.

θ sin(θ)

sin(x)

cos(θ)
x

1
2

1
2

1
4

−

1

1

−1

0
π 1

2
π 3

4
π 5

4
π 7

4
π3

2
ππ 2π

Figure 1.1: Definitions of the sin and cos Functions.

Thus, sin(0) = 0, sin(⇡) = 1, and sin(2⇡) = 0, which implies that the function
sin(2⇡t) goes through 360� when t varies from 0 to 1. Moreover, the similar function
sin(2⇡kt) goes through this range k times while t varies from 0 to 1. The parameter k
can therefore be considered the frequency of the sin (or cos) function. In engineering
applications, the parameter t often stands for time, in which case the units of the fre-
quency k are Hertz (Hz, the number of periods of the function per second) and the units
of t are seconds.

The well-known Euler’s formula eit = cos(t)+i sin(t) provides a connection between
complex exponents, the trigonometric functions sin and cos, and circular motion. This
is because the absolute value of the complex number eit is

q
cos2(t) + sin2(t) = 1 for

any t.
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⇧ Exercise 1.1: Why do we use the trigonometric functions sine and cosine to represent
waves and not the more familiar (and perfectly symmetric) circle?

⇧ Exercise 1.2: What is the respiratory rate of an adult expressed in Hz?

It is true that M. Fourier had the opinion that
the principal end of mathematics was the public

utility and the explanation of natural phenomena.

—Carl Gustav Jacob Jacobi.



2
Sine Waves

Fourier methods are concerned with the relation between functions (periodic and ape-
riodic) and sine waves, which is why this chapter discusses those waves, in dimensions
from one to three.

2.1 One-Dimensional Sine Waves

We know how to break up a vector into its components, so it is natural to ask how to
break up a complex wave into components that are simple waves. Exercise 1.1 explains
why we use sinusoids and not circles in Fourier series and Fourier transform, so we start
with the one-dimensional sine wave. In engineering applications, many signals of interest
vary with time, which is why the basic form of a sine wave y(t) that varies with the time
t is often written as

y(t) = A sin(2⇡ft + �) = A sin(!t + �),

where:

The amplitude A is the maximum distance of y(t) from zero. More accurately,
the amplitude is half the distance between the peak and trough of the wave, because
a sinusoid does not have to be centered vertically about the x-axis and can be shifted
up or down. Some texts define the amplitude A(t) of a signal y(t) as its instantaneous
height y(t) at time t. In such a case, the maximum amplitude is referred to as peak
amplitude.

The frequency f is the number of cycles of y(t) per time unit. It is often measured
in Hertz (Hz), but can also be expressed in radians, where 2⇡ radians equal a complete
cycle.
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The angular frequency ! = 2⇡f is the argument of f , measured in radians per time
unit.

The phase � describes how much the entire wave is shifted horizontally by �/!
time units. We can think of the phase as where in its cycle the oscillation is at t = 0, or
as the number that describes the stage of the oscillation at the origin t = 0. (Much like
how the moon’s phases tell us where the moon is in its cycle.) Thus, a phase of 180� (or
⇡ radians) is equivalent to a reflection of the sine wave about a horizontal mirror.

Two sine waves with slightly di↵erent phases look like shifted versions of each other,
which is why we tend to use terms such as positive phase or negative phase. However,
a small positive phase is indistinguishable from a large negative phase (their absolute
values always add up to ⇡/2), which is why the correct units of a phase are circular. A
phase of 90� (a quarter of a circle in a clockwise direction) is the same as that of 270�
(three quarters of a circle in the opposite direction). In fact, the cosine is a sine wave
with a 90� = ⇡/2 phase.

Sine and cosine are orthogonal as demonstrated by Equation (3.2). Two functions
are orthogonal over an interval [a, b] if their inner product (fi, fj), defined as the integralR b

a fi(x)fj(x)dx, is zero for i 6= j.
Sine waves are often real-valued functions, but sinusoids in general can also be

complex. Much as we take a real number x and make it imaginary by multiplying it
by i =

p
�1, we can take a real-valued sin(k) and multiply it to become the complex

sine function i sin(k). Also, in the same way that a complex number consists of two real
numbers, a complex sine wave consists of two real-valued sines with the same ampli-
tude and frequency and with a certain phase di↵erence. Experience suggests that the
best phase di↵erence is 90� or ⇡/2, because this produces a complex sine wave whose
components are the familiar real-valued sine and cosine. Thus, we end up with the sum
A cos(k) + iA sin(k), which according to Euler’s formula, equals Aeik. For the purposes
of Fourier series and transforms, we normally replace k with 2⇡ft. See also the discus-
sion of complex waves on Page 49. Because of its two real components, the best way to
plot a complex sine curve (Figure 2.1) is as a three-dimensional curve, where the three
dimensions are (1, 2) the real and imaginary parts of the curve, and (3) the time.

We start by looking at the sum of several sinusoids, and then trying to break this
sum into its basic components. Part 1 of Figure 2.2 is the sum of three sine waves with
frequencies 1, 2, and 4 Hz, where the last one has a phase of ⇡/4. The Mathematica
code for this figure is also listed. Notice that the specification 72*5 indicates 5-inch-wide
plots.

The sum of the three sine waves is not a sine wave but it is periodic, as indicated
by the red dot in the figure. This suggests the following approach to analyzing and
transforming a complex wave structure. Given a wave form (a periodic function) w, it
can perhaps be decomposed into basic components Cf that are sinusoids with increasing
frequencies f and with appropriate amplitudes and phases, cleverly chosen so as to make
the sum identical, or very close, to the original w. If w is very di↵erent from a smooth
wave, if it has straight segments and sharp corners, the sum of the Cf ’s may have to be
infinite, but it may converge to w in the limit.

Part 2 of Figure 2.2, together with its Mathematica code, Figure 2.3, illustrate such
a process. Part d shows our target curve in blue with a yellow sine wave of frequency 1
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amp = 5; f = 1; phs = 0;
csin[t_] := amp Exp[I (-2 Pi f t) + phs];
ParametricPlot3D[{{t, Re[csin[t]], Im[csin[t]] }, {t, 0, 0 }},
{t, 0, 20}, PlotStyle -> {Green, Red, Thickness[0.02]}]

Figure 2.1: A Complex Sine Curve and Mathematica Code

as the start of the reconstruction. A blue sine wave of frequency 2, similar to that of
part b, is added to the frequency-1 curve to obtain the approximation shown in yellow in
part f. This is already close to our goal, part d, so we try to add a sine wave of frequency
3 (part g), to obtain part h. The wave of part h seems a better approximation, so we
try to add a sine wave of frequency 4 (part i, similar to part c and with the same phase)
to obtain an even closer approximation, but the resulting part j is a disappointment. It
gets closer to part d in some places but moves away from it in other places. We know
that our target wave, part d, was obtained by adding sine waves of frequencies 1, 2, and
4, so our conclusion is obvious; the sine wave of frequency 3 (part g), is unnecessary.
The final lesson from this simple example is that given a periodic wave w, there is a
chance that a sum of sine waves Cf of increasing frequencies f may converge to w, but
we have to choose the amplitudes and phases of those waves carefully, and some of the
Cf waves should be skipped by setting their amplitudes to zero.

Encouraged by the above example, we try to generalize it to any periodic functions.
Given a periodic function f(t) with period 2⇡, we first try to write it as the infinite sum
of sine waves, each with its own amplitude and phase, and with increasing frequencies

f(t) =
1X

n=0

bn sin(nt + pn).

Deriving the expressions of the amplitudes bn, however, is easier than deriving those of
the phases pn, so we try instead an infinite sum of pairs of sine and cosine, each with
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Clear;(*Add 1D sine waves*)
SetOptions[Plot, BaseStyle -> {FontFamily -> "cmr10", FontSize -> 10}];
pp = Plot[Sin[t], {t, 0, 2.5 Pi}, AspectRatio -> 32/162, ImageSize -> 72*5]
ImageDimensions[pp]
ImageAspectRatio[pp]
Plot[1.5 Sin[2 t], {t, 0, 2.5 Pi}, AspectRatio -> 47/162, ImageSize -> 72*5]
Plot[-1.2 Sin[4t+Pi/4], {t, 0, 2.5 Pi}, AspectRatio->32/162, ImageSize->72*5]
Plot[Sin[t]+1.5 Sin[2 t]-1.2 Sin[4 t+Pi/4], {t, 0, 2.5 Pi}, ImageSize->72*5]
(*Export["/Users/davidsalomon/Desktop/five.pdf",%]*)

Figure 2.2: Part 1, Adding Sine Waves.
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Figure 2.2: Part 2, Reconstructing a Wave From Sinusoids.
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Clear; (* Reconstruct 1D sine waves *)
SetOptions[Plot,
BaseStyle -> {FontFamily -> "Times New Roman", FontSize -> 10}];
pp = Plot[{Sin[t] + 1.5 Sin[2 t] - 1.2 Sin[4 t + Pi/4], Sin[t]}, {t, 0, 2 Pi}]
ImageDimensions[pp]
ImageAspectRatio[pp]
Plot[1.5 Sin[2 t], {t, 0, 2 Pi}, AspectRatio -> 47/162, ImageSize -> 72*2.25]
Plot[{Sin[t] + 1.5 Sin[2 t] - 1.2 Sin[4 t + Pi/4],
Sin[t] + 1.5 Sin[2 t]}, {t, 0, 2 Pi}, ImageSize -> 72*2.25]

Plot[1.2 Sin[3 t], {t, 0, 2 Pi}, AspectRatio -> 32/162, ImageSize -> 72*2.25]
Plot[{Sin[t] + 1.5 Sin[2 t] - 1.2 Sin[4 t + Pi/4],
Sin[t] + 1.5 Sin[2 t] + 1.2 Sin[3 t]}, {t, 0, 2 Pi}, ImageSize -> 72*2.25]

Plot[-1.2 Sin[4t+Pi/4], {t, 0, 2 Pi}, AspectRatio -> 32/162, ImageSize->72*2.25]
Plot[{Sin[t] + 1.5 Sin[2 t] - 1.2 Sin[4 t + Pi/4],
Sin[t] + 1.5 Sin[2 t] + 1.2 Sin[3 t] - 1.2 Sin[4 t + Pi/4]},
{t, 0, 2 Pi}, ImageSize -> 72*2.25]
Export["/Users/davidsalomon/Desktop/five.pdf", %]

Figure 2.3: Mathematica Code for Figure 2.2, part 2.

its own amplitude and with zero phase

1X

n=0

[an cos(nt) + bn sin(nt)]

=
1X

n=0

an cos(nt) +
1X

n=0

bn sin(nt)

= a0 +
1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt). (2.1)

(Notice that the first term of Equation (2.1), for n = 0, is simply a0, which is why it
makes sense to write this equation as a0 plus the two sums that now start from n = 1.)

The term a0 is sometimes referred to as the DC component of the Fourier series.
This technique of eliminating the phases is based on the fact that a sum of the form

a cos(t)+ b sin(t) is a sinusoid with frequency t and both an amplitude and a phase that
are determined by a and b. It is easy to see from Figure 1.1 that the amplitude of the
sum is

p
a2 + b2 and its phase is arctan(b/a). Notice that there are always two phases,

often located on opposite sides of t = 0, and their absolute values add up to ⇡/2.
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2.2 Two-Dimensional Sine Waves

Section 2.1 introduces one-dimensional sine waves and their sums. This is followed
by a discussion of the one-dimensional Fourier series. Similarly, before we discuss the
two-dimensional discrete Fourier transform, this section illustrates and explains two-
dimensional sine waves and their sums. Figure 2.4 displays several such waves and lists
the Mathematica code used to compute them. The figure makes clear that periodicity
exists also in two dimensions, where it is a vector quantity because it has both magnitude
and direction.

Graphically, a two-dimensional sine wave resembles an unrolled cylinder or a corru-
gated plastic/metal sheet whose four edges (either two or all four) are one-dimensional
sine waves each. Mathematically, such a wave is a function of two parameters k and l
that determine its frequency and are known as the Miller indices. They are borrowed
from a notation system in crystallography for lattice planes in crystal (Bravais) lattices.

yk,l(x, y) = A sin
�
2⇡(kx + ly) + �

�
, (2.2)

These waves are referred to in this document as two-dimensional because (1) each de-
pends on two frequency parameters, and (2) they are used in the two-dimensional Fourier
transform. However, mathematically they should be termed three-dimensional because
they are surfaces and each point in them has the three coordinates (x, y, sin(kx + ly)).

The three waves at the top row of Figure 2.4 correspond to parameter pairs (0, 1),
(0, 2), and (�1, 5). The first is therefore flat in the x direction and features one cycle
in the interval [0, 2⇡] in the y direction. The second wave is also flat in x, but has two
cycles in the same interval in the y direction. The third wave features one cycle in the x
direction, but going in the “opposite” direction, and five cycles in the y direction. The
waves of the second row are similar combinations of the parameters, but the waves on
the bottom row are each a sum of two two-dimensional sine waves. These are produced
by function d2sinep which has four frequency parameters and their shapes are much
more intricate.

2.3 Three-Dimensional Sine Waves

The one-dimensional Fourier transform (FT) is used to analyze one-dimensional time
series. Such a series can be graphed as a curve, which is why the one-dimensional FT
employs one-dimensional sine waves, i.e., curves, as analyzing functions. Similarly, the
two-dimensional FT deals with two-dimensional objects, images, which is why it employs
two-dimensional sine waves, which are images, as analyzing functions. Finally, three-
dimensional Fourier transforms are used to analyze three-dimensional objects, solids,
which why the three-dimensional sine waves are also solids.

Three-dimensional Fourier transforms are used in fields such as 3D microscopy,
X-ray crystallography, and 3D NMR.

The equation of a three-dimensional sine wave is an extension of the two-dimensional
case, Equation (2.2)

yh,k,l(x, y, z) = A sin
�
2⇡(hx + ky + lz) + �

�
, (2.3)
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Clear["Global‘*"]
phs = 0;
d2sine[l_, k_] := DensityPlot[Sin[l x + k y + phs], {x, 0, 2 Pi}, {y, 0, 2 Pi},

ColorFunction -> "GrayTones"];
d2sinep[l_, k_, m_, n_] := DensityPlot[Sin[l x + k y] + Sin[m x + n y],
{x, 0, 2 Pi}, {y, 0, 2 Pi}, ColorFunction -> "GrayTones"];
GraphicsGrid[
{{d2sine[0, 1], d2sine[0, 2], d2sine[-1, 5]},
{d2sine[1, 1], d2sine[2, 1], d2sine[3, -2]},
{d2sinep[0, 1, 1, 1], d2sinep[0, 3, 2, 1], d2sinep[-1, 5, 3, -2]}}

]

Figure 2.4: Two-Dimensional Sine Waves.
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Figure 2.5 illustrates two examples. Part (a) of the figure shows a wave propagating
in the y direction. Four cuts through this wave are shown, with values (from bottom
to top) of 0, 1, 0, and �1. These are four of infinitely many cuts whose values vary
continuously according to the sine wave. As we move in the y direction from bottom to
top, the cuts perpendicular to our direction (i.e., in the xz plane) have values that vary
with the wave. The entire wave is solid and is not not limited to the square box shown
in the figure.

Part (b) similarly shows a 3D sine wave moving in the xy plane. Each cut shown
has a value that depends on the mixture of sine waves in the x and y directions.
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Figure 2.5: 3D Sine Waves.
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Part (c) of the figure is an example of a discrete 3D cube where each of the 7⇥7⇥7 =
343 small cubes is identified by three Miller indices h, k, and l, which vary from �3
to 3. When a Fourier transform is performed on a discrete 3D set of data values, each
small cube receives an amplitude Ahkl and a phase Phkl according to its position in the
cube. This is similar to the 2D Fourier transform, whose results become two 2D arrays
of amplitude and phase, similar to the ones listed in Figure 4.32. The Miller indices
correspond to the frequencies of the transform components, and each component can
therefore be fully constructed by its indices (the frequency), amplitude, and phase. The
sum of all the 3D transform components (each a 3D sine wave) fully reconstructs the
original 3D data.

Notice that the wave of Equation (2.3) is di↵erent from the complex sine wave of
Figure 2.1 because the latter is a two–dimensional wave plotted over time, while the
former describes a solid object whose color or grayscale varies periodically as a sine in a
certain direction.

If you saw a sine wave, would you wave back?

—Steven Wright (paraphrased)



3
Fourier Series

The vast field of Fourier methods or Fourier analysis is divided into two main areas,
Fourier series and the Fourier transform. The former is concerned with breaking up a
periodic function into basic components which are pure sine and cosine waves, as shown
in Equation (2.1), duplicated here. The latter transforms an aperiodic function, often
a function of time, into its frequency components which indicate the strength of each
frequency in the original function.

1X

n=0

[an cos(nt) + bn sin(nt)] =
1X

n=0

an cos(nt) +
1X

n=0

bn sin(nt)

= a0 +
1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt). (2.1)

Equation (2.1) suggests an approach to Fourier series, and the rest of this chapter
discusses ways to derive the coe�cients of this equation. Two methods are proposed,
that end up with the same expressions for the coe�cients. The chapter also inlcudes
examples of Fourier series.

3.1 The Role of Complex Numbers

The continuous Fourier series, Equation (3.1), is a sum of sines and cosines. As explained
in Section 2.1 and Page 18, such a sum eliminates the need to compute phases and
requires only the amplitudes of the individual series components. In practice, however,
engineers prefer a di↵erent representation for both the continuous and discrete versions
of the Fourier series, one that uses complex numbers. The following are the main reasons
for this approach:
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A single complex number can express both an amplitude and a phase.

If we compute the Fourier series of a function with only real-valued sines or real-
valued cosines, the result would depend on the phase o↵set between the real-valued
waves and the function. If the function is shifted by even a small amount, the series
would produce a di↵erent set of sinusoids.

For the one-dimensional continuous Fourier series, the complex-number representa-
tion is the sum

x(t) =
1X

k=�1
Ckeik!0t,

where the coe�cients Ck are given by

Ck =

(
1
T0

R
T0

x(t)dt, k = 0
1
T0

R
T0

x(t)e�ik!0tdt, k 6= 0.

The subscript T0 of the integral means an integration interval of one period. It can go
from the start to the end of a period or from any point in a period to the corresponding
point in the next period.

This sum (see also Equation (4.2) for the discrete case) converts a periodic function
x(t) of time to a set of sinusoids of higher and higher frequencies. The terms time do-
main and frequency domain are also commonly used. The symbol ! (omega) represents
frequency. If we write, for example, sin(3), the frequency is three radians per second.
However, it is common to use cycles per second, also denoted by Hz (Hertz) as the unit
of frequency, which is why we use terms such as sin(2⇡!) or sin(2⇡!t). They indicate
sine waves of frequencies ! Hz or !t Hz, because there are 2⇡ radians in a full circle.

Since we are talking about complex numbers, the symbol i stands for
p
�1, although

electrical engineers often use j instead, because for them i also stands for electrical
current.

Equation (4.1), duplicated here, makes use of a complex exponent because the
derivative of this function is simple. The derivative of e�i!t with respect to ! is
�i t e�i!t. In order to understand the relation of (4.1) to Equation (3.1), we ob-
serve that the well-known Euler’s formula satisfies e�i!t = cos(�!t) + i sin(�!t) =
cos(!t)� i sin(!t).

F (!) =
Z 1

�1
f(t)e�i!tdt. (4.1)

Computer Generated Text

A Fourier series is a mathematical way of expressing a periodic function as a sum
of sines and cosines. It can be used to represent any periodic function as a sum of
harmonically-related sinusoids.

The Fourier series of a function f(x) defined on the interval [�L,L] is given by:

f(x) = a0/2 +
1X

n=1

[an cos(n⇡/L) + bn sin(n⇡/L)].
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where a0, an, and bn are the Fourier coe�cients of the function. The a0 term is
called the “DC component” of the Fourier series, and the terms with n > 0 are called
the “AC components.”

The Fourier series can be used to represent a wide variety of functions, including
functions that are not smooth or that have discontinuities. It is often used in signal pro-
cessing, image processing, and other fields where periodic functions need to be analyzed
or synthesized.

Generated by ChatGPT, 22 Dec 2022.

3.2 Deriving the Fourier Coe�cients, 1 of 2

Based on the discussion above, we start by trying to represent a given periodic function
f(t) as a three-part sum, commonly referred to as the continuous Fourier series, of the
form

f(t) =
a0

2
+

1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt), (3.1)

and we try to derive expressions for the coe�cients a0, an, and bn such that the sum
would converge to f(t). We start by considering the concept of orthogonal functions
and evaluating several integrals that are relevant to this task.

A set of functions fi(x) is said to be orthogonal over an interval [a, b] if any two
distinct functions in the set are orthogonal to each other over that interval. Those
familiar with vectors know that two vectors are orthogonal if their inner product is zero.
Similarly, two functions are orthogonal if their inner product, defined as the integral

(fi, fj) =
Z b

a
fi(x)fj(x)dx

is zero for any i 6= j. (Angle brackets hfi, fji are often also used.)
As the first step in deriving the Fourier coe�cients, we notice that the set of func-

tions {1, cos(nx), sin(nx)} for positive integers n is orthogonal on [0, 2⇡]. We examine
the following cases, which are computed with the help of various trigonometric identities.

Z 2⇡

0
sin(mt) sin(nt)dt =

n 0 m 6= n
⇡ m = n

,

Z 2⇡

0
cos(mt) cos(nt)dt =

⇢
0 m 6= n
⇡ m = n, , (3.2)

Z 2⇡

0
cos(mt) sin(nt)dt = 0.

Figure 3.1 illustrates the six basic orthogonality relations of the sine and cosine. It is
easy to see intuitively that in four of the six cases, the areas over and under the curves
cancel each other out and add up to zero.
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Plot[Sin[t] Sin[t], {t, 0, 2 Pi}]

Plot[Cos[t] Cos[t], {t, 0, 2 Pi}]

Plot[Sin[t] Cos[t], {t, 0, 2 Pi}] Plot[Sin[2t] Cos[t], {t, 0, 2 Pi}]

Plot[Sin[2t] Sin[t], {t, 0, 2 Pi}]

Plot[Cos[2t] Cos[t], {t, 0, 2 Pi}]

Figure 3.1: Orthogonality of the sin and cos Functions.

In the next step, we use the results above to compute the three integrals

Z 2⇡

0
f(t) sin(mt)dt

=
Z 2⇡

0

"
a0

2
+

1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt)

#

sin(mt)dt

=
Z 2⇡

0

"

0 + 0 +
1X

n=1

bn sin(nt)

#

sin(mt)dt

=bm⇡.

Which yields the expressions for the bn coe�cients

bn =
1
⇡

Z 2⇡

0
f(t) sin(nt)dt.

The an coe�cients are similarly obtained by

Z 2⇡

0
f(t) cos(mt)dt

=
Z 2⇡

0

"
a0

2
+

1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt)

#

cos(mt)dt

=
Z 2⇡

0

"

0 +
1X

n=1

an cos(nt) + 0

#

cos(mt)dt

=am⇡.
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Which yields the expressions for the an coe�cients

an =
1
⇡

Z 2⇡

0
f(t) cos(nt)dt.

Finally, the a0 coe�cient is similarly derived

Z 2⇡

0
f(t)1dt

=
Z 2⇡

0

"
a0

2
+

1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt)

#

1dt

=
Z 2⇡

0

ha0

2
+ 0 + 0

i
1dt

=a0⇡.

Which yields the expressions for a0

a0 =
1
⇡

Z 2⇡

0
f(t)dt.

Note. We obtained this particular result because we started with a0/2 in our original
sum instead of just a0. Had we started with a0 in the original sum, the expression above
would have become

a0 =
1
2⇡

Z 2⇡

0
f(t)dt,

which is the average of f(t), its integral divided by the length of its period. This value
is also used in the second example below.

We can now write Equation (3.1) explicitly

f(t) =
a0

2
+

1X

n=1

an cos(nt) +
1X

n=1

bn sin(nt)

=
1
2⇡

Z 2⇡

0
f(t)dt +

1
⇡

1X

n=1

Z 2⇡

0
f(t) cos(nt)dt cos(nt)

+
1
⇡

1X

n=1

Z 2⇡

0
f(t) sin(nt)dt sin(nt). (3.3)

Notice that the an and bn coe�cients have similar forms and each is a Fourier
transform, as shown in Chapter 4. Each coe�cient is an integral of the product of an
analyzed signal f(t) and an analyzing function which is a sinusoid. Such an integral is
a continuous form of an inner product.
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3.3 Deriving the Fourier Coe�cients, 2 of 2

Those who were put o↵ by the complex-looking integrals of the previous section may
like the approach discussed here. The Fourier coe�cients are derived here by borrowing
several concepts from the field of linear algebra and applying them to our problem. The
coe�cients are derived in a process similar to decomposing a vector in an orthonormal
basis. In essence, we try to manipulate the sine and cosine functions similar to what we
do with vectors. We notice that these functions are 2⇡-periodic, are smooth, and are
defined over the field R of real numbers. We also notice that the 2⇡-periodic functions
are closed under addition and scalar multiplication. Adding such functions produces a
2⇡-periodic function, as also does a linear combination such as x sin(t) + y cos(t).

In fact, the value 2⇡ isn’t special. All periodic functions with the same period T
are similarly closed, and this observation suggests a connection between functions and
vectors. Vectors over the real field Rn (i.e., vectors with n components that are real
numbers) are also closed under addition and scalar multiplication and form a vector
space. An important feature of a vector space is the existence of bases. A basis of such
a space is a set of vectors that are linearly independent and also span the entire space.
Here is what these terms mean:

In a set of linearly independent (orthogonal) vectors, any inner product (vi,vj) is
zero for i 6= j.

Any vector v in the space can be represented uniquely (in one way only) as a linear
combination

P
aibi, where each of of the basis vectors bi is multiplied by a weight ai

which is a real number.
The common base of R3 (the space of real three-dimensional vectors) is the set e1 =

(1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). These vectors are orthonormal, i.e., in addition
to being orthogonal they also have unit lengths. Thus, they form an orthonormal basis
where any vector (a, b, c) can be represented uniquely as the linear combination a e1 +
b e2 + c e3.

Once the concepts of a vector space and its bases are grasped, it is easy to translate
them to the space of smooth 2⇡-periodic functions f(t) on Rn. The idea is that the
Fourier coe�cients, the three parts of Equation (3.1), form an orthonormal basis of this
space. The quantities 1, cos(nt) and sin(nt)—which are multiplied by the coe�cients
a0/2, an, and bn—are linearly independent and also span the entire space of the smooth
2⇡-periodic functions. Equation (3.2) shows why they are linearly independent. The
same equation also implies that those quantities have a “size” of one unit. All we need
to do is define the inner product of two functions f and g as

hfi, fji =
1
⇡

Z ⇡

�⇡
f(t)g(t) dt.

There is another feature of vectors that can easily be “borrowed” by functions.
Given a vector space with basis vectors ei, any vector x in this space can be uniquely
represented as a linear combination

P
aiei of the basis vectors, where each coe�cient ai

is the projection of vector x on basis vector ei (the component of x in the ei direction),
However, such a projection is the inner product (x, ei), which is why we can write the
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linear combination in the form
x =

X

i

(x, ei)ei, (3.4)

which is very similar to the original Fourier sum of Equation (3.1). In that equation,
the coe�cients a0, an, and bn are inner products of (1) the function f(t) that is being
decomposed and (2) the set {1, cos(nx), sin(nx)} of functions. We can therefore write
the Fourier coe�cients a0, an, and bn as the inner products

a0 = hf(t), 1i, an = hf(t), cos(nt)i, and bn = hf(t), sin(nt)i.

It is as if our function f(t) was a vector projected onto the orthonormal basis of vectors
{1, cos(nx), sin(nx)} by means of inner products. Once we agree with this statement,
we can look at the Fourier series simply as a change of basis in the vector space of
the smooth 2⇡-periodic functions. This way of looking at the series reveals an elegant
connection (or parallel) between the two seemingly disparate disciplines of linear algebra
and the Fourier series.

3.4 The Fourier Series and Least-Squares

The coe�cients of the continuous Fourier series are derived in this section from the
seemingly unrelated technique of least squares. The presentation is appropriate for
mathematically-savvy readers who would like to see how very di↵erent approaches can
produce the same result. General references for this section are [leastSQ (2017a)] through
[leastSQ (2017d)].

Figure 3.2 illustrates the least-squares approach. Imagine that a researcher has
measured the height and weight of seven people. Each pair of (height, weight) measure-
ments is plotted as a point in the figure. Five of the points (in black) seem to suggest
that taller persons tend to weigh more, while the other two points (in red) contradict
this assumption, are considered outliers by the researcher, and are ignored. The green
line is the result of applying the least-squares technique to the five points. This is the
line that is closest to these points. In contrast, the red line may be closer to some points,
but farther away from the others. The green line can now be used to decide on the ideal
weight for a person whose height is given by the gray point.

Height

Weight

Outlier

Figure 3.2: Experimental Points, Outliers, and Interpolating Lines.
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Mathematically, the least-squares technique is the case where a system of equations
has more equations than unknowns. In general, such a system cannot be solved, but
with least-squares we can at least obtain the best case, the solution which is the closest
to all the equations, even though it may not be an exact solution of any. A linear
algebraic equation has the form a1x1 + a2x2 + · · · + anxn = b, where the ai’s are the
(known) coe�cients, the xi’s are the unknowns, and b is the (known) right-hand side
of the equation, often referred to as the target. Using the compact matrix notation, a
system of such equations is written as Ax = b, where A is the coe�cient matrix, x is a
column of the unknowns, and b is a column of all the right-hand-side terms. Each row
of A contains the coe�cients of an equation. Assuming that there are n unknowns and
m equations, there can be three cases as follows:

m < n. There are too few equations. In this case, there are many solutions. The
simplest example is a system of one equation with two unknowns, such as x + y = 0.
For every solution x, there is a solution y which is simply �x.

m = n. If the equations are independent, there is a unique solution. We say that
such a system of equations has zero degrees of freedom.

m > n. Any set of n independent equations can be used to compute a solution, so
there are many sets of solutions. The best that can be done is to employ least-squares
and obtain the best possible set of solutions. The (m,n) coe�cient matrix A has, in
this case, more rows (m) than columns (n).

Here is the principle of the least-squares method. As there cannot be a unique
solution to Ax = b, we must look for a set x of unknowns that minimizes the di↵erence
between Ax and b. We start by writing r = b� Ax, where r is the discrepancy vector,
and try to compute a set x of unknowns that will minimize r. Since r is a vector, the
square of its length is rT r, where the superscript T means a transpose. This is the dot
product of r with itself, or the sum of the squares of the elements of r. Written explicitly,
this quantity is now expanded to yield

rT r = (b�Ax)T (b�Ax)

= (bT � xT AT )(b�Ax)

= xT AT Ax� xT AT b� bT Ax + bT b.

Notice that the term bT b does not depend on x. It can therefore be ignored, since our
task is to find the best value of x. Also, the terms xT AT b and bT Ax are transposes of
each other, and since each is a single number, they must be equal (a number is its own
transpose). We can therefore write them as �2xT AT b. This implies that

rT r = 2

1
2
xT AT Ax� xT AT b

�
+ bT b,

It is now clear that the only part of rT r that depends on x is the quadratic form (a
polynomial with terms all of degree two)

1
2
xT AT Ax� xT AT b.
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We temporarily denote matrix AT A by D and vector AT b by h, thereby simplifying the
previous expression to

1
2
xT Dx� xT h,

and it is well known (see, e.g., reference [leastSQ 17e]) that such a quadratic form has a
minimum when Dx = h, implying x = D�1h or, equivalently (AT A)x = AT b. We know
that A is invertible, because its rows must be linearly independent, thereby giving it the
maximum rank. This is why we can finally obtain the least-squares value of x as

x = (AT A)�1AT b. (3.5)

We now try to apply Equation (3.5) to determine the Fourier coe�cients a0, an,
and bn, and we do this by reducing the infinite sums of Equation (3.1) to finite sums.
The Fourier problem is to represent a given periodic function f(t) in terms of the simple
periodic functions sine and cosine, and we are now trying to approach this problem from
the direction of linear algebra and vector spaces instead of from calculus and infinite
series.

The first step is to trim the infinite sums of Equation (3.1) into finite sums

f(t) =
a0

2
+

NX

n=1

an cos(nt) +
NX

n=1

bn sin(nt). (3.6)

It is clear that only certain “lucky” functions f(t) can be represented exactly in terms
of the 2N + 1 coe�cients of Equation (3.6). In general, such a representation would
be approximate, and we therefore apply the technique of least-squares to obtain the
best representation. We apply Equation (3.5) but in a form which uses inner products,
because our problem deals with vectors, not with matrices. We consider the quantities
1, sin(nt), and cos(nt) a small, incomplete set of basis vectors for the entire space of
functions f(t).

We therefore start with a large vector space of vector quantities denoted by v.
We assume that only three basis vectors e1, e2, and e3 are known for this space. We
construct the matrix whose three columns are those basis vectors and denote it by B.
Thus

B
def= [e1, e2, e3].

Each vector v in this space can now be represented approximately as a linear com-
bination ↵1e1 +↵2e2 +↵3e3 of the three basis vectors for some coe�cients ↵i that have
to be computed by least-squares. We write the three inner products

(v, e1) = ↵1(e1, e1) + ↵2(e2, e1) + ↵3(e3, e1),
(v, e2) = ↵1(e1, e2) + ↵2(e2, e2) + ↵3(e3, e2),
(v, e3) = ↵1(e1, e3) + ↵2(e2, e3) + ↵3(e3, e3),

and observe that the nine inner products (ei, ej) above can be written as a matrix M that
equals BT B, implying that the inverse M�1 equals the inverse (BT B)�1, which happens



32 3.4 The Fourier Series and Least-Squares

to be the first term of Equation (3.5). However, inner products are commutative, which
implies that M is symmetric and thus its inverse equals its transpose.

A quick look at Equation (3.5) also shows that the quantity that is equivalent to
its next term AT is our new matrix B (transposed), and the equivalent of its last term,
vector b, is a vector whose ith element is the inner product of a v (a general element of
our vector space) and the ith basis vector ei. Thus, the equivalent of Equation (3.5) is

2

4
(e1, e1) (e1, e2) (e1, e3)
(e2, e1) (e2, e2) (e2, e3)
(e3, e1) (e3, e2) (e3, e3)

3

5

2

4
↵1

↵2

↵3

3

5 =

2

4
(v, e1)
(v, e2)
(v, e3)

3

5 . (3.7)

(The confused reader may want to take a co↵ee break and then ponder this paragraph
again.)

Equation (3.7) can now be applied to the derivation of the Fourier coe�cients.
In this particular case, the equivalent of the general vector v is an arbitrary periodic
function f(t). The equivalent of the three basis vectors ei are the Fourier functions 1,
sin(nt), and cos(nt). We already know, from Equation (3.2), that they are orthogonal.
Finally, the equivalent of the unknowns ↵i is the Fourier coe�cients a0, an, and bn. As
the inner product of our functions f(t) we choose, as usual, the integral

(f, g) =
1
2⇡

Z ⇡

�⇡
f(t)g(t) dt.

With these properties in mind, Equation (3.7) becomes

2

4
(1, 1) 0 0

0 (cosnt, cosnt) 0
0 0 (sinnt, sinnt)

3

5

2

4
a0

an

bn

3

5 =

2

4
(f, 1)

(f, cosnt)
(f, sinnt)

3

5 (3.8).

(The matrix of Equation (3.8) is diagonal because its elements are inner products of the
basis functions, which themselves are orthogonal.)

Because its matrix is diagonal, Equation (3.8) is easy to solve, and its solutions are

a0 =
(f, 1)
(1, 1)

=
1
2⇡

Z ⇡

�⇡
f(t) dt,

an =
(f, cosnt)

(cosnt, cosnt)
=

1
⇡

Z ⇡

�⇡
f(t) cosnt dt,

bn =
(f, sinnt)

(sinnt, sinnt)
=

1
⇡

Z ⇡

�⇡
f(t) sinnt dt,

identical to those of Equation (3.3).
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3.5 Odd-Even Time-Saving Considerations

Computing the Fourier coe�cients for a given function may be time consuming, which
is why it is useful to know in advance when some of the coe�cients are zero, and this
has to do with the parity of the function f(t) being decomposed. Certain functions, but
not all, can be designated as odd or even, and these properties are defined here.

A function f(x) is odd if f(�x) = �f(x) for all values of the parameter x. The
sine function is odd and it is easy to see, just by examining its graph, that any area
under a sine curve from 0 to any a, equals the corresponding area under the curve from
�a to 0. This is expressed mathematically by

Z a

�a
f(x)dx = 0.

A function f(x) is even if f(�x) = f(x) for all values of the parameter x. The
cosine function, for example, is even, and it is again easy to see, from its graph (check
Figure 3.1), that for an even function, the following is always true

Z a

�a
f(x)dx = 2

Z a

0
f(x)dx.

For our purposes, it is important to know the parity of a product of two functions
f(x) and g(x), so we examine the following basic cases:

Both f and g are odd. Their product satisfies f(�x)g(�x) = [�f(x)][�g(x)] =
f(x)g(x), and is therefore even.

Both f and g are even. Their product satisfies f(�x)g(�x) = f(x)g(x), and is
also even.

f and g have di↵erent parities, so f(�x)g(�x) = �f(x)g(x), and their product is
odd.

What this implies for the computations of the Fourier coe�cients is that (1) if the
function f(t) that is being decomposed is odd, then the a0 and all an coe�cients are
zero, and if f(t) is even, then its bn coe�cients are zero. Both these facts are trivial to
verify, and they may save computational time.



34 3.6 Examples

3.6 Examples

The first example of the Fourier series is the well-known square wave (or step function).
It is defined by

f(t) =
⇢

1, 0 < t < L
�1, L < t < 2L .

Notice that this function is undefined at t = L, because it is vertical at this point (see
Figure 1 in the Preface) and a mathematical function of the form y = f(x) cannot
produce a vertical segment (vertical lines can be computed and displayed as parametric
functions, though).

This makes the step function piecewise continuous on the interval [0, 2L]. In general,
the Fourier series of a function f converges to f in regions where f is continuous. At a
point where f is undefined, its series converges to a midpoint value, which in our case
is 0.5.

Because f(t) is �1 from L to 2L, the integrals in the expressions for the coe�cients
need only go from zero to L, an interval where f(t) equals 1. This simplifies these
expressions which become

bn =
1
L

Z 2L

0
f(x) sin

hn⇡x

L

i
dx,

which is further reduced to

bn =
2
L

Z L

0
f(x) sin

hn⇡x

L

i
dx

=
4

n⇡
sin2(

1
2
n⇡)

=
2

n⇡
[1� (�1)n]

=
4

n⇡

n 0, n even
1 n odd.

The final Fourier series is then

f(x) =
4
⇡

1X

n=1,3,5,...

1
n

sin
hn⇡x

L

i
.

Figure 3.3 shows how this sum approaches the square wave when more and more
terms are included. The Mathematica code for this plot (for L = ⇡) is
Plot[(4/Pi)Sum[(1/n )Sin[n Pi t/L],{n,{1,3,5,7,9,11,13,15}}],{t,-2L,2L}]

The next example is a 2⇡-periodic wave that is an inverted pyramid (Figure 3.4).
Its central part is defined by

f(t) =
n�t �⇡  t < 0

t 0  t < ⇡
,
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Figure 3.3: An Approximation of a Square Wave.

Figure 3.4: An Inverted Pyramid Periodic Wave.

which shows that f(t) is symmetric about the y-axis and is therefore an even function,
implying that its bn Fourier coe�cients are all zero. The other coe�cients are easy to
derive.

a0 =
1
2⇡

Z ⇡

�⇡
f(t)dt =

2
2⇡

Z ⇡

0
f(t)dt =

1
⇡

Z ⇡

0
t dt =

1
⇡

t2

2

���
⇡

0
= ⇡/2,

an =
1
⇡

Z ⇡

�⇡
f(t) cos(nt)dt =

2
⇡

Z ⇡

0
f(t) cos(nt)dt =

2
⇡

Z ⇡

0
ft cos(nt)dt =

2
⇡


t

n
sin(nt)

���
⇡

0
� 1

n

Z ⇡

0
sin(nt)dt

�
=

2
⇡
· 1
n

✓
1
n

cos(nt)
◆ ���

⇡

0
=

2
n2⇡

�
cos(n⇡)� cos(0)

�
=

2
n2⇡

((�1)n � 1).

As before, the term ((�1)n�1) is zero for even values of n and equals �2 for odd values.
We can now write the Fourier sum for this function as:

f(t) = ⇡/2 +
1X

n=1

�4
(2n� 1)2⇡

cos
�
(2n� 1))t

�
,

which includes only the odd values of n. The single Mathematica line
Plot[(Pi/2) + Sum[(-4/((2n-1)^2 Pi)) Cos[(2n-1) t], {n, 1, 5}], {t, -Pi, Pi}]
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generates a convincing plot, very similar to that of Figure 3.4.

⇧ Exercise 3.1: Find the Fourier series of the 2⇡-periodic wave whose central part is

f(t) =
n�t �⇡  t < 0

0 0  t < ⇡
.

Next, Figure 3.5 lists similar code for a function that performs two quarter-period
of a cosine.

Figure 3.5: Fourier Series for a Cosine Step Function.

Finally, Figure 3.6 lists Mathematica code for the Fourier series that approximates
a half circle. This is based on the code shown in reference [ScuolaTech 12].
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Figure 3.6: Fourier Series for a Half Circle.



38 3.7 Two-Dimensional Fourier Series

3.7 Two-Dimensional Fourier Series

The one-dimensional Fourier Series can be extended to two dimensions, where a periodic
two-parameter function f(x, y) is broken up into its sinusoid components. The main
expressions are given here with examples but with no derivation. Two short references
are [2D series 22a] and [2D series 22b]. Given a two-parameter function f(x, y) with a
period of 2⇡ in both parameter, its two-dimensional Fourier series is

1
2
a0(y) +

1X

n=1

[an(y) cos(nx) + bn(y) sin(nx)] ,

where the coe�cients are

an(y) =
1
⇡

Z ⇡

�⇡
f(x, y) cos(nx) dx, and bn(y) =

1
⇡

Z ⇡

�⇡
f(x, y) sin(nx) dx.

The value of n determines the order of the term in the series. Thus, n = 1, 2, 3 generates
the third term.

Figure 3.7 is an example. It displays the periodic function cos(x2)+sin(�y) and the
first five terms of its series. Notice that the computations are done by the Mathematica
command FourierSeries.

⇧ Exercise 3.2: Use Mathematical software to compute and display several terms of the
series of cos(x2) ⇥ sin(y). Employ the expressions given here, rather than any built-in
commands of the software. Include a full listing of the mathematical expressions for
each term of the series.

3.8 The Complex Exponential Representation

The expressions for the Fourier series that we have so far derived are referred to as
trigonometric. There is, however, a di↵erent approach to the Fourier series, one that
expresses it in terms of complex exponential numbers.

Given a periodic function x(t) with a fundamental period of T0 (there may be other
periods), and a fundamental frequency !0 = 2⇡/T0, its continuous complex Fourier
series X(t) is given by

X(t) =
1X

k=�1
Ckeik!0t,

where the (infinitely many) coe�cients Ck are given by

Ck =

(
1
T0

R
T0

x(t)dt, k = 0
1
T0

R
T0

x(t)e�ik!0tdt, k 6= 0.

Note that the subscript T0 of the integral means an integration interval of one period.
It can go from the start to the end of a period or from any point in a period to the
corresponding point in the next period.
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Clear["Global‘*"]
f[x_, y_] := Cos[x^2] + Sin[-y];
Plot3D[f[x, y], {x, -Pi, Pi}, {y, -Pi, Pi}]
Do[p = FourierSeries[f[x, y], {x, y}, {d, d}];
Print[Plot3D[p, {x, -Pi, Pi}, {y, -Pi, Pi}]], {d, 1, 5}]

Original

Order 1 Order 2 Order 3

Order 4 Order 5 Order 6

Figure 3.7: A 2D Fourier Series of cos(x2) + sin(y).

In general, the coe�cients Ck are complex numbers that have the form Ck = ↵k +
i�k. If x(t) is real, C�k equals the conjugate of Ck. Also, if function x(t) is even, then
the Ck’s are real numbers, and if x(t) is odd, all the Ck are imaginary. However, most
functions used in practice are neither odd nor even.

The relations between the trigonometric and the complex exponential representa-
tions of the Fourier series are expressed in terms of their coe�cients as follows:

ak = 2Real[Ck] and bk = �2 Imaginary[Ck].
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3.9 The Discrete Fourier Series

The discrete case of the complex representation is very similar. It is called the discrete-
time-Fourier series (DTFS), and is closely related to the discrete Fourier transform
(DFT) of Section 4.4. Given a periodic sequence of numbers x[n] with period N , its
DTFS X[n] is given by

X[n] =
X

k=hNi

Cke2⇡ik n
N , (3.9)

where 2⇡/N is the fundamental frequency !0 and the N coe�cients Ck are given by

Ck =
1
N

X

k=hNi

x[n]e�2⇡ik n
N . (3.10)

Example. Compute the discrete Fourier series of the periodic sequence
Value . . . 1 0 0 0 1 2 1 0 0 0 1 2 1 . . .
Index . . . �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 . . .

We first notice that its period is 6, so its fundamental frequency is !0 = 2⇡/6 = ⇡/3.
The first step is to compute the six coe�cients Ck from Equation (3.10). The sum has
to be over a full period of the sequence, any period, so we select the period from �2
to 3.

Ck =
1
N

X

n=hNi

x[n]e�
2⇡
N ikn =

1
6

3X

n=�2

x[n]e�!0ikn

=
1
6

h
0 + 1 · e�!0ik(�1) + 2 · e�!0ik(0) + 1 · e�!0ik(1) + 0 + 0

i

=
1
6

⇥
e!0ik + 2 + e�!0ik

⇤

=
1
6

[2 + 2 cos(k⇡/3)] . (from Euler0s formula)

The next step is to compute the six Ck coe�cients

C�2 =
1
6

[2 + 2 cos((�2)⇡/3)] =
1
6

[2 + 2 cos(2⇡/3)] =
1
6

[2 + 2 · (�1/2)] = 1/6

C�1 =
1
6

[2 + 2 cos((�1)⇡/3)] =
1
6

[2 + 2 cos(⇡/3)] = 3/6 = 1/2

C0 =
1
6

[2 + 2 cos(0 · ⇡/3)] = 4/6 = 2/3

C1 = C�1 = 1/2 (symmetric because cosine is even)
C2 = C�2 = 1/6

C3 =
1
6

[2 + 2 cos(3⇡/3)] =
1
6

[2 + 2 · (�1)] = 0

.

The final result is
Value . . . 1/2 1/6 0 1/6 1/2 2/3 1/2 1/6 0 1/6 1/2 2/3 1/2 . . .
Index . . . �5 �4 �3 �2 �1 0 1 2 3 4 5 6 7 . . .
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It tells how much of !0 is needed for each value of k in order to reconstruct the
original sequence with Equation (3.9).

Normally, we would start by computing the N coe�cients Ck from Equation (3.10)
and then use them to compute the series X[n], also for the M values of n, from Equa-
tion (3.9). This, however, is time consuming and requires many calculations, so it’s
nice to know that sometimes there is a shortcut. There are cases where it is possible to
compute the Ck coe�cients directly from Equation (3.9).

Imagine that we can write an equation with X[n] on the left-hand side, and on the
right have an expression similar to the right-hand side of Equation (3.9), i.e., the sum
of constants multiplied by complex exponentials. In such a case, these constants must
be the coe�cients Ck. Here is a simple example where X[n] = cos

�
2⇡
8 n

�
. The period of

this expression is M = 8, and we first rewrite it using Euler’s formula

X[n] = cos
✓

2⇡
8

n

◆
=

1
2

⇥
e2⇡i n

8 + e�2⇡i n
8
⇤

=
1
2
e2⇡i(1) n

8 +
1
2
e2⇡i(�1) n

8 = C1e
2⇡i(1) n

8 + C�1e
2⇡i(�1) n

8 .

When we compare this expression to Equation (3.9) it becomes clear that both C1 and
C�1 equal 1/2 and the other coe�cients are zero. As for C�1, it equals C7 both because
the period of the sequence is 8 and because it can easily be shown by direct computation
that e2⇡i(�1) n

8 = e2⇡i(7) n
8 .

⇧ Exercise 3.3: Go through a similar shortcut starting from the series

X[n] = sin
✓

2⇡
10

n

◆
.

The Two-Dimensional Discrete Fourier Series

This version of the Fourier series applies to the case where the data consists of a
two-dimensional array x[n,m] of numbers that are periodic in both dimensions. The
numbers in each row have a period N and the numbers in each column have a period
M . Here is an example of such an array with 6⇥ 3 periodicity.

. . . 13 9 -3 0 16 -81 13 9 -3 0 16 -81 13 9 -3 0 16 -81 . . .

. . . 4 -23 77 8 41 0 4 -23 77 8 41 0 4 -23 77 8 41 0 . . .

. . . 14 93 0 8 -1 10 14 93 0 8 -1 10 14 93 0 8 -1 10 . . .

. . . 13 9 -3 0 16 -81 13 9 -3 0 16 -81 13 9 -3 0 16 -81 . . .

. . . 4 -23 77 8 41 0 4 -23 77 8 41 0 4 -23 77 8 41 0 . . .

. . . 14 93 0 8 -1 10 14 93 0 8 -1 10 14 93 0 8 -1 10 . . .

. . . 13 9 -3 0 16 -81 13 9 -3 0 16 -81 13 9 -3 0 16 -81 . . .

. . . 4 -23 77 8 41 0 4 -23 77 8 41 0 4 -23 77 8 41 0 . . .

. . . 14 93 0 8 -1 10 14 93 0 8 -1 10 14 93 0 8 -1 10 . . .

. . .
The DFTS of such data is given by a direct extension of Equations (3.9) and (3.10)

as follows:
X[n,m] =

X

k=hNi

X

l=hMi

Ck,le
2⇡i(k n

N +l m
M ),

Ck,l =
1

N ·M
X

k=hNi

X

l=hMi

x[n,m]e�2⇡i(k n
N +l m

M ).
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Fourier’s theorem is not only one of the most beautiful
results of modern mathematics, but it may be said to

furnish an indispensable instrument in the treatment of
nearly every recondite question in modern physics.

—James Clerk Maxwell.



4
The Fourier Transform

The Fourier transform is a mathematical operation that breaks a time-signal x(t) into
its constituent frequencies and ends up with a function X(!) that indicates the strength
of each frequency ! in the original signal. This operation transforms the original signal,
which can be periodic or aperiodic, from the time domain, where it looks familiar, to
the frequency domain, where we can examine the frequencies that constitute it and can
also edit them, by modifying or deleting certain frequencies, before transforming the
signal back, in order to improve it in various ways. The inverse transform exists and
it is perfect in the sense that no information is lost during the transform or its inverse.
Given a function X(!), it is possible to compute its inverse Fourier transform and end
up with the original time-signal x(t).

Another way to look at the Fourier transform of a function f(t) is to start with the
Fourier series of f(t), and then to collapse each of the component sinusoids of this series
into a vertical bar whose height and position on the x-axis correspond respectively to
the amplitude of the sinusoid and to its frequency.

Judging by the popularity of the Fourier transform we can claim that this math-
ematical operation produces results that are interesting, useful, and may also provide
important insights into the characteristics of a time signal.

4.1 Preliminaries

We start with a few important preliminaries, for the benefit of many readers.
Transforms. A mathematical transform is a function or a rule that shows how to

transform one type of data to another. Here is the story of the Fourier transform. In the
early 1800’s, Fourier, then a governor in Grenoble, became interested in the process of
heat transfer. He thought about it, analyzed this process in his mind, and came up with
an equation. The problem then changed from physics (heat transfer) to mathematics
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(solving the equation). After much thought and trials, Fourier tried to transform it into
a di↵erent representation. To his surprise, his equation then became much simplified
and easy to solve. In fact, it naturally separated into two equations. After solving it, he
still had to transform it back to its original representation.

Today, scientists and engineers use many transforms, but the underlying process is
always the same. Transform your data to another representation, solve your problem in
that representation, and then transform the result back to its original form. Here are a
few examples:

Roman numerals. The ancient Romans presumably knew how to operate on Roman
numerals, but when we have to, say, multiply two Roman numerals, we may find it more
convenient to transform them into the modern (Arabic) notation, multiply, and then
transform the result back into a Roman numeral. Here is a simple example:

XCVI⇥XII! 96⇥ 12 = 1152! MCLII.

The Discrete Cosine Transform (see Wikipedia). This important transform ex-
presses a set of data points as the sum of cosine functions with di↵erent amplitudes
and frequencies. The DCT is invaluable in the data compression field, where it is used
extensively in the mp3 and JPEG algorithms.

The Hough Transform, (see Wikipedia), is used to detect patterns such as edges,
in images.

Time series. (In English, the word “series” is both singular and plural.) Time
series (or a time signal) is an important term in engineering. It is used in statistics, signal
processing, weather forecasting, and many other scientific and engineering applications
where data is collected temporally (over time). The term “time series” is defined as a
series of data points which are indexed, listed, or graphed in time order. In practice,
however, a time series is often a sequence of data items taken at successive equally-spaced
points in time. We can also say that a time series is a sequence of discrete-time data.
Examples of time series are (see also Figure 4.1) the intensity of sound waves emitted
by a source of sound, the voltage generated by a microphone picking up that sound,
temperature values measured daily over a year, and the weight of a person, measured
periodically.

Figure 4.1: Various Time Series.

The frequency domain illustrated. A garage owner wants to increase car tra�c
in his business. He starts by counting the number of cars that are brought in every hour
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for service or repair. The result is a time series that gets longer every day. After a
few days the owner plots this sequence graphically by connecting the data points with
a smooth curve. To his surprise, it is immediately obvious that more cars are brought
in early in the day and also in the middle of the day, around noon (car owners use
their lunch break to leave a car in the garage). Thus, the plot is a simple wave with
maxima at 8 AM and 12 noon (top-left of Figure 4.2). Another surprise awaits the owner
after a few weeks. It turns out that more cars are brought to the garage on Thursday
and Friday (in preparation for weekend trips), on Monday and Tuesday (with problems
caused by weekend trips), and on Saturday (when owners have more time). The bottom
of Figure 4.2 shows a typical plot for a few weeks.

Fr

SatTh

Hours

Mon Mon

Tu

Fr

SatTh Tu Tu

Wed

Tu

Wed Fr

SatTh

MonWed Fr

SatTh

MonWed

8 9 10 11 12 1 2 3 4 5

week day Frequency

Figure 4.2: Activity in a Garage.

This information is already useful to the owner, but there is more. He now hires a
consultant to compute the discrete Fourier transform of his data, and is again surprised
to see the simple result (the top-right corner of the figure). Just two red vertical lines,
a long one on the left and a shorter one on the right. It turns out that these lines are
part of the frequency domain of the wavy function on the bottom of the figure. The
original function is now said to be in the time domain, which is familiar to anyone, but
the frequency domain may be both simpler and more useful. The garage owner is told
that the weekly frequency component of his data is greater than the daily frequency
component. The variations between days of the week are more pronounced than the
variations between the hours of the day. The owner now concludes that if he wants to
hire extra help for the busy times of his business, he should hire mechanics to work on
Friday, Saturday, and Monday, instead of asking them to work every day, but only in
the morning and around noon.

Today, both one- and two-dimensional sine waves are used to decompose objects and
break them up into sums of sine waves. One-dimensional “objects” such as sound and
electrical signals can be decomposed by the one-dimensional Fourier transform into sums
of one-dimensional sine waves, but the big surprise is that objects of higher, two- or even
three-dimensions, can also be decomposed by higher-dimensional versions of the same
transform. Two-dimensional objects are visual patterns, images, and regardless of how
complex and irregular they are, they can be decomposed into sums of two-dimensional
sine waves, which can also be thought of as surfaces (Figure 2.4). Thus, the work of
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Fourier has shown us that the world around us is, at its lowest level, a set of sums of
sine waves.

How is it possible that the simple periodic functions sin and cos can be used to model
complex waves and complicated periodic phenomena? This is even more surprising
when we realize that the mathematical functions continue forever, their domains may
be infinite; In contrast, real phenomena eventually die out. A possible explanation goes
like this: Imagine a finite time signal that starts from zero and eventually dies out. Such
a signal is not periodic, but we can make it periodic simply by repeating it in time both
in the future and in the past. This process is referred to as a periodization of a signal.
We may be interested in only a part of the signal, but we extend it in the hope that this
would allow us to represent the signal by means of simple waves.

Computer Generated Text

The Fourier transform is a mathematical operation that decomposes a function
into its constituent frequencies. The Fourier transform is a generalization of the Fourier
series, which is used to represent periodic functions as a sum of sinusoidal functions.

The Fourier transform of a function f(x) is denoted as F (k), and it is defined as:

F (k) =
Z 1

�1
f(x)e�2⇡ikx dx.

where i is the imaginary unit and k is a real number representing the frequency.
The inverse Fourier transform is given by:

f(x) = (1/2⇡)
Z 1

�1
F (k)e2⇡ikx dk.

The Fourier transform has many important properties and applications in mathe-
matics and physics. It is used in a wide range of fields, including signal processing, image
processing, and quantum mechanics. The Fourier transform can be e�ciently computed
using the fast Fourier transform (FFT) algorithm.

Generated by ChatGPT, 22 Dec 2022.
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4.2 The Continuous Fourier Transform

The mathematics of the Fourier transform is based on the important concepts of con-
volution (Chapter 6) and the inner product. The latter is introduced on Page 3, where
the text, examples, and figures show how the inner product provides a similarity mea-
sure between mathematical entities such as vectors and functions. Thus, given a time
function f(t), we can hope to identify its frequency components by computing the inner
product of f(t) with many sine or cosine waves of higher and higher frequencies. The
codes and plots of Figures (Intro.2) and (Intro.3) explain in detail how to use integrals
of inner products to identify and compute one frequency component at a time. Here is
a step by step summary of this process:

1. Given a time function c1(t), select a frequency f and choose the wave cos(ft) as
our first candidate for a frequency component of c1.

2. Select a range of values for the phase ph of this cosine and compute a definite
integral of the inner product of c1(t) and cos(ft + ph). The integration interval should
be a full period of c1 (but can start at any point in the period, as long as it ends at
the same point). Each integral results in one number, the similarity measure (or score)
between c1(t) and cos(ft + ph) for the particular phase ph. These are time consuming
computations and they should be done for as many phase values as possible.

3. Plot the graph of the similarity measures as a function of the phase values.
Figures (Intro.3) and (Ans.1) are examples of such graphs.

4. Now comes the crucial point. Locate the maximum of this graph. The height of
the graph at its maximum is proportional to the amplitude of the frequency component
we are looking for. (If the height is zero, then c1(t) has no component at the particular
frequency f selected in step 1.) The horizontal axis of the graph at its maximum gives
the phase of the frequency component for frequency f .

5. We have selected a particular frequency f and we now know the amplitude
and phase of the frequency component of c1(t) that corresponds to f . These three
numbers completely identify the component. To find more frequency components we
should repeat this tedious process for other frequencies.

Conclusion. It is now clear that identifying and computing the frequency compo-
nents of a given function c1(t) is easy to understand, but requires many computations
and is time consuming. We now describe a more practical approach, one that uses
the concept of convolution and eliminates step 4 above. We start with the following
statement: Given a cosine and a sine waves with identical frequencies, zero phases,
and amplitudes a and b, respectively, their sum a cos ✓ + b sin ✓ is a cosine wave with
amplitude

p
a2 + b2 and phase tan�1(�b/a).

⇧ Exercise 4.1: Prove this statement.

We derive the expressions for the continuous Fourier transform from the results of
Exercise and from the definition of convolution in Chapter 6. The idea is to change the
inner products of step 2 above to convolutions, and to eliminate step 4 by performing
instead two convolutions, one for a cosine and one for a sine. The definition of continuous
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convolution is

(f ? g)(t) =
Z t

0
f(⌧)g(t� ⌧)d⌧ =

Z t

0
g(⌧)f(t� ⌧)d⌧.

We therefore replace the integral on line 4 of Figure (Intro.3)
fi[ph_] := Integrate[c1[t] Cos[2Pi 3t + ph], {t, 0, 2 Pi}];
with the two convolutions of Figure 4.3.

(*The basic continuous FT with a convolution.
Cos[2Pi-8t]=Cos[8t] but Sin[2Pi-8t]=-Sin[8t]*)
Clear["Global‘*"]
signal[t_] := 0.3 Sin[8t + 60 Degree];
a = Integrate[signal[t] Cos[8t], {t, 0, 2 Pi}];
b = Integrate[signal[t] (-Sin[8t]), {t, 0, 2 Pi}];
scor = Sqrt[a^2 + b^2];
phas = 90 - ArcTan[-b/a]/Degree;
(*Notice that $\arctan(\tan(x))$ does not always equal
$x$, because ArcTan is a multivalued function*)
amp = 2 scor/(2Pi);
Print[a, " ", b, " ", scor, " ", phas, " ", amp]

0.81621 -0.471239 0.942478 60. 0.3

Figure 4.3: Two Convolutions with the Resulting Score, Amplitude, and Phase.

Notice that the definition of convolution calls for the expressions cos(2⇡ � 8t) and
sin(2⇡�8t), but because of the parities of those functions, the former equals cos(8t) and
the latter equals � sin(8t). Also, the arctan is a multivalued function. The Mathematica
command is ArcTan[a,b]. It considers parameters (a, b) the coordinates of a point,
and its output depends on the point’s location in the 2D coordinate system. In our
example, the output was always the complement of 90�. Assuming that a standard
arctan function is available, whose range is in the interval (�⇡/2,⇡/2), the ArcTan
command is defined as follows:

ArcTan(x, y) =

8
>>>>><

>>>>>:

arctan(y/x), x > 0
arctan(y/x) + ⇡, x < 0, y � 0
arctan(y/x)� ⇡, x < 0, y < 0
⇡/2, x = 0, y > 0
�⇡/2, x = 0, y < 0
undefined, x = 0, y = 0.

Once a frequency f is chosen, the outputs of the two convolutions are easily con-
verted to amplitude and phase, and these, together with the frequency, completely define
the frequency component for frequency f . The main gain over the five steps above is
the elimination of step 4, which is time consuming.

Even though the continuous Fourier transform is simple and elegant, practical ap-
plication are almost always based on the discrete version of this transform, which is the
topic is Section 4.4.
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Fourier’s great idea—the world is music, it’s all waves—is the Rosetta Stone of science.
—Alvy Ray Smith, A Biography of the Pixel, 2021.

4.3 The Role of Complex Numbers

Earlier, we have looked at the continuous Fourier series, Equation (3.1), as the sum of
sines and cosines. As explained in Section 2.1 and Page 18, such a sum eliminates the
need for phases and only requires the amplitudes of the individual series components.
The continuous Fourier transform (see especially Figure 4.3) also employs separate sine
and cosine waves to compute a score and a phase. In practice, however, engineers prefer
a di↵erent representation of both the continuous and discrete versions of the Fourier
transform, one that uses complex numbers, because of the following:

A single complex number can express both an amplitude and a phase.

If we compute the Fourier transform of a signal with only real-valued sines or
real-valued cosines, the result would depend on the phase o↵set between the real-valued
waves and the signal. If the signal is shifted by even a small amount, the transform
would produce a di↵erent frequency domain.

For the one-dimensional continuous Fourier transform, the complex-number repre-
sentation is the sum

F (!) =
Z 1

�1
f(t)e�i!tdt. (4.1)

This sum (see also Equation (4.2) for the discrete case) converts a periodic function f(t)
of time to a function F (!) of frequency. The terms time domain and frequency domain
are also commonly used. The symbol ! (omega) represents frequency. If we write, for
example, sin(3), the frequency is 3 radians per second. However, it is common to use
cycles per second, also denoted by Hz (Hertz) as the unit of frequency, which is why we
use terms such as sin(2⇡!) or sin(2⇡!t). They indicate sine waves of frequencies ! Hz
or !t Hz, because there are 2⇡ radians in a full circle.

Since we are talking about complex numbers, the symbol i stands for
p
�1, although

electrical engineers often use j instead, because for them i also stands for electrical
current.

Equation (4.1) makes use of a complex exponent because the derivative of this
function is simple. The derivative of e�i!t with respect to ! is �i t ·e�i!t. In order
to understand the relation of (4.1) to Equation (3.1), we observe that the well-known
Euler’s formula satisfies

e�i!t = cos(�!t) + i sin(�!t) = cos(!t)� i sin(!t),

which is why Equation (4.1) can be written

F (!) =
Z p/2

�p/2
f(t)

⇥
cos(!t)� i sin(!t)

⇤
dt,

=
Z p/2

�p/2
f(t) cos(!t)dt� i

Z p/2

�p/2
f(t) sin(!t)dt,
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where p is the period of f(t). Many texts claim that the integrals above should go from
�1 to 1, but if f(t) is periodic, integrating over [�1,1] would be the same as over
[�p/2, p/2] or [0, p]. If f(t) is aperiodic, its period can be considered infinite. In such a
case, integration intervals [�1,1] and [�p/2, p/2] would be the same, but [0, p] would
be di↵erent.

Now choose any frequency !, prepare the products f(t) cos(!t) and f(t) sin(!t),
which are functions of t and can therefore be visualized as curves, and then integrate
each with respect to t from �p/2 to p/2. The value of each integral is the area under
one of the curves, and we consider these areas the real and imaginary parts of a complex
number a + bi. The magnitude

p
a2 + b2 of that number is the amplitude of the !th

component of the continuous Fourier transform of f(t), and the angle arctan(b/a) of the
number is the phase of that component, as illustrated in Figure 4.4.

Ma
gn
itu
de

Phase

Figure 4.4: A Complex Number as Amplitude and Phase.

A word about ambiguous terminology. The term amplitude can be ambiguous, as
the following paragraphs show.

The amplitude of a sine wave is its vertical magnitude or half the distance between
its top and bottom. This kind of amplitude is non-negative. It can be zero, a special
case where the wave is a horizontal line which has zero frequency and an infinite period.

The amplitude of an arbitrary wave can vary significantly all the time (we are
talking about a wave in the time domain) and can even be negative, as illustrated by
Figure 4.5.
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-2000

-4000

-6000

Figure 4.5: Positive and Negative Amplitudes.
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The amplitude of a complex number a + bi is the same as its magnitude
p

a2 + b2,
as shown in Figure 4.4. This quantity is positive, because it is a length. It cannot be
negative and it is zero only when a = b = 0, implying that the complex number is zero.

Section 4.4 mentions the term “frequency coe�cient” many times. Such a co-
e�cient is in general a complex number, which is why the text often uses the term
amplitude to refer to the magnitude of the coe�cient. This is especially noticeable in
the discussion of the power spectrum on Page 72, where the term “amplitude spectrum”
is used extensively. It refers to the magnitude of the frequency coe�cients and not to
the vertical size of any wave.

A word about the phases. The phase � of a sinusoid describes how much the entire
wave is shifted horizontally by �/! time units. We can think of the phase as where in
its cycle the oscillation is at t = 0, or as the number that describes the stage of the
oscillation at the origin t = 0. The relation between the amplitude of a sinusoid and
its phase is clearly illustrated by an Argand diagram, such as Figure 4.6. The top of
the diagram shows large and small amplitudes with di↵erent phases. Two things are
clear. (1) In practice it may often be di�cult to measure the phase of a sinusoid with
a small amplitude. In the extreme case where the amplitude is zero, the phase has no
meaning. If a DFT computation results in a complex number 0+h i, then the phase h is
meaningless. (2) In practice, there often is an uncertainty about the precise amplitude
of a wave, as illustrated by part 3 of the figure. As long as the amplitude is large, the
uncertainty in the amplitude does not a↵ect the uncertainty in the phase much, but, as
is shown in part 4, for a wave with a very small amplitude, any uncertainty about the
amplitude translates to a large uncertainty of the phase.

1 2 3 4

Figure 4.6: Argand Diagrams.

The entire Fourier transform of f(t) is obtained when we vary ! over the interval
that is the period of f(t). In the continuous case, where the exact function f is available,
we can vary ! continuously and for each value of ! obtain an amplitude. Plotting the
amplitudes produces a curve of the amplitudes of the transform as a function of !. In
the discrete case, only n values of f(t) are known. When the above process is applied to
those values, the result is n complex numbers that can then be processed by the inverse
one-dimensional discrete Fourier transform to reconstruct the original n values of f . The
inverse transform is

f(t) =
Z 1

�1
F (!)ei!td!.
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Example. Consider the function f(t) = e�t cos(4t) defined on [0,1]. We construct
the functions e�t cos(4t) cos(!t) and e�t cos(4t) sin(!t), compute their integrals over the
entire interval of t for several values of ! and calculate the Fourier amplitude and phase
for each value. Figure 4.7 shows plots of the functions for ! = 0, 1, 5, 10, 15, and
20. The included code also lists the areas (array ap) and calculates the corresponding
amplitude and phase for each of the six. Given enough values of the amplitude and
phase, both can be plotted as functions of !.

Example. The duality of the important rect and sinc functions. Figure 4.8 shows
the rect function, which is simply a rectangle of width 2T and height 1, together with
the sinc function, to be introduced in Subsection 5.2. The latter is important in signal
and image processing, where it is used to reconstruct an analog, continuous time signal
from a set of its digital samples. Its definition is sinc(x) = sin(x)/x. This example shows
that rect and sinc are Fourier duals; each is the Fourier transform of the other.

The Fourier transform of the rect function (which is often used as a filter) is

X(!) =
Z 1

�1
x(t)e�i!tdt =

Z T

�T
e�i!t dt

= � 1
i!

�
ei!T � e�i!T

�
=

2
!

sin(!T ) = 2T sinc(!T ),

because the rect is defined only from �T to T , where its value is 1.
Going in the opposite direction, we are given a rect in the frequency domain, i.e.,

a frequency interval (bandwidth in engineering jargon) of [�a, a] with a rectangle of
height 1 over it, and we need to apply the inverse Fourier transform to find what time-
domain signal would fit exactly into this frequency interval. Since the height of the rect
is 1, the result is immediate

x(t) =
1
2⇡

Z a

�a
ei!td! =

sin(at)
⇡t

=
a

⇡
sinc(at).

This duality can be summarized as follows

time domain ! frequency domain
x(t) ! X(!),

X(it) ! 2⇡x(�!),

which means that when any of these two functions is given in the time domain, its Fourier
transform will be the other function in the frequency domain, and inversely, when any of
these is given in the frequency domain, its Fourier transform will be the other function
in the time domain. This duality is why the sinc filter is the ideal low-pass filter and is
used to reconstruct an analog time signal from its digital samples (Page 136).

For example, when we start with sinc(t) in the time domain and pass it through
the Fourier transform, we end up with a function X(!) in the frequency domain, which
is a rectangle.

X(!) =
Z 1

�1
sinc(t)e�i!tdt =

Z 1

�1
sinc(t) cos(!t)dt.
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Clear;(* plot amplitudes of e^{-1}cos(4t) *)

SetOptions[Plot, BaseStyle -> {FontFamily -> "cmr10", FontSize -> 10}];

omg = 20;

ampl := Exp[-t] Cos[4. t] Cos[omg t];

phas := Exp[-t] Cos[4. t] Sin[omg t];

Plot[{ampl, phas}, {t, 0, 2 Pi}, PlotRange -> {-1, 1}, ImageSize -> 72*2.45]

Integrate[{ampl, phas}, {t, 0, \[Infinity]}]

ap = {{0.0588235, 0}, {0.0692308, -0.0538462}, {0.256098, 0.304878},

{0.0160516, 0.116614}, {0.00547958, 0.0713251}, {0.00281208, 0.0519256}};

For[i = 1, i < 7, i++,

Print[{Sqrt[ap[[i, 1]]^2 + ap[[i, 2]]^2],

ArcTan[ap[[i, 1]], ap[[i, 2]]]}]]

Figure 4.7: Plots and Code for Six ! Values
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Figure 4.8: The Duality of rect and sinc.

Figure 4.9 shows the resulting approximations of the rectangle. In principle, the limits
of the integration should be from �1 to 1, but to save computation time, the four
parts of the figure have limits in the intervals [�t, t] for t = 5, 10, 15, and 50.

Digression: The beauty of sinc. The famous Euler’s formulas eix = cosx + i sinx
and ei⇡ + 1 = 0, are often considered examples of beauty in mathematics. This short
digression illustrates the much less known beauty hidden in the sinc function. Here are
some examples, and the interested reader is directed to the Wikipedia article on sinc for
more unusual properties of this important function.

1X

n=1

sinc(n) =
1X

n=1

sinc2(n) =
⇡ � 1

2
,

1X

n=�1
sinc(n) = ⇡,

1X

n=1

(�1)n+1sinc(n) = sinc(1)� sinc(2) + sinc(3)� sinc(4) · · · = 1/2,

1X

n=1

(�1)n+1sinc2(n) =
1X

n=1

(�1)n+1sinc3(n) = 1/2,

Z 1

�1
sinc(x)dx =

Z 1

�1
sinc2(x)dx = ⇡.

Why does sinc feature these unusual, beautiful properties? It seems that the rea-
son is the sinc-rect duality discussed earlier. In the frequency domain, sinc is simply a
rectangle. All the complex infinite sums, squaring, and other operations above have cor-
responding operations on the rectangle in the frequency domain, but because a rectangle
is such a simple figure, the final results are also simple. End of digression.
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a = 1; (*sinc-rect duality*)

X[w_] := NIntegrate[Sinc[t] Cos[ w t]/Pi, {t, -50, 50}]

Plot[X[w], {w, -a, a}, BaseStyle -> {FontFamily -> "cmr10", FontSize -> 10},

PlotRange -> All, AspectRatio -> 113/180, ImageSize -> 72*2.45]

Figure 4.9: A Rectangle as the Fourier Transform of a Sinc

4.4 The Discrete Fourier Transform

Sinusoids and many other mathematical functions are continuous, but 20th century
physics and the widespread use of digital computers are based on discrete quantities.
The former on elementary particles and the latter on binary digits, bits. There are two
ways to look at how and why our lives now depend on discrete quantities and their
manipulations. We can either say that modern technology must move with the times
and convert the continuous to the discrete, or we can claim that data in the real world,
which originally may have been continuous, has come to us—via our cameras, sensors,
and scanners—in discrete form, and we have to process it in this form.

Whatever some may claim or believe in, we know from experience that the discrete
form of the Fourier transform is important and is therefore discussed here in detail. We
start with the one-dimensional discrete Fourier transform (DFT). This is a useful math-
ematical tool that analyzes an N -element time-series (or a time-domain signal) x[n] and
computes its frequency content as an N -element array X[k] of frequency components.
Each frequency component is a complex number whose two parts can be used to compute
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the amplitude and phase of the component.
Intuitively, the DFT works by comparing x[n] to sinusoidal basis functions of higher

and higher frequencies (the familiar sin and cos functions). Each comparison is done
by calculating (1) the inner-product (or dot product) of the N elements of x[n] with N
equally-spaced values of cos[t], and then (2) the inner-product of the same elements of
x[n] with N equally-spaced values of i sin[t], where i =

p
�1.

Here is a geometric explanation of this process. Given an N -point time signal, we
consider its points the components of a vector T in an N -dimensional vector space, and
we start a loop that iterates N times, where in iteration n we perform two steps:

1. We construct a vector S which is a complex sine wave of frequency (n� 1). The
magnitude of S does not depend on its frequency and is the same in each iteration. The
di↵erent frequency of each iteration a↵ects only the direction of S.

2. We compute the inner product of T and S. The result is a complex number,
a frequency coe�cient, that we can always write in the form a + bi. Its absolute value
(the amplitude of the coe�cient) is

p
a2 + b2 and its phase (its direction in the Argand

diagram) is arctan(b/a). Another representation, using Euler’s notation, is mei✓ where
m is the amplitude of the coe�cient and ✓ is its phase. The final set of N frequency
amplitudes is the Fourier spectrum of the original time signal. See also the discussion
of complex numbers on Page 49.

This explanation of the DFT as an inner product of a given signal and a family of
complex sine waves suggests why the DFT is so useful and universal. This transform
links the values of a signal to the waves that constitute it, and waves are important
because much of the work in signal processing and image processing involves electrical,
sound, spatial, or light waves.

Dot products and inner products employ the same computations. The di↵erence
between them is that the former is defined for vector spaces over the reals, while the
latter is defined on general vector spaces, such as the space of real functions.

Once this intuitive explanation of the DFT as an inner product of a signal and
sinusoidal waves is clear, the equation of the DFT is easy to understand. We start with
the continuous one-dimensional Fourier transform

X(!) =
Z 1

�1
x(t)e�2⇡i!tdt,

which itself is based on the well-known Euler’s formula eix = cosx+i sinx, and generalize
it to the discrete one-dimensional case, where the only input is a sequence of N equally-
spaced numbers xn that are values of an unknown function f(xn)

Xk =
N�1X

n=0

xn · e�2⇡ikn/N

=
N�1X

n=0

xn · [cos(2⇡kn/N)� i · sin(2⇡kn/N)]. (4.2)

This definition is often denoted by X = F{x} or simply F(x). The input to the DFT
is a time series x[n] of N real or complex values xn. The output is an array X[k] of N
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x[n] Time

Frequency

cos(2π1n/N)

sin(2π1n/N)

sin(2π0n/N)=0

cos(2π2n/N)

sin(2π2n/N)

cos(2π3n/N)

sin(2π3n/N)

cos(2π0n/N)=1

Figure 4.10: Four Sine and Cosine Waves and a Signal x[n].

complex frequency coe�cients Xk, for k = 0, 1, . . . , N�1. Figure 4.10 shows an example
of a short signal and four sine and cosine waves, corresponding to k = 0 through 3.

The following is a short example of computing the DFT in matlab.
clc

clear all

close all

x=[1 2-i -i -1+2i]

len=length(x)

xk=zeros(1,len)

for k=0:len-1

for n=0:len-1

xk(k+1)=xk(k+1)+x(n+1)*exp(((-i)*2*pi*k*n)/len);

end

end

disp(’transform’)

disp(xk)

Figure 4.11: Matlab DFT Code.

2 2.83 2 5.66

Figure 4.12: Frequency Components.
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Running this code produces
2.0000 + 0.0000i -2.0000 - 2.0000i 0.0000 - 2.0000i 4.0000 + 4.0000i,
or simply (2,�2 � 2i,�2i, 4 + 4i). The absolute values of these complex numbers are
(2, 2.83, 2, 5.66) and these become the components of the frequency domain of the orig-
inal array x (Figure 4.12).

The Fourier transform is reversible, i.e., a discrete signal xn can be transformed
and then reconstructed in full detail with the inverse transform whose form is

xk =
1
N

N�1X

n=0

Xn · e2⇡ikn/N . (4.3)

Two points should be mentioned here, in regard to the forward and inverse DFTs:

Some authors prefer to use e2⇡ikn/N for the forward transform and e�2⇡ikn/N for
the inverse transform.

Many authors prefer to use the shorter notation !N
def= e2⇡i/N which implies !kn

N
instead of e2⇡ikn/N as well as !�kn

N instead of e�2⇡ikn/N .
Speed is very important in algorithms and their practical implementations. The

code of Figure 4.11 is slow because of the double loop it contains. If the length of the
original signal is about 1000, then the double loop has to iterate about a million times.
In general, we say that this code has a time complexity of the order of N2, where N is
the number of elements of the signal.

Fortunately, a much faster algorithm, known as the fast Fourier transform, or FFT,
Section 4.8, has been developed and implemented as part of many mathematical software
packages, such as Matlab and Mathematica. This algorithm was originated around
1805 by Gauss, and was rediscovered in 1965 by James Cooley and John Tukey. Its
time complexity is on the order of N log2 N , which for N = 1000 implies about 10,000
operation. Compared to the million steps required by the straightforward method for
N = 1000, the FFT reduces the computations time by a factor of 100!

Figure 4.13 illustrates the use of the FFT in Matlab. The signal to be transformed is
the sum of sinusoidal waves, and the frequency plot shows clearly the three contributing
frequencies and their relative strengths.

The matlab code that generated the figure is also listed. Notice the command
subplot(m,n,p), or subplot(mnp). This Matlab command partitions the current figure
window into an m-by-n matrix of plots and places the current plot in the p-th partition.
Partitions are numbered row by row, top to bottom, and within each row, left to right.
This is how several plots can be included in the same window. This command takes
more parameters. The parameter gca in the set command refers to the style of the plot
axes.

We use the term Discrete Fourier Transform (DFT) when the input signal data is
finite. For infinite input data, the term DTFT (Discrete Time Fourier Transform) is
used. Thus, the DFT becomes the DTFT as the length of the sample becomes infinite,
and, similarly, the DTFT converges to the continuous Fourier transform as the sampling
frequency approaches infinity. See also Section 6.3.

The following example of a one-dimensional Fourier transform is derived and com-
puted by hand, step by step, in order to shed more light on this important process. We
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time = 0:1/1000:2;
n = length(time);
hz = linspace(0,1000,n);

% signal = sinusoidal wave
signal = 2*sin(2*pi*5*time) + 3*cos(2*pi*8*time) + 12*sin(2*pi*12*time);

% transform it with fft
freq = 2*abs(fft(signal)/n);

% plot the time domain
figure(1), clf, subplot(211)
plot(time,signal,’k’,’linew’,2)
xlabel(’Time’), ylabel(’Amplitude’)
title(’Time domain’)

% plot the frequency domain
subplot(212)
stem(hz,freq,’k-s’,’linew’,2,’markerfacecolor’,’g’)
xlabel(’Frequency’), ylabel(’Amplitude’)
title(’Frequency domain’)
set(gca,’xlim’,[0 25])

Figure 4.13: The DFT of a General Sinusoidal Wave and Matlab Code.
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start with Equation (4.2), duplicated here

Xk =
N�1X

n=0

xn · e�2⇡ikn/N

=
N�1X

n=0

xn[cos(2⇡kn/N)� i · sin(2⇡kn/N)]. (4.2)

For the sake of compact notation we define bn
def= 2⇡kn/N , and write the kth

frequency bin explicitly

Xk = x0e
�b0i + x1e

�b1i + · · ·+ xN�1e
�bN�1i

= x0[cos(�b0) + i sin(�b0)] + x1[cos(�b1) + i sin(�b1)] + · · ·
· · ·+ xN�1[cos(�bN�1) + i sin(�bN�1)]
= x0 cos(�b0) + x1 cos(�b1) + · · ·+ i[x0 sin(�b0) + x1 sin(�b1) + · · ·]
= Ak + iBk.

This produces the kth frequency bin Xk as a complex number whose magnitude and
direction are

p
A2

k + B2
k and arctan(Bk/Ak), respectively (Figure 4.4). The magnitude

of Xk is the magnitude of the sinusoid at frequency bin k and the phase of Xk is the
phase of that sinusoid (how much it is shifted horizontally).

We now choose a simple sine wave of amplitude 1 and frequency 1 Hz. We sample
it eight times to end up with the eight equally-spaced samples

x = [0, 0.7071, 1, 0.7071, 0,�0.7071,�1,�0.7071].

(This is because sin(45�) = sin(135�) =
p

2/2 ⇡ 0.7071.) The first frequency coe�cient
X0 is simply the sum of the eight samples, which happens to be zero. The second
coe�cient takes longer to compute

X1 = 0 · e� i2⇡·1·0
8 + 0.7071 · e� i2⇡·1·1

8 + 1 · e� i2⇡·1·2
8 + · · ·

= 0 + 0.7071
⇥
cos(�⇡

4
) + i sin(�⇡

4
)
⇤
+ 1

⇥
cos(�⇡

2
) + i sin(�⇡

2
)
⇤
+ · · ·

= 0 + (0.5� 0.5i) + (�i) + (�0.5� 0.5i) + (0.5� 0.5i) + (�i) + (�0.5� 0.5i)
= 0� 4i.

Similar tedious computations result in X2 = X3 = X4 = X5 = X6 = 0 and X7 = 0 + 4i.
Thus, the magnitudes of the two nonzero frequency coe�cients are

p
02 + (±4)2 = 4,

and a plot of the frequency domain consists of two short vertical lines which correspond
to coe�cients X1 and X7, or frequencies of 1 Hz and 7 Hz.

The frequency resolution of the frequency bin is 1 Hz (it equals the sampling fre-
quency of 8 Hz, divided by the number of samples, which is also eight). The frequency
spectrum consists therefore of eight bins, each 1 Hz greater than its predecessor. We
started with a simple, 1 Hz sine wave, so we expect to end up with a frequency of 1 Hz
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in the frequency domain, but the 7 Hz frequency that was also obtained is a surprise.
The explanation is that we ended up with a two-sided frequency plot, that is symmetric
about the 4 Hz Nyquist frequency. The Nyquist frequency (Page 122) is the sampling
frequency divided by 2, or in our case 4 Hz, and with 8 samples it is impossible to obtain
any higher frequencies.

In general, the frequency diagram produced by the Fourier transform is organized
as follows. It is symmetric about the Nyquist frequency, with the two parts on both sides
of this frequency being mirror images of each other as shown in Figure 4.14. The extra
part to the right of the Nyquist frequency is normally referred to as negative frequencies.
This part is explained on Page 72 and is usually ignored. Even more! The energy of the
DFT frequency diagram is spread over its two symmetric parts, which means that each
is shown, including any peaks, at half its real height.

Nyquist freq.

Positive frequencies Negative frequencies

Figure 4.14: Positive and Negative Frequencies.

The reason for this behavior (see also an explanation on Page 72) is the famous
Euler’s formula eik = cos(k) + i sin(k), from which is derived the cosine identity

cos(k) =
eik + e�ik

2
, ! cos(2⇡ft) =

ei2⇡ft + e�i2⇡ft

2
, (4.4)

which says that a real-valued cosine equals the average of two complex exponentials, one
positive and the other negative. The negative exponential corresponds to the positive
frequencies in the frequency diagram, and the positive exponential corresponds to the
negative frequencies in this diagram. Because of the factor of 1/2 in Equation (4.4),
each half of the diagram contains half the energy of the cosine. If we ignore the negative
frequencies, we should double the height (i.e., amplitudes) of the positive frequencies in
the diagram.

The following examples of the one-dimensional Fourier transform may shed more
light on the meaning of the results (frequency coe�cients and negative frequencies) of
this important transform.

Figure 4.15 illustrates the DFT of a pure cosine wave with frequency range from 0
to 50 radians. Measured in Hz, this is 50/(2⇡) ⇡ 8 Hz and the Fourier transform exhibits
a spike at 8 Hz, as expected. In addition, there is another spike at 42 Hz, because 8 and
42 are equally-spaced about the Nyquist frequency of 25 (half of 50).

Figure 4.16 features damped oscillations of a pure sine wave which are obtained by
multiplying it by a negative exponent. A small random perturbation is also added. The
frequency of this function varies from 0 to 200 radians in steps of one radian. Expressed
in Hz, this frequency is 200/(2⇡) ⇡ 32. The Fourier transform exhibits spikes at 32 Hz (in
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testData = Table[Cos[x], {x, 0, 50}];
ListLinePlot[testData, PlotRange -> Full]
ListLinePlot[Abs[Fourier[testData]], PlotRange -> Full]

10 20 30 40 50

0.5
1.0
1.5
2.0
2.5
3.0
3.5

10 20 30 40 50

- 1.0

- 0.5

0.5

1.0

Figure 4.15: DFT of a Pure Cosine Wave.

the positive frequencies range) and 168 Hz (in the negative frequencies range), because
32 and 168 are equally-spaced about the Nyquist frequency of 100 (half of 200).

White noise is a random signal featuring equal intensity at every frequency in its
entire frequency range. Constructed as a discrete time signal, white noise is a set of
samples that are serially uncorrelated random numbers with zero mean and finite vari-
ance. In principle, the DFT of such a signal should be a horizontal line, because it is
the same for all frequencies. In practice, any white noise, whether constructed by soft-
ware or sampled from a real source, is imperfect and its DFT di↵ers from a horizontal
line to some extent. The sequence of 200 samples generated and used in Figure 4.17 is
very short and is far from an ideal white noise. It was generated by a simple algorithm
proposed in a textbook, and its DFT features variations between frequencies.

Robert Brown was a Scottish botanist and paleobotanist who used a microscope
extensively and made important contributions to botany. Today, he is known mostly for
his discovery of the random walk named Brownian motion after him. He spread pollen in
water and discovered through his microscope that the individual pollen particles moved
erratically and randomly in the water as if propelled by small, random collisions with
invisible objects. This type of motion was later termed random walk and was finally
explained by Einstein in 1905 as the result of collisions with water molecules.

Figure 4.18 illustrates a typical sequence of 200 random walks, and it is obvious
that the large-scale behavior of this sample is dominant and is much bigger than any
small fluctuations. This is why the very low frequencies are so big (> 150) in the DFT,
while the amplitudes of higher frequencies are much smaller (< 10).

4.4.1 Computational DFT

In theory, theory and practice are the same. In practice, as most programmers know,
there is often a significant di↵erence between them. When studying a theory, it is easy
to skip and ignore “minor” practical considerations, but when writing software, those
minor points tend to pop up suddenly, to confront the programmer, annoy him, place
bugs in his work and doubt in his mind. Nothing works until the programmer has
thoroughly understood the details of the problem being coded, as well as all its special
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Figure 4.16: Damped Oscillations of a Pure Sine Wave.
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Figure 4.17: DFT of Simulated White Noise.
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Figure 4.18: DFT of Simulated Brownian Noise (Random Walk).
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cases. This section is concerned with ways of fully and precisely computing the DFT
numerically, and it uses Mathematica as the software of choice.

Figure 4.19 lists Mathematica code that computes (on line 11) and displays (on
line 12) 100 points of the sum of two cosine functions, one with amplitude 5 (line 10)
and frequency f1 = 20 Hz (line 6) and the other with amplitude 1 and frequency
f2 = 15 Hz (line 8). Line 2 specifies the total number of points of the data being
transformed. Line 3 is the sampling rate, the number of samples per second. Line 4
computes the time increment (1/50 = 0.02 seconds) between samples. Line 6 selects a
frequency of 40/(0.02 · 100) = 20 Hz, which later, on line 11, translates to exactly 40
periods during the two seconds “life” of the signal. Similarly, line 8 selects a frequency
of 30/(0.02 ·100) = 15 Hz, which later, on line 11, translates to exactly 30 periods during
two seconds.

Finally, line 10 selects an amplitude of 5 for the first cosine of our signal. The signal
itself, a sum of two cosines, is computed, on line 11, as a table where the counter t starts
at 0, ends at dt(np� 1) = (1/50)(100� 1) = 99/50 = 1.98 seconds, and is incremented
in steps of dt = 1/50 = 0.02 seconds. Thus, the data to be transformed consists of 100
real values (the value of np).

This long preparation and selection of frequencies ensures a clean transform where
only four frequency coe�cients (two positive and two negative) are nonzero. We later
deal with frequencies that result in a noninteger number of periods during the two-second
signal.

Four tests are listed and their results displayed in Figure 4.20.
Test 1 (lines 13–17) computes the entire 100⇥100 DFT matrix in a double loop and

performs a dot product of this matrix with the row of 100 data samples. This approach
is shown for illustration purposes only, since there is no need to generate and save the
entire matrix in memory. Also, for large sets of samples, this matrix may be too big,
even for current computer memories.

Test 2 (lines 18–20) is similar, except that the DFT matrix is computed by the
single Mathematica command FourierMatrix[]. An important point is the length of
the vertical bars in the figure. They are 50 and 10 units long, compared with the correct
values of 5 and 1 in the other tests. Notice the factor of 2 that multiplies the Abs
command on lines 16, 19, 23, and 32. This factor is needed because of the existence of
negative frequencies, and has been discussed earlier. There is also a factor of np shown
on lines 15, 16, and 31. It is needed in order to normalize the values of the frequency
coe�cients and bring them down to the values of the actual amplitudes.

Test 3 (lines 21–25) employs the Fourier[data, FourierParameters->{-1, -1}]
command, which does all the work and places the Fourier frequency coe�cients in ft,
to be displayed. Line 25 prints the values of six elements of ft, just to make sure that
the right ones (in locations 41 and 61) are nonzero and equal 2.5, half the value of the
amplitude of the first cosine in the data.

Finally, test 4 (lines 29–34) works a bit harder. On line 28 it prepares an array
fourcoef of zeros and in each iteration of the loop on lines 29–31 it computes a line
of the DFT matrix (a complex sine wave), dot-products it with the data, and adds the
result to the next element of fourcoef. Line 34 performs a test similar to that of line 25.

Following are several important notes.

The x-axes of the four plots of Figure 4.20 seem wrong. They go from 0 to 100
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1 (*Four ways to compute the 1D DFT in Mathematica*)
2 np = 100; (*Number of points*)
3 sr = 50; (*Sampling rate, # of samples/sec*)
4 dt = 1/sr;(*Time increment between samples*)
5 (*Frequency resolution = sr/np=1/(dt np) *)
6 f1 = 40/(dt np);(*1st freq. 40/2=20 Hz.
7 Generates exactly 40 periods in our 2 sec time interval*)
8 f2 = 30/(dt np); (*2nd freq. 30/2=15 Hz -> 30 periods*)
9 (*p=1/f1 is the period of f1 *)

10 a = 5;(*Amplitude*)
11 data = Table[a Cos[2Pi f1 t]+Cos[2Pi f2 t], {t, 0, dt(np-1), dt}];
12 ListLinePlot[data]
13 (*Test 1. Compute the entire DFT matrix explicitly and perform a \
14 dot-product with the signal*)
15 dftMat = Table[Exp[-2 Pi I k n/np], {n, 0, np-1}, {k, 0, np-1}];
16 ListPlot[2 Abs[dftMat.data]/np, Filling -> Axis,
17 PlotStyle -> {Red, PointSize[0.015]}]
18 (*Test 2. Compute the DFT matrix with FourierMatrix[m] *)
19 ListPlot[2 Abs[FourierMatrix[np, FourierParameters->{-1,-1}].data],
20 Filling -> Axis, PlotStyle -> {Blue, PointSize[0.015]}]
21 (*Test 3. Compute the DFT with the Fourier[data] command *)
22 ft = Fourier[data, FourierParameters->{-1,-1}];
23 ListPlot[2 Abs[ft], PlotRange -> All,
24 PlotStyle -> {Orange, PointSize[0.015]}, Filling -> Axis]
25 ft[[{40,41,42,np-40, np-40+1, np-40+2}]] (*Print 6 strategic values*)
26 (*Test 4. For each frequency, compute a row of the DFT matrix, \
27 multiply by the signal, and store in fourcoef*)
28 fourcoef = Table[0, {np}];
29 For[fq = 1, fq <= np, fq++,
30 csw = Table[Exp[-I 2Pi (fq-1) t/np], {t, 0, np-1}];
31 fourcoef[[fq]] = data.csw/np];
32 ListPlot[2 Abs[fourcoef], PlotRange -> All,
33 PlotStyle -> {Gray, PointSize[0.015]}, Filling -> Axis]
34 ft[[{40,41,42,np-40, np-40+1, np-40+2}]] (*Check 6 strategic values*)

Figure 4.19: Four ways to compute the DFT in Mathematica
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Figure 4.20: Four Tests of Computing the DFT in Mathematica.

(the number of points in the signal) because the Fourier transform outputs np frequency
coe�cients in response to an input signal with np points. In order to plot the correct x-
axis, which corresponds to the frequencies, we should create a list freq with the correct
frequencies from 0 to sr, and specify freq as the x-axis of the plot, as shown in this
listing:

inc = sr/Length[data];(*increment*)
freq = Table[f, {f, 0, sr - inc, inc}]; (* x-axis of plot *)
ListPlot[Transpose[{freq, Abs[Fourier[data]]}], PlotRange -> All,
Filling -> Axis, PlotStyle -> {Red, PointSize[0.015]}]

These lines should replace the ListPlot commands on lines 16–17, 19–20, 23–24,
and 32–33. The result will show an x-axis from 0 to 50, whose center point corresponds
to the Nyquist frequency of sr/2 = 25, and with nonzero frequency coe�cients at 15 Hz
and 20 Hz.

Frequencies f1 and f2 have specifically been chosen so that the length of the signal,
100 data points during two seconds, would correspond exactly to an integer number of
periods. Frequency f1 of 20 Hz implies 40 periods during the 100 points, while frequency
f2 of 15 Hz corresponds to 30 periods during the two-second signal length. This is why
the tests results look so “clean” and show only two positive and two negative spikes. We
now change the code of Figure 4.19 to find out what happens when other frequencies
are used.
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Changing line 6 to f1 = 40.4/(dt np) results in Figure 4.21 for all four tests. The
two frequencies of 20.2 and 15 are shown correctly, but other frequencies are nonzero,
and the amplitudes seem wrong as well. The reason for this behavior is that the Fourier
transform cannot accurately represent the time data with just one or two frequencies.
An entire range of frequencies is needed, which may not seem elegant, but is correct.

This is why it is important to sample the raw data so it contains an integer number
of periods whenever possible. Otherwise, the computation returns blurred Dirac delta
functions (see Subsection 5.2 for the delta function). Notice also the comment about the
frequency resolution on line 5 of Figure 4.19. The parameters of this test were chosen
such that the frequency resolution sr/np = 1/(dt np) would equal 1/(0.02 · 100) =
0.5. This implies that changing f1 from 40/(dt np) to 41/(dt np) would change the
frequency from 40/2 = 20 to 41/2 = 20.5, producing exactly 41 periods during the
2 second time interval. However, changing 40 to 40.4 (or any value other than an integer
or half-integer) results in a number of periods that is noninteger.

The term temporal resolution is the sampling rate, the number of samples per
second, obtained from the hardware device that measures and samples the signal (50
Hz in our case). We assume that the sampling rate is fixed. Notice that the sampling
rate is independent of the total time it takes to measure and sample the signal, nor is it
dependent on the total number of samples collected (the number of points in the signal
that’s being transformed).

In the listing of Figure 4.19, the sampling rate sr is defined on line 3 and is used on
line 4 to compute the time gap dt between samples. From then on, it is dt that is used
instead, first to specify the frequencies on lines 6 and 8, and then to actually sample the
signal, on line 11.

The term frequency resolution, sometimes also called spectral resolution, is un-
derstood as the distance between two consecutive frequency values, and is defined as
the sampling rate divided by the signal length, the total number of points (100) in the
signal. Line 29 of Figure 4.19 starts a loop that iterates np times, where np is the num-
ber of points in the signal (100). Thus, our frequency resolution is 50/100 = 0.5 Hz,
which means that we have a measurement of the spectral energy of the time signal every
0.5 Hz.
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Figure 4.21: The DFT of Data With a Noninteger Number of Periods.
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There is an interesting relation between the sampling rate and the frequency resolu-
tion. Once we specify the sampling rate sr of a signal, its boundaries are automatically
determined and can no longer be changed. On the left of the frequency axis there is
zero frequency and on the right there is the Nyquist frequency. These boundaries are
independent of the number of points np of the signal.

At the same time, the number of frequency coe�cients (or frequency bins) in the
output of the transform equals the number np of points, as indicated, for example, by
line 29 of Figure 4.19. Thus, adding more points to the signal (i.e., increasing np) would
increase the frequency resolution, while the sampling rate stays the same. Each point
added to the signal increases the number of frequency coe�cients by one, thereby helping
to smooth the plot of the coe�cients. In the absence of more data points, zeros can be
appended to the signal, which would also increase the number of frequency coe�cients
and would result in a smooth plot. This is discussed in more detail in Subsection 4.5.1.

Line 22 of Figure 4.19 contains the option FourierParameters. Here is what the
Wolfram literature says about it.

FourierParameters->{a,b} modifies the Mathematica Fourier command as fol-
lows:

vs =
1

N (1�a)/2

NX

k=1

uke2⇡ib(k�1)(s�1)/N ,

where uk are the data samples being transformed and vs is a frequency coe�cient. Thus,
the choice FourierParameters->{0,1} results in the standard form of the transform.
The Wolfram literature recommends the following settings {-1,1} for data analysis and
{1,-1} for signal processing.

To ensure a unique inverse discrete Fourier transform, b must be relatively prime
to N .

The length of the list of data uk supplied to Fourier does not have to be a power
of two.

The list given in Fourier[list] can be nested to represent an array of data in any
number of dimensions.

The array of data must be rectangular.

If the elements uk of the input list are exact numbers, Fourier begins by applying
N to them.

Next, we examine the properties of the DFT matrix. Figure 4.22 lists two DFT
matrices, an exponential and an !, where the latter is defined by !N = e�2⇡i/N and its
elements are the Nth roots of unity. It is easy to see that the exponential matrix has
the following features:

The top row and leftmost column are all 1’s, because they correspond to zero values
of counters n and k.

The trigonometric functions sin and cos have a period of 2⇡, which implies the
following identity

cos

�8⇡

7

�
= cos


�8⇡

7
+ 2⇡

�
= cos


(�8 + 14)⇡

7

�
= cos


6⇡
7

�
.
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m = 7;
MatrixForm[Table[Exp[-2 Pi I k n/m], {n, 0, m-1}, {k, 0, m-1}]]

Figure 4.22: Exponential and Omega Matrices of DFT Frequency Coe�cients.

With this and the famous Euler formula in mind, we conclude that e6i⇡/7 = e�8i⇡/7 and
similarly e4i⇡/7 = e�10i⇡/7 and e2i⇡/7 = e�12i⇡/7. This explains the last three items on
the 2nd row of the matrix, as well as similar symmetries found in all the other rows.

One result of the above point is that of the six non-unity elements of any row and
column, three have positive exponents and the other three have negative exponents.

The entire matrix is symmetric.

Because of the properties above, it is easy to show that multiplying such a matrix
with a data column of seven real numbers produces seven complex numbers featuring
the following properties: (1) The dot product of the top row (all 1’s) and the data is
simply the sum of the data items, and is often referred to as the DC component of the
transform (although sometimes the term DC refers to the average instead of the sum).
(2) If the dot product of the second row and the data is the complex number a+bi, then
the dot product of row 7 and the data would be the conjugate a� bi. (3) The same is
true for the dot products of row 3 and row 6, and for row 4 and row 5. The resulting
seven frequency components would therefore be

(sum + 0i, a + bi, c + di, e + fi, e� fi, c� di, a� bi), (4.5)
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and it is this unexpected result that explains the existence of the positive and negative
frequencies.

The following Mathematica lines (for m = 7) illustrate this result.
dftmt = Table[Exp[-2Pi I k n/m], {n, 0, m-1}, {k, 0, m-1}]
dftmt . {3., 7, 1, -8, 9, 0, 2}

⇧ Exercise 4.2: The discussion of the DFT matrix above has assumed a 7 ⇥ 7 matrix.
Explain what happens when the number of data samples is even. What are the results
of the dot products between the rows of the Fourier matrix and the data samples.

A common term often used in connection with the DFT is power spectrum. Math-
ematically, power spectrum is the square of the amplitude spectrum. Each frequency
coe�cient is squared and the set of squared coe�cients is plotted. Squaring a number
greater than unity yields a bigger result, while the square of a number n < 1 is smaller
than n. Thus, squaring a set of numbers increases the details of the large ones and
shrinks the di↵erences between the small ones. It amplifies the prominent features of
the signal (which often are the important ones) in contrast with the amplitude spectrum
which is concerned with all the signal’s features, large and small, equally. Figure 4.23 is a
quick demonstration of a power spectrum plotted on top of the corresponding amplitude
spectrum.
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signal = Table[2 Sin[ t], {t, 0, 200, 7}];
m = Length[signal];
ListLinePlot[signal];
ft = Fourier[signal, FourierParameters -> {-1, -1}];
g1 = ListLinePlot[2 Abs[ft], PlotRange -> {All, {0, 3}}];
po = (2 Abs[ft])^2;
g2 = ListLinePlot[po, PlotRange -> {All, {0, 3}}, PlotStyle -> {Red}];
Show[g1, g2, PlotRange -> {All, {0, 3}}]

Figure 4.23: A Plot of Amplitude Spectrum and Power Spectrum.
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4.5 The Inverse DFT

The DFT is perfect in the sense that it is lossless as well as reversible. Its inverse is
given by Equation (4.3), duplicated here

xk =
1
N

N�1X

n=0

Xn · e2⇡ikn/N , (4.3)

which shows that the Fourier matrix of the inverse transform is the inverse (up to a
factor of N) of the Fourier matrix of the forward transform, Equation (4.2). This can
also be checked by the following code

np = 7;
fm = Table[Exp[-2. Pi I k n/np], {n, 0, np - 1}, {k, 0, np - 1}];
ifm = Table[Exp[2. Pi I k n/np], {n, 0, np - 1}, {k, 0, np - 1}];
Chop[fm . ifm] // MatrixForm

Figure 4.24 is a simple example of the forward and inverse DFT. The signal, con-
structed on line 1, is a sum of two cosines, sampled at 100 points and plotted on line 3.
The entire 100⇥ 100 DFT matrix is computed on line 4 and multiplied by the signal on
line 5, where the result (the row of frequency coe�cients) is saved in dft. The inverse
DFT matrix is similarly computed on line 7 and multiplied by dft on line 8 where (1)
only the real part of the product is saved, and (2) a small value of 25 is added to the
result before it is saved in idft. Line 9 displays the inverse transform, and line 10
displays both the original signal and the inverse transform. The following comments are
important:

The value 25 added to idft on line 8 results in shifting the display of the inverse
transform (the red part of the figure) up a bit, so the original signal (in blue) would be
visible under it. Otherwise, the two curves are identical.

The product idftMat.dft on line 8 should be real. All the imaginary parts should
cancel out because the forward and inverse DFT matrices di↵er only by a minus sign
in the complex exponent and are therefore inverses (up to a factor of np) of each other.
However, because of the finite precision of computer arithmetic, very small imaginary
values are often left after so many computations. These are illustrated in Figure 4.25,
itself produced by line 11. Even though these tend to be on the order of 10�16 to 10�14,
they may significantly corrupt the inverse transform.

Equation (4.4), duplicated here

cos k =
eik + e�ik

2
, ! cos(2⇡ft) =

ei2⇡ft + e�i2⇡ft

2
, (4.4)

explains why the sum of two complex exponentials, one positive and the other negative,
results in a real-valued cosine.

Thus, the inverse DFT consists of a loop where in each iteration the row dft of
(complex) frequency coe�cients is multiplied by a (complex valued) row of the inverse
Fourier matrix idftMat to create a (real valued) row of numbers. The rows of matrix
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1 signal = Table[2 Cos[2 Pi 2 t] + Cos[2 Pi 1 t], {t, 0, 1.98, 0.02}];
2 np = Length[signal];
3 g1 = ListLinePlot[signal];
4 dftMat = Table[Exp[-2 Pi I k n/np], {n, 0, np-1}, {k, 0, np-1}];
5 dft = dftMat.signal;
6 ListPlot[2 Abs[dft]/np, Filling->Axis, PlotStyle->{Red, PointSize[0.015]}];
7 idftMat = Table[Exp[2 Pi I k n/np], {n, 0, np-1}, {k, 0, np-1}];
8 idft = Re[idftMat.dft] + 25;
9 g2 = ListLinePlot[idft/np, PlotStyle -> Red];

10 Show[g1, g2]
11 ListLinePlot[Im[idftMat.dft], PlotStyle -> Red]

Figure 4.24: DFT and Inverse DFT: A Simple Example.
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Figure 4.25: Traces of Imaginary Numbers.
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idftMat contain complex sine waves of higher and higher frequencies, which is why each
product of dft and a row of idftMat results in an array of numbers that contributes
the next higher-frequency component to the final result idft, which is the original time
series signal.

Another unexpected result of this relation between the forward and inverse Fourier
matrices is that they are interchangeable. If we move the minus sign from the exponent
on line 4 to the exponent of line 7, the graph of Figure 4.24 would remain the same.

The following question is at the heart of the inverse transform: What is the use of
this? Why would we want to transform a set of data items only to transform it back to
its original state? The forward Fourier transform yields the frequencies hidden in the
original signal, and this information may be useful, but the applications of the inverse
transform are not immediately clear.

It turns out that the inverse transform is useful if we perform it after we edit
the frequency coe�cients. One example of useful, practical editing is removing noise.
Imagine trying to record sound under noisy conditions. A nearby motor automatically
starts from time to time, corrupting parts of the sound that’s being recorded. The result
is a large array of audio samples, some of which are mostly due to noise. Often, noise is
high-frequency sound, and this is easy to identify when the DFT is applied to the audio
samples. Regions of noise would appear as large high-frequency coe�cients, and those
may be easy to recognize and set to zero. Once done, the inverse transform constructs
a set of audio samples that may sound much better than the original. Such a process is
referred to as bandstop filtering and can also be used, as in Figure 4.42, to clean digital
images of high-frequency spatial “dirt” that came from the original image.

4.5.1 DFT Zero-Padding

The input to a DFT is an array of N samples from a signal, and the output of the
transform is an array of N frequency coe�cients, sometimes referred to as frequency
bins. If N is small, a plot of the (absolute values) of the coe�cients is jagged and rough.
The technique of zero-padding a time-domain signal can be used to get more frequency
bins and a smooth plot. We start with the definitions of the DFT and its inverse,
Equations (4.2) and (4.3), respectively. In cases where the input xn is infinite, we use
the discrete-time Fourier transform (DTFT), where the frequency ! is a continuous
variable

X̃(!) =
N�1X

n=0

xne�in!. (4.6)

Comparing Equations (4.6) and (4.2) verifies that the DFT equals the DTFT when the
latter is sampled at frequency values k that satisfy

X[k] = X̃(2⇡k/N), k = 0, 1, . . . , N � 1.

Now imagine that we extend the original signal xn from N points to L points by
appending zeros, and then compute its length-L DFT that we denote by XL[l].

XL[l] =
N�1X

n=0

xne�i2⇡nl/L = X̃(2⇡l/L), l = 0, 1, . . . , L� 1. (4.7)
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It turns out that the length-L DFT equals a denser version of X̃(!), one where ! consists
of L instead of N frequency bins.

Next, we write Equation (4.6) with the help of Equation (4.3). This yields an
expression for X̃(!) in terms of the N frequency bins X[k]

X̃(!) =
N�1X

n=0

1
N

N�1X

k=0

X[k]ei2⇡nk/Ne�in!

=
N�1X

k=0

X[k]
1
N

N�1X

n=0

e�in(!�2⇡k/N

=
N�1X

k=0

X[k]
1
N

G(! � 2⇡k/N), (4.8)

Where the interpolation function G(!) is defined by

G(!) =
1
N

e�in!. (4.9)

The last step is to substitute the value 2⇡l/L for ! in Equation (4.8) and compare
the result to Equation (4.7), from which we can conclude that the length-L DFT XL[l]
can be computed from the shorter, length-N DFT using the interpolation function G(!)
from Equation (4.9).

XL(l) = X̃(2⇡l/L) =
N�1X

k=0

X[k]G(2⇡l/L� 2⇡k/N).

This is the justification for the process of zero padding in the time domain. The
advantage of this process is the increase in the number of frequency bins (and therefore
in the frequency resolution) from N to L. The e↵ect is a smoother curve of the frequency
bins, as illustrated in Figure 4.26.

The figure starts with a 7-point signal sig0 to which are appended first 10 zeros and
then 100 zeros, ending up with signals sig1 and sig2. It is obvious that the resulting
curves of the frequency coe�cients become smoother. Also note that the x-axes show
the di↵erent number of points, 7, 17, and 107.

Frequency-domain zero padding. One of the fundamental principles of discrete
signals is that zero padding in one domain results in an increased sampling rate in
the other domain. Thus, zero padding in the frequency domain results in upsampling
(increased sampling rate) in the time domain.

Zero padding in the time domain corresponds to frequency interpolation in the
frequency domain, while zero padding in the frequency domain corresponds to tempo-
ral interpolation in the frequency domain. Both interpolations are done by the sinc
function (more accurately, its normalized version). This all-important function and its
applications to signal reconstruction by way of the sampling theorem are discussed in
Subsection 5.2.
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sig0 = {-4, 6, 0, 3, 1 , -2, -4};

ListLinePlot[Abs[Fourier[sig0, FourierParameters -> {1, 1}]],

PlotRange -> Full]

sig1 = PadRight[sig0, 17];

ListLinePlot[Abs[Fourier[sig1, FourierParameters -> {1, 1}]],

PlotRange -> Full, PlotStyle -> Red]

sig2 = PadRight[sig0, 107];

ListLinePlot[Abs[Fourier[sig2, FourierParameters -> {1, 1}]],

PlotRange -> Full, PlotStyle -> Green]

Figure 4.26: Zero Padding in the Time Domain

4.5.2 Aliasing

The Sampling Theorem, Section 5.1, states that we can scan a time signal, convert
it into samples, and still be able to reconstruct the original, analog signal perfectly if
the sampling rate is at least twice the maximum frequency of the signal. This section
deals with aliasing, a phenomenon caused by insu�cient sampling, also referred to as
undersampling or sub-sampling. The following are two causes of aliasing:

The sampling rate is exactly twice the maximum frequency of the signal, but
it is insu�cient because the signal happens to be sampled at certain strategic points,
as illustrated in Figure 4.27. The figure shows a pure sine wave sampled at twice its
frequency. Each period contains exactly two samples, but the samples are taken at such
points that their reconstruction is very di↵erent from the original signal.

A signal is sampled at a little more than twice its maximum frequency, but because
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of vibrations, temperature gradients, or slight inaccuracies in the sampling device, small
fluctuations are introduced in the analog signal and are big enough to slightly increase
its theoretical maximum frequency, thereby resulting in undersampling.

In both cases, the solution is to rescan the signal, if possible, at a higher sampling
rate. Figure 4.27 shows how aliasing may cause the reconstruction process to end up
with a signal (in green) that is completely di↵erent from the original signal (in blue)
and always has lower frequency. This e↵ect of low frequency aliasing is so noticeable
that Marc Levoy, in his outstanding lectures on photography, defines aliasing as high
frequencies masquerading as low frequencies due to insu�ciently closely-spaced samples
(lecture 7 of [Levoy 16]). See also Exercise 5.1 for examples of aliasing.

Here is what wikipedia has to say about aliasing “In signal processing and related
fields, aliasing is an e↵ect that causes di↵erent signals to become indistinguishable (or
aliases of one another) when sampled.” Thus, when a sound wave is sampled at a
rate that is too low, the reconstructed sound is di↵erent from the original sound and
it features low frequencies. When an image is sampled (scanned or photographed)
at a low rate, its reconstruction also features low pixel frequencies. Such frequencies
are associated with important image features, which is why aliasing causes significant
distortions.

A good example of avoiding aliasing is sound sampling for CDs and DVDs. The
range of human hearing is typically from 16–20 Hz to 20,000–22,000 Hz, depending on
the person and on age. When sound is digitized at high fidelity, it should therefore be
sampled at a little over the Nyquist rate of 2⇥22,000 = 44,000 Hz. This is why high-
quality digital sound is based on (at least) a 44,100-Hz sampling rate. Anything lower
than this rate may result in distortions, while higher sampling rates do not improve the
reconstruction (playback) of the sound. We can consider the sampling rate of 44,100 Hz
a lowpass filter, since it e↵ectively removes all the frequencies above 22,000 Hz.

Signal stationarity. A time signal can be stationary or non-stationary. A typical
dictionary definition of the term stationary is “1. fixed in a station, course, or mode:
immobile. 2. Unchanging in condition; a stationary population.” This term is often
confused with stationery, whose meaning is “writing and other o�ce materials.”

The stationarity of a signal is often ambiguous, but this term is nevertheless impor-
tant because of its use in interpreting the results of the Fourier transform of a signal.
Up to now, we have dealt with a few features of a time signal such as its amplitude,
frequency, and phase, but there are many more statistical features that are important
when trying to interpret the results of a transform. Examples are mean (the average
or expected value of a signal), variance (the distribution of a signal around its mean),
kurtosis (the shape of a statistical distribution), dominant frequency, spectral shape,
and phase stability.

Those who work with signals often have to compute some features of a given signal,
and the concept of stationarity arises when we try to compute features of just part of
a signal. Imagine placing a window on top of a signal and measuring the mean of the
signal inside the window. We then move the window to other regions of the signal and
may also change its width in the process. If the mean of the signal is the same in every
window, the signal is said to be mean-stationary.

Thus, in the field of digital signal processing, signal stationarity is defined as follows:
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phi = Pi/4;
g1 = Plot[Sin[t], {t, 0, 10 Pi}];
pn = Table[{t, Sin[t]}, {t, 0, 10 Pi, Pi}];
g2 = ListLinePlot[pn, PlotStyle -> Green];
g3 = ListPlot[pn, PlotStyle -> Red];
Show[g1, g2, g3]
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phi = Pi/4;
g1 = Plot[Sin[t + phi], {t, 0, 10 Pi}];
pn = Table[{t, Sin[t + phi]}, {t, 0, 10 Pi, Pi}];
g2 = ListLinePlot[pn, PlotStyle -> Green];
g3 = ListPlot[pn, PlotStyle -> Red];
Show[g1, g2, g3]

Figure 4.27: Aliasing Caused by Slightly Low Sampling Rates
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A signal is stationary when its statistical characteristics do not significantly vary over
time.

The top part of Figure 4.18 is a good example of a mean non-stationary signal,
because its value rises from �40 to +40 over its 200-point life. Similarly, the signal on
the bottom of the same figure is amplitude non-stationary because its amplitude is very
high at its two extremes. Finally, the top signal of Figure 4.16 is non-stationary in both
its amplitude and frequency, the latter because of the random contributions.

In spite of its importance, stationarity is an ambiguous concept because of the
following:

A signal may be stationary in several features and non-stationary in other features.

When moving windows over a signal to measure a certain feature, the measurements
may di↵er slightly. We therefore need a measure of uncertainty, a threshold or leniency,
in deciding whether two windows should be considered equal.

The complexity of a signal may lead to wrong measurements of a feature. The
frequency of a signal may look very similar in two windows, but when we zoom on the
signal, small frequency details that had been hidden earlier may now be visible and
indicate that the windows feature di↵erent frequencies.

Because of these ambiguities, those who measure features of signals must use their
experience to determine equality of windows and the stationarity of a signal. This is an
important point because non-stationarities in a time signal can introduce distortions in
its Fourier transform and make it more di�cult to interpret. The following examples
are illustrative. Figures 4.28 and 4.29 show an amplitude non-stationary signal and its
transform. The top part of the latter figure is the time signal (a product of two sine
waves with frequencies 1/2 and 3), the middle part is its Fourier transform (already looks
weird), and the bottom part is a vertical enlargement of the x-axis of the transform. It
is clear that most of the frequency coe�cients are concentrated around 3 Hz, but lots
of the energy is spread all over the spectrum, with many small coe�cients.

sr = 30;
f1 = 1/2; f2 = 3;
s1[t_] := 0.7 + 0.5 Sin[2 Pi f1 t];
s2[t_] := Sin[2 Pi f2 t];
Plot[s1[t] s2[t], {t, 0, 3}]
pn = Table[s1[t] s2[t] , {t, 0, sr, 1/sr}];
inc = sr/Length[pn];(*increment*)
freq = Table[f, {f, 0, sr - inc, inc}]; (* x-axis of plot *)
ListPlot[ Transpose[{freq, 2 Abs[Fourier[pn, FourierParameters -> {-1, 1}]]/pn}],
PlotRange -> All, Filling -> Axis, PlotStyle -> {Red, PointSize[0.001]}]

Figure 4.28: Mathematica Code for Figure 4.29

Figure 4.30 illustrates a frequency non-stationary signal and its transform. The
signal is a cosine whose frequency is determined by a sine wave. This signal features
increased frequency during its short window (it is a chirp), which is why it is reasonable
to expect frequency coe�cients of about the same size at higher and higher frequencies.
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Figure 4.29: An Amplitude Non-Stationary Signal and its Transform



82 4.6 The Two-Dimensional DFT

What the figure actually shows is a mixture of many coe�cients with magnitudes that
seem random and defy interpretation.

These examples are typical and they suggest that a time signal should be checked
for stationarity before it is Fourier transformed.

4.6 The Two-Dimensional DFT

We live in the digital age, and are surrounded by digital images, which is why the
two-dimensional DFT is relevant to our discussion and is now introduced. Once we
understand this version of the transform and witness its power, we realize the following,
surprising fact; all visual patterns, in fact the entire visual world, can be represented as
a sum of two-dimensional sine waves, which resemble corrugated two-dimensional metal
or plastic sheets. That’s all. Nothing else is needed to mathematically represent any of
the images around us, even those that look random and are far removed from any wavy
form.

This conclusion is unintuitive and goes against our everyday’s experience. How can
a large symphony—with its many variations of volume, frequency, and tone color—be
represented as the sum of periodic, regular, one-dimensional sine waves? Even worse.
How can an oil painting by a master—with its complex irregular gradations of shade
and color, attention to detail, and variance of brightness—be represented by such a sum
of regular, periodic two-dimensional sine waves? It is like declaring that the world is
nothing but waves! It is no wonder that Fourier’s ideas faced sti↵ resistance during his
lifetime.

The waves that constitute a Fourier sum can have di↵erent amplitudes (correspond-
ing to the brightness of the image), frequencies (according to the amount of detail in
the scene), and phases (to increase the fitness of the waves to the shape of the image).
They can also “run” in di↵erent directions. The furrows between the crests may point in
the north-south, east-west, or in any other direction. The infinite richness of our visual
world has been reduced in this way to a bunch of corrugated plastic sheets. Poets and
nature lovers may resent and deny this idea, but mathematicians love it and engineers
use it in practice.

Many images and three-dimensional objects have colors, and color can also be im-
plemented in Fourier’s sine waves. A colored wave may be a set of three component
waves with the same frequency and with di↵erent amplitudes, which correspond to the
three RGB color components of the wave. Thus, the first and second component waves
(corresponding to the red and green RGB colors) of a yellow wave would have a large
amplitude, while the waves of the third component (for RGB blue) would have zero
amplitude.

We already know, from the one-dimensional case, that the low-frequency waves in
the two-dimensional Fourier transform of an image correspond to the important image
features, while the high-frequency waves are mainly responsible for the fine details of
the image, as well as for any edges in it. As a result, an engineer who examines the
transform of an image may claim “look, there are so many high frequencies here,” as his
way of saying “this image has much fine detail and may have sharp edges.”
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f[t_] := 2 + 2 Sin[t/12];
Plot[Cos[5 f[t] t], {t, 0, 10}] (* ft[t] is the frequency *)
tb = Table[Cos[f[t] t], {t, 0, 50}];
ListPlot[Abs[Fourier[tb, FourierParameters -> {-1, 1}]/Length[tb]],
PlotRange -> All, Filling -> Axis, PlotStyle -> {Red, PointSize[0.015]}]

Figure 4.30: A Frequency Non-Stationary Signal and its Transform
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⇧ Exercise 4.3: The presence of many high-frequency waves in the transform of an image
indicates small details, but why does it also imply the existence of sharp edges?

The two-dimensional DFT is the product of two one-dimensional DFTs. A glance
at Equation (4.2) makes it easy to see why such a product has the form

Xk,l =
N�1X

n=0

M�1X

m=0

xn,m e�2⇡ik n
N e�2⇡il m

M (4.10)

=
N�1X

n=0

M�1X

m=0

xn,m

⇥
cos(2⇡kn/N)� i · sin(2⇡kn/N)

⇤⇥
cos(2⇡lm/M)� i · sin(2⇡lm/M)

⇤
,

for k 2 (0, N � 1) and l 2 (0,M � 1),

Given a digital image IMG of N rows and M columns of pixel values xn,m, Equation (4.10)
transforms it into a matrix X of N⇥M complex numbers a + ib which are the DFT
transform coe�cients, and whose magnitudes

p
a2 + b2 are frequency coe�cients (am-

plitudes of two-dimensional sinusoids of frequencies k and l) and their angles arctan(b/a)
are the phases of those sinusoids.

The inverse two-dimensional discrete Fourier transform is given by Equation (4.11),
which should be compared to the straight transform, Equation (4.10)

xn,m =
1

N ·M

N�1X

k=0

M�1X

l=0

Xk,l e2⇡in k
N e2⇡im l

M . (4.11)

It is also useful to interpret this transform as the sum of two matrices, both with
real numbers. The first one, with the cosines, contains information about the amplitudes
of the Fourier transform components, and the second matrix, with the sines, contains
phase information for the coe�cients. The second matrix is multiplied by the imaginary
i which can now be ignored.

An alternative way of looking at this process is to say that given a digital image IMG,
the double sum of Equation (4.10) computes its two-dimensional DFT by (1) computing
the one-dimensional DFT of each column, and then (2) computing the one-dimensional
DFT of each row of the result of step 1. The result of step 1 is a matrix of frequency
coe�cients where the frequency increases as we go down the rows. The top row is
the DC o↵sets. The result of step 2 is again a matrix of frequency coe�cients where
the low-frequency coe�cients, the ones that correspond to dominant image features,
are located in the corners, and the center elements are the coe�cients that correspond
to the Nyquist frequency. The following paragraphs explain why the dominant matrix
elements are located in the corners.

We apply Equation (4.10) to six important corner elements of matrix X, starting
with the top-left element

X0,0 =
N�1X

n=0

M�1X

m=0

xn,m = N ·M · x̄n,m.
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This element of X is simply the sum of all the pixels of the image, but we can also
interpret it as the average value x̄n,m of all the pixels, times the total number of pixels,
which explains why this element is the dominant value in the amplitude matrix of any
two-dimensional DFT. In addition, the following elements of Xk,l also tend to be much
bigger than the rest:

The second element of the top row of X is

X0,1 =
N�1X

n=0

M�1X

m=0

xn,m

⇥
cos(0)� i · sin(0)

⇤⇥
cos(2⇡m/M)� i · sin(2⇡m/M)

⇤

=
N�1X

n=0

"
M�1X

m=0

xn,m

⇥
cos(2⇡m/M)� i · sin(2⇡m/M)

⇤
#

.

This element is therefore the sum of N one-dimensional sinusoids, each of which is
the lowest-frequency Fourier component of the M pixels of one row of IMG. It is big,
because the lowest-frequency Fourier components contain the significant image informa-
tion. Similarly, element X1,0 (the first element of the second row of X) is the sum of M
one-dimensional sinusoids, each of which is the lowest-frequency Fourier component of
the N pixels of a column of IMG.

Next, we examine the top-right and bottom-left elements of X. The former is the
last element of the top row of X

X0,M�1

=
N�1X

n=0

"
M�1X

m=0

xn,m

⇥
cos(0)� i · sin(0)

⇤⇥
cos(2⇡m(M � 1)/M)� i · sin(2⇡m(M � 1)/M)

⇤
#

=
N�1X

n=0

"
M�1X

m=0

xn,m

⇥
cos(2⇡m(M � 1)/M)� i · sin(2⇡m(M � 1)/M)

⇤
#

.

Similar to X0,1, element X0,M�1 is the sum of N one-dimensional sinusoids each of
which is the highest-frequency Fourier component of the M pixels of a row of IMG.
Finally, element XN�1,0 is the sum of M one-dimensional sinusoids each of which is the
highest-frequency Fourier component of the N pixels of a column of IMG.

High-frequency Fourier components of an image contain the details of the image,
which is why they tend to be smaller the higher the frequency. However, the highest-
frequency components are an exception. They are large, because the DFT has the
following periodicity property. In the one-dimensional case, Equation (4.2), each coe�-
cient Xk satisfies Xk = Xk+pN for any integer p. Similarly, in the two-dimensional DFT,
Equation (4.10), Xk,l = Xk+p1·N,l = Xk,l+p2·M = Xk+p1·N,l+p2·M , for any integers p1
and p2.

Periodicity follows directly from the definition of the DFT, and it is illustrated here
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for the one-dimensional case, Equation (4.2)

Xk+pN =
N�1X

n=0

xn · e�2⇡i k+pN
N n =

N�1X

n=0

xn · e�2⇡i k
N n e�2⇡i pN

N n
| {z }

=1

=
N�1X

n=0

xn · e�2⇡i k
N n = Xk.

(The equality e�2⇡p i n = 1 for any integer p is based on the periodicities of the sine and
cosine.)

Finally, element XN�1,M�1, located at the bottom-right corner of matrix X, equals

XN�1,M�1 =
N�1X

n=0

M�1X

m=0

xn,m e�2⇡in N�1
N e�2⇡im M�1

M

=
N�1X

n=0

M�1X

m=0

xn,m

⇥
cos(2⇡n(N � 1)/N)� i · sin(2⇡n(N � 1)/N)

⇤

⇥
cos(2⇡m(M � 1)/M)� i · sin(2⇡m(M � 1)/M)

⇤
.

This element is also relatively large, because of periodicity.
These six dominant elements increase the dynamic range (the di↵erence between

large and small matrix elements) of the two-dimensional DFT significantly, which is why
a grayscale image of matrix X often looks dark, with only very small bright areas in the
four corners.

Example. A quick two-dimensional DFT is performed on the elements (real num-
bers) of a small, 7⇥ 7 matrix listed in Figure 4.32 (which also includes all the results).
Figure 4.31 is a listing of the Mathematica code.

1 ml = {{12, 23, 41, 49, 41, 23, 12}, {23, 24, 56, 72, 56, 22, 73},
2 {52, 25, 75, 92, 75, 58, 32}, {42, 24, 85, 10, 95, 57, 12},
3 {39, 23, 15, 12, 75, 50, 32}, {23, 24, 26, 22, 26, 20, 23},
4 {12, 22, 41, 79, 41, 83, 12}};
5 Fourier[ml, FourierParameters->{1,-1}]; (*The 2D transform of ml*)
6 col = Table[Table[0, {7}], {7}];
7 For[fq = 1, fq <= 7, fq++, (*Loop over the columns*)
8 col[[;; ,fq]] = Fourier[ml[[;; ,fq]], FourierParameters->{1,-1}]]
9 NumberForm[Re[col], {5, 2}];

10 MatrixPlot[Re[col], ColorFunction -> "GrayTones"]
11 NumberForm[Im[col], {5, 2}];
12 row = Table[Table[0, {7}], {7}];
13 For[fq = 1, fq <= 7, fq++, (*Loop over the rows*)
14 row[[fq]] = Fourier[col[[fq]], FourierParameters->{1,-1}]]
15 NumberForm[Re[row], {5, 2}];
16 MatrixPlot[Abs[row], ColorFunction -> "GrayTones"]
17 NumberForm[Im[row], {5, 2}];

Figure 4.31: Mathematica Listing of a 2D Fourier Transform
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The code of Figure 4.31 is straightforward. Lines 1 through 4 are the original data.
Line 5 is the DFT, where the computations are done by the Mathematica Fourier
command. The command recognizes ml as a two-dimensional matrix and computes the
DFT accordingly. The remainder of the listing illustrates how the same transform is
done explicitly in two loops, for the columns and for the rows, respectively. Line 6
prepares matrix col to receive the results of step 1 of the DFT, and the loop of lines 7–8
computes the transforms of the seven individual columns. Line 9 displays the results as
five-digit numbers, with two digits to the right of the decimal point. Line 10 prepares a
graphics representation of the real part of matrix col, which is displayed on the bottom-
left of Figure 4.32. Finally, lines 12–17, similar to lines 6–11, perform step 2 on the rows
of matrix col and store the results in matrix row.

203.00 165.00 339.00 336.00 409.00 313.00 196.00

-55.85 -1.57 -11.09 97.96 -74.16 -25.29 13.12

-12.86 -2.08 -9.23 -73.59 34.41 -3.93 -29.03

9.20 1.65 -5.67 -20.86 -21.25 -46.78 -40.08

9.20 1.65 -5.67 -20.86 -21.25 -46.78 -40.08

-12.86 -2.08 -9.23 -73.59 34.41 -3.93 -29.03

-55.85 -1.57 -11.09 97.96 -74.16 -25.29 13.12

Real part

+i

0.00 0.00 0.00 0.00 0.00 0.00 0.00

-38.17 -2.97 -89.87 -61.90 -68.18 7.61 -47.79

4.20 -0.73 61.36 35.63 22.27 81.43 -71.20

14.98 -1.06 -36.44 59.72 12.30 49.35 0.07

-14.98 1.06 36.44 -59.72 -12.30 -49.35 -0.07

-4.20 0.73 -61.36 -35.63 -22.27 -81.43 71.20

38.17 2.97 89.87 61.90 68.18 -7.61 47.79

Imaginary part
Step 1. Transforming the rows

1961.00 -388.23 -0.26 118.49 118.49 -0.26 -388.23

-56.89 -119.26 70.29 7.54 -196.00 -91.88 -4.72

-96.32 47.30 48.45 74.98 -43.60 -85.47 -35.35

-123.80 -29.10 37.81 133.31 -92.31 39.70 98.81

-123.80 98.81 39.70 -92.31 133.31 37.81 -29.10

-96.32 -35.35 -85.47 -43.60 74.98 48.45 47.30

-56.89 -4.72 -91.88 -196.00 7.54 70.29 -119.26

Real part

+i

0.00 30.56 -15.57 104.95 -104.95 15.57 -30.56

-301.28 -11.36 121.18 -165.12 135.54 -188.91 142.72

132.97 -93.63 -185.36 234.62 55.71 40.68 -155.56

98.91 -126.27 25.92 21.55 -5.76 71.01 19.47

-98.91 -19.47 -71.01 5.76 -21.55 -25.92 126.27

-132.97 155.56 -40.68 -55.71 -234.62 185.36 93.63

301.28 -142.72 188.91 -135.54 165.12 -121.18 11.36

Imaginary part
Step 2. Transforming the results of step 1

12 23 41 49 41 23 12
23 24 56 72 56 22 73
52 25 75 92 75 58 32
42 24 85 10 95 57 12
39 23 15 12 75 50 32
23 24 26 22 26 20 23
12 22 41 79 41 83 12

Original data
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Figure 4.32: The results of Figure 4.31.

The low-frequency Fourier coe�cients are located in the corners of the final matrix
of Figure 4.32 and the highest frequency coe�cients, which correspond to the Nyquist
frequency (Section 5.1), are at the center. Those who use the DFT often, have long ago
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discovered that the real part of the two-dimensional DFT matrix (row in our example)
becomes visually clearer when it is rearranged such that it features the four dominant
corner elements at the center and the remaining high-frequency coe�cients closer and
closer to the corners. Figure 4.33 illustrates the simple shifting rules that achieve this
useful result. The main advantage of shifting the coe�cients matrix is that this brings
all its dominant elements together, around its center. Once this is done, it is possible
to get a good idea of the original image by inverse transforming a small area around
the center of the matrix. To put this in perspective, given a 256 ⇥ 256 = 65536-pixel
image, it is enough to isolate its 7⇥ 7 central area and inverse transform it. This quick
operation, performed on only 0.075% of the image, normally produces a recognizable,
albeit blurred version of the original image.

⇧ Exercise 4.5: Implement the shifting rules in Mathematica and apply them to the 7⇥7
matrix row of our example (the real part of step 2).

In addition to the shifting, the dynamic range of X can be reduced by scaling its
elements to their logarithms according to Xk,l  c · log(1+Xk,l) where c is often chosen
as 1. Figure 4.38 is an example of this practice.

Figure 4.34 shows a 7⇥7 real matrix together with four images produced by its
two-dimensional DFT. The image labeled “Amplitude Spectrum, Unshifted” is the real
part of the DFT, the image labeled “Phase Spectrum” is the imaginary part of the DFT,
and the image labeled “Transformed and Shifted” is the rearranged version of the real
part of the DFT. The red arrow in this latter part shows how to interpret each of the
DFT coe�cients (the small squares). The distance r of the coe�cient from the center
of the image corresponds to the frequency of the coe�cient; closer to the center implies
lower frequencies. The angle ✓ indicates the direction of the Fourier sinusoids in the
vicinity of the coe�cient. The Matlab code that generated the figure is also listed.

A few words about the Nyquist frequency of an image. Figure 4.35 demonstrates
how we can intuitively associate pixel values in an image with waves. We can visualize
how a string of adjacent pixels can be used to compute a smooth curve that oscillates
according to the values of adjacent pixels. It is also possible to associate such a string of
pixels with several smooth curves, all having di↵erent frequencies but passing close to all
the pixels. However, the frequencies of such waves are limited. The maximum frequency
of a wave that is defined by a string of pixels is one cycle per a pair of adjacent pixels,
i.e., a pair of adjacent pixels is the smallest image unit that can be associated with the
frequency of a wave. Therefore, if this maximum frequency is ⌫, then ⌫/2 is the Nyquist
frequency of the image.

Figure 4.36 illustrates the relation between an image in image space and the shifted
version of its discrete Fourier transform. Each of the two original images has dominant
lines oriented in a certain direction, and it is possible to see how the dominant features
in the corresponding shifted transforms (located under the original image and to the
right) are oriented in the perpendicular directions.

Figure 4.37 is similar to Figure 4.34 and shows the results of transforming a small
256⇥ 256-pixel image. The original image shown in the figure is in color, but the trans-
form was computed on a grayscale version of it. It is clear that the real coe�cient matrix
(amplitude spectrum unshifted) is complicated and cannot be easily interpreted (exam-
ine carefully its corners). However, there is no need to examine individual transform
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1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,1 6,2 6,3 6,4 6,5 6,6 6,7

1,1 1,2 1,3 1,41,5 1,6 1,7

2,1 2,2 2,3 2,42,5 2,6 2,7

3,1 3,2 3,3 3,43,5 3,6 3,7

4,1 4,2 4,3 4,44,5 4,6 4,7

5,1 5,2 5,3 5,45,5 5,6 5,7

6,1 6,2 6,3 6,46,5 6,6 6,7

1,1 1,2 1,3 1,41,5 1,6 1,7

2,1 2,2 2,3 2,42,5 2,6 2,7

3,1 3,2 3,3 3,43,5 3,6 3,7

4,1 4,2 4,3 4,44,5 4,6 4,7

5,1 5,2 5,3 5,45,5 5,6 5,7

6,1 6,2 6,3 6,46,5 6,6 6,7

1

2

Figure 4.33: Shifting the 2D DFT Amplitudes.

The rules for shifting the DFT amplitudes are simple and are illustrated by the 6⇥7
array of Figure 4.33, where successive positions of several array elements are indicated
by their background colors. First, swap the left and right halves of the array. If the
length of the rows is odd, then include the middle element in the left half. Next, swap
the top and bottom of the result of the previous step, following the same rule if the
columns have an odd length. This will bring the corner elements (in gray) to the center,
while also moving the center elements (in brown) to the new corners.

These rules can be stated compactly as follows: Swap the 1st and 4th quadrants and
swap the 2nd and 3rd quadrants of the matrix. The inverse shift is done by following the
same rule, and this is true even of the dimensions of the matrix are odd, which results
in quadrants of slightly di↵erent sizes.

⇧ Exercise 4.4: Prove this claim.
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Phase SpectrumTransformed and Shifted

Amplitude Spectrum, UnshiftedOriginal Image in Space Domain

r
θ

image =[12 23 41 49 41 23 12; 23 42 56 72 56 42 23; 32 58 75 92 75 58 32;
42 77 95 100 95 77 42; 32 58 75 92 75 58 32; 23 42 56 72 56 42 23;
12 23 41 49 41 23 12];

FT = fftshift(fft2(image));
imagesc(abs(log2(FT))) % real part (amplitude)
%imagesc(imag(FT)) % imaginary part (phase)
axis image

Figure 4.34: The 2D DFT of the 7⇥7 Image.
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a
b

c

d

Figure 4.35: Image Frequencies.

Figure 4.36: Directions of Sinusoidals.

coe�cients, because the usefulness of the DFT to image processing lies in various statis-
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tical operations on the DFT coe�cients, not in manual changes to specific coe�cients.
Figure 4.38 is similar to 4.37 but is computed by Mathematica. The following

should be noted about the code. Line 2 imports the image. The entire path of the
image is specified, and variable i becomes an image, not the same as a numeric matrix.
Converting it to such a matrix is done on line 6. Line 3 extracts a 256 ⇥ 256-part of
the image. Lines 9–14 perform the shifting of rows and columns, as is also illustrated in
Figure Ans.4. Logarithmic versions of the matrices are displayed because there is a big
di↵erence between the largest elements (about 29000 at the top-left corner) and the rest
of the matrices. The logarithm reduces that di↵erence and enhances the small details of
the images.

The two-dimensional DFT results in matrices for the amplitudes and phases of the
Fourier coe�cients. The amplitude matrix is easy to understand. A large amplitude A
implies that the sinusoid associated with A contributes more to the reconstruction of
the image. Reference [Live FT 14] is a video that illustrates the amplitude matrices for
a variety of images. The phases of the second matrix are harder to interpret but are as
important. We know that the phase of a sinusoid is a measure of its displacement from
its “natural” position (the position for zero phase), which is why we can state that the
phase matrix contains information about where discernible objects are located in the
image. This is similar to saying that the phase matrix can help in determining edges of
the image.

An important application of the DFT to image processing is filtering, which is done
by modifying (amplifying or attenuating) the amplitudes of certain transform coe�-
cients. while maintaining the same average over all the transform coe�cients.

Low-pass filtering is done by attenuating the high-frequency transform coe�cients
(Figure 4.40a). This results in image blurring, but the important image features are
retained. High-pass filtering is done by attenuating the low-frequency coe�cients (Fig-
ure 4.40b). This produces the opposite result, it sharpens the image, while losing some
of its major features.

Figure 4.39 is an example of blurring an image by clearing the elements of the two-
dimensional Fourier coe�cients matrix, except a small (2par + 1)⇥ (2par + 1) square in
the middle. The matrix has to be shifted before this operation, shifted back following
the operation, and then passed through the inverse DFT. Figure 4.41 is the opposite
example, where the dominant, low-frequency transform coe�cients which are located at
the corners of the DFT matrix, are set to zero. The result is an image of the edges of
the original. It has the original details, but is lacking its main features.

⇧ Exercise 4.6: Use the Mathematica command UnitBox to come up with a sophisticated
version of function lpFiltr of Figure 4.39. Your function should be able to generate
matrices of 0’s and 1’s for low-pass, high-pass, and bandpass filters.

The DFT can also be used to clean “dirty” or noisy images from the e↵ects of
a blurry background, a background full of regular dithering (as is often found in old
photographs), the remains of old fingerprints on a picture, or annoying dark or bright
bands on an image as a result of combining partial scans of a large image, as is common
with lunar and other astronomical images.

Figure 4.42 illustrates how the DFT of a noisy image may feature small bright
regions that are the result of the noise. In such a case, the image can be cleaned
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Original image

256x256 pixels

Amplitude Spectrum

Unshifted

Amplitude Spectrum

Shifted

% unshifted image transform
image = double(imread(’pot.tif’))/255.0;
FT = fft2(image);
imagesc(abs(log2(FT)))
% the log2 enhances details
axis image

% shifted image transform
image = double(imread(’pot.tif’))/255.0;
fourier = fftshift(fft2(ifftshift(image)));
fftimage = log(max(real(fourier),0.0))/20.0;
imagesc(fftimage)

Figure 4.37: The Two-Dimensional DFT in Matlab.
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1 (*2D DFT of an image*)
2 (*i=Import["/Users/davidsalomon/Desktop/mi.tif"];*)
3 img = ImageTake[i, {3101, 3356}, {2270, 2525}]
4 (*Take a 256x256 part of the image and
5 Convert it from image to numeric matrix*)
6 ml = ImageData[img];
7 fc = Fourier[ml, FourierParameters -> {1, -1}];
8 rel = Re[fc];
9 MatrixPlot[Log2[1 rel]] (*Plot the base2 log*)

10 dim = Dimensions[rel] (*Start shifting*)
11 If[OddQ[dim[[2]]], c = Ceiling[dim[[2]]/2], c = dim[[2]]/2];
12 If[OddQ[dim[[1]]], r = Ceiling[dim[[1]]/2], r = dim[[1]]/2];
13 rel = RotateLeft[rel, {0, c}];
14 rel = RotateLeft[rel, r];
15 MatrixPlot[Log2[1 rel]] (*Plot shifted version*)

Figure 4.38: A Two-Dimensional DFT in Mathematica.
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(*Low-pass filter to blur an image
Matrix ’fo’ entries are 0 except a
(2par x 2par) square in its middle*)
lpFiltr[par_, c_, r_] := Module[{i, j, c2, r2, fo},
(*Construct matrix fo with zeros*)
c2 = Floor[c/2]; r2 = Floor[r/2];
fo = Table[0, {i, 1, c}, {j, 1, r}];
For[i = c2 - par, i <= c2, i++, (*Spread (2par x 2par) ones*)
For[j = r2 - par, j <= r2, j++,(* around the center of fo*)
fo[[i, j]] = fo[[i, r + 1 - j]] =
fo[[c + 1 - i, j]] = fo[[c + 1 - i, r + 1 - j]] = 1;]];

fm = fo;]

matShift[mm_] := Module[{dim, c, r},
dim = Dimensions[mm];
If[OddQ[dim[[2]]], c = Ceiling[dim[[2]]/2], c = dim[[2]]/2];
If[OddQ[dim[[1]]], r = Ceiling[dim[[1]]/2], r = dim[[1]]/2];
m1 = RotateLeft[mm, {0, c}];
ml = RotateLeft[m1, r];]

matShiftBack[mm_] := Module[{dim, c, r},
(*Shift mm back*)
dim = Dimensions[mm];
If[OddQ[dim[[2]]], c = Ceiling[dim[[2]]/2], c = dim[[2]]/2];
If[OddQ[dim[[1]]], r = Ceiling[dim[[1]]/2], r = dim[[1]]/2];
m3 = RotateLeft[mm, -r];
ml = RotateLeft[m3, {0, -c}];]

(*Test*)
img = Import["/Users/davidsalomon/Desktop/mayaBW.tif"]
ml = ImageData[img];
ml = Fourier[ml, FourierParameters -> {1, -1}];
matShift[ml];
dim = Dimensions[ml];
c = dim[[1]]; r = dim[[2]];
lpFiltr[20., c, r]
MatrixPlot[fm]; (*all zeros except ones in center*)
ml = ml fm; (*ElementWise multiplication*)
matShiftBack[ml];
ml = InverseFourier[ml, FourierParameters -> {1, 1}];
ImageReflect[ImageReflect[Image[Abs[ml]]], Left]

Figure 4.39: Blurring An Image with a Low-Pass Filter.
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(a) (b)

Figure 4.40: Filtering the DFT Coe�cients.

img = Import["/Users/davidsalomon/Desktop/mayaBW.tif"]
ml = ImageData[img];
ml = Fourier[ml, FourierParameters -> {1, -1}];
dim = Dimensions[ml];
r = dim[[1]]; c = dim[[2]];
par = 7;
For[i = 1, i <= par, i++,
For[j = 1, j <= par, j++,
ml[[i, j]] = ml[[r - i + 1, j]] =
ml[[i, c - j + 1]] = ml[[r - i + 1, c - j + 1]] = 0;
]]

MatrixPlot[ml]
ml = InverseFourier[ml, FourierParameters -> {1, 1}];
MatrixPlot[Reverse[Abs[ml]], ColorFunction -> "GrayTones"]

Figure 4.41: The Results of a High-Pass Filter.

by erasing or deleting those regions and inverse transforming the two-dimensional fre-
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quency coe�cients matrix. A good reference, with Mathematica code and examples, is
https://tinyurl.com/423za65j

4.7 2D Graphics Transform Example

We are now ready to look at a complete example of a 2D DFT. Figure 4.43 (compare
with Figure 2) is a listing of the Mathematica code, and the three parts of Figure 4.44
display the results.

The code of Figure 4.43 imports a small 65⇥ 65-pixel grayscale image, transforms
it, shifts it, and then performs a double loop where it scans the resulting 65⇥ 65 matrix
of transform coe�cients. For each coe�cient it computes an amplitude and phase and
generates a 65 ⇥ 65 matrix of 2D sine waves. These matrices are accumulated and
they gradually form the final image. The three parts of Figure 4.44 show the original
image, seven pairs of intermediate results generated every 10 iterations, and the final,
reconstructed image. Each of the seven pairs consists of an intermediate image and
the current 2D sine wave. Here are detailed notes referring to the line numbers of
Figure 4.43. Notice that 65 is an odd number. It was chosen here as the dimension of
the image in order to simplify the code. With an odd-size image, there is a center row,
center column, and center pixel, whereas with an even dimension, the most important
pixel is shifted from the top-left corner to the row and column immediately following
the image center. For even dimensions, the code listed here may have to be modified,
but the intention here was to end up with simple, readable code.

Lines 4–10 list the shift procedure matShift. This has been discussed in an earlier
section. The 2D transform is done on line 14. The final, reconstructed image will be
generated in matrix ts, which is initialized to all zeros on line 18. Procedure sg, defined
on line 19, will compute the 2D sine waves. The computations are done in a double loop
(lines 21–33), where the r and c counters run from 1 to 65 each. However, the 2D sine
waves, which are computed on line 25, employ row and column variables row and col
(line 19) which run from �32 to +32 each. This is because the shifting has changed
the original numbers of the rows and columns. The dominant value, which was at the
top-left (row 0) is now at the center of the coe�cient matrix, and the computations have
to assign it its original row number. The amplitude and phase for each 2D sine wave
are computed on lines 23 and 24, respectively. Each iteration calculates an intermediate
image which is added to ts on line 25. Lines 29 through 32 print intermediate results
every 10 iterations. The ArrayPlot on line 30 prints the current intermediate image,
while the DensityPlot on line 31 prints the current 2D sine wave. Once the double loop
is over, matrix ts is printed (with only two digits after the decimal point) and is finally
displayed with a final ArrayPlot on line 35.

Seeing and “seeing.”

There is seeing and there is seeing, and the two are di↵erent. This short discussion
concentrates on the di↵erence between the two types of seeing and explains why the
Mathematica code of Figure 4.43 had to compute both an Array (a numerical matrix to
be added to ts on line 25) and a DensityPlot (an image to be displayed on lines 31–32).
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Figure 4.42: Image Texture and Noise as Seen in the DFT Matrix.
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1 (*Transform a 65x65 image and then reconstruct it by computing the
2 amplitude and phase from the transformed and shifted matrix ml*)
3

4 Clear["Global‘*"];
5 matShift[mm_] := Module[{dim, c, r},
6 dim = Dimensions[mm];
7 If[OddQ[dim[[2]]], c = Ceiling[dim[[2]]/2], c = dim[[2]]/2];
8 If[OddQ[dim[[1]]], r = Ceiling[dim[[1]]/2], r = dim[[1]]/2];
9 m1 = RotateLeft[mm, {0, c}];

10 ml = RotateLeft[m1, r];]
11

12 img = Import["/Users/davidsalomon/Desktop/PemaIn.tif"]
13 mm = ImageData[img];
14 ft = Fourier[mm, FourierParameters -> {1, -1}];
15 matShift[ft];
16 Dimensions[ml]
17 dim = 65;
18 ts = Table[Table[0, {dim}], {dim}];
19 row = -Floor[dim/2]; col = -Floor[dim/2];
20 sg[x_, y_] := am Sin[ row x + col y + phs];
21 Do[
22 Do[a = Re[ml[[r, c]]]; b = Im[ml[[r, c]]];
23 am = Sqrt[a^2 + b^2];
24 phs = Pi/2 - ArcTan[a, -b];
25 ts = ts + Array[sg, {dim, dim}, {{0, 2 Pi}, {0, 2 Pi}}];
26 row++,
27 {r, 1, dim}];
28 row = -Floor[dim/2]; col++;
29 If[Mod[col, 10] == 0,
30 Print[col, " , ", ArrayPlot[ts, ColorFunction -> "GrayTones"], " , ",
31 DensityPlot[sg[x, y], {x, 0, 2 Pi}, {y, 0, 2 Pi},
32 ColorFunction -> "GrayTones"]]],
33 {c, 1, dim}]
34 NumberForm[ts, {5, 2}];
35 ArrayPlot[ts, ColorFunction -> "GrayTones"]

Figure 4.43: A Complete 2D DFT Transform: Code.

The principle of reconstructing an image from its 2D DFT is to scan the Fourier
coe�cient matrix and employ each of its entries (a complex number) to compute an
amplitude and a phase, which are then used to generate a 2D sine wave. As these sine
waves are added, the reconstructed image takes shape and approaches the original image.
However, in practical coding, using Mathematica, there is a di↵erence between an image
and the matrix of its pixels, which is why the code of Figure 4.43 had to generate an
array ts and accumulate in it, on line 25, not images of the 2D sine waves, but arrays
containing the individual pixels of those waves.

Imagine that you print images of the 2D sine waves computed by the double loop
of Figure 4.43 on transparent sheets. Each sheet is a clear, sharp image of such a sine
wave, with clear areas, black areas, and gray areas of many graycales. You then try to
view the final image simply by stacking those sheets on top of one another. You may be
surprised to find out that the result is a dark picture. Each sheet has clear parts and
dark parts, so stacking sheets tends to cover more and more clear areas with dark areas.
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Original 65x65 Image

Figure 4.44: A Complete 2D DFT Transform: Part 1 of 3.
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Figure 4.44: A Complete 2D DFT Transform: Part 2 of 3.
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Final Reconstructed Image

Figure 4.44: A Complete 2D DFT Transform: Part 3 of 3.
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Given enough sheets, no clear areas remain.
On the other hand, adding intermediate arrays (matrices) to variable ts on line 25

is di↵erent, because each array contains signed numbers, not just zeros and ones. The
65⇥ 65 numbers that constitute such an array can be negative, zero, or positive. Thus,
adding the next array tends to increase some numbers, but also to decrease others. This
is why the final array, printed on line 34 and displayed on line 35, consists of small,
large, negative, and positive numbers, and is not fully black.

This discussion also explains why adding several intermediate arrays of numbers,
each of them regular, may result in a final array which is irregular. Here is a simple
example:

0 5 0 0 0 0 -2 0 0 0 0 3 0 0 0
0 0 5 0 0 0 -2 0 -4 0 0 -2 5 -4 0
3 0 0 5 0 + 0 -2 0 -4 0 = 3 -2 0 1 0
0 3 0 0 5 0 -2 0 -4 0 0 1 0 -4 5
0 0 3 0 0 0 -2 0 0 0 0 -2 3 0 0

References for this section are [fingerprints 20], [Session 3 15], and [DFT demo 18].

4.8 The Fast Fourier Transform

Called “the most important numerical algorithm of our lifetime,” the fast Fourier trans-
form is based on ideas due to Gauss in the early 1800’s (even preceding Fourier’s own
ideas). The first generic FFT algorithm was published in 1965 by James Cooley and
John Tukey and it reduced the complexity of the DFT from O(N2) to the much smaller
O(N log2 N). Even though surprisingly simple, this algorithm is not obvious. Today,
many FFT algorithms are known which are based on di↵erent principles, and the dis-
cussion here is only an outline of the basic concepts, which are based on the periodicity
of the sine and cosine functions.

Gauss and the FFT
The eminent mathematician (and all-round scientist) Carl Friedrich Gauss was active
in many fields, among them astronomy. When the first asteroid, Ceres, was discovered
in 1801, Gauss decided to compute its orbit, and to speed up his work he developed two
ingenious computational techniques. One (least squares curve fitting) has immediately
become popular, but the other (the recursive FFT, even before Fourier himself) was
forgotten and had to be rediscovered in 1965.

Readers of this book already know that the inverse DFT is very similar to the DFT,
which is why the principles behind the various FFT algorithms also apply to the inverse
FFT.

The main idea behind the various versions of the FFT is to identify those parts of the
computations that occur several times, save them, and reuse them. Such parts are the
values of various exponentials, as well as sums and di↵erences of the form xi±xje�2⇡i...

and e�2⇡i...(xi ± xj).
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the basic DFT is defined by Equation (4.2), duplicated here

Xk =
N�1X

n=0

xne�2⇡ikn/N =
N�1X

n=0

xn !kn
N , (4.2)

for k = 0, 1, 2, . . . , N � 1, and !N
def= e�2⇡i/N .

The DFT starts with an array xn of N data items and computes an array Xk of N
frequency coe�cients or bins. Computing any coe�cient Xk requires N iterations of the
sum of Equation (4.2), so computing all N coe�cients requires a total of N2 iterations.
For N = 103, the FFT represents a saving factor of N2/(N log2 N) ⇡ 106/(103 ⇥
10) = 100, whereas for N = 106 the ratio of the number of operations is approximately
1012/(106 · 20) = 50000, or 1 sec instead of 13.9 hours, very significant!

⇧ Exercise 4.7: Derive an estimate of the time complexity of the straight DFT, consid-
ering that it requires arithmetic operations on complex numbers.

The simplest version of the FFT requires N to be a power of 2, and its computations
can proceed in one of two ways, which are referred to as Decimation in Time (DIT) and
Decimation in Frequency (DIF).

Does time have a frequency?

We intuitively feel that time is a one-dimensional phenomenon. It moves constantly,
but it seems uniform and smooth; there are no changes and there is no frequency.

However, since time is important to us, both in science and technology (GPS is one
of many examples) and in everyday life, we are concerned with measuring time, which
is done by cutting it into equal-size slices, a process which introduces frequencies.

The movement of a pendulum is periodic, but is not regular enough for precise time
measurement. The same is true for the regular movements of celestial bodies, which
is why modern science uses the internal frequency of atoms to achieve unprecedented
accuracy in measuring time.

The conclusion is that time does not have an internal frequency, but its measurement
introduces a frequency, which is why we often think of time in discrete units.

4.8.1 Decimation in Time

The DIT method is described here by means of a detailed example for N = 8.

Decimation
To kill, destroy, or remove a large percentage or part of. This is derived from the
Latin meaning “removal of a tenth.”

—Dictionary definition of decimation.

The FFT problem is to compute the DFT fast. We therefore start by writing the
DFT sum, Equation (4.2), explicitly, for N = 8, and then partitioning it into sums of
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even and odd indices

Xk = x0 + x1e
�i 2⇡

8 k + x2e
�i 2⇡

8 2k + x3e
�i 2⇡

8 3k

+ x4e
�i 2⇡

8 4k + x5e
�i 2⇡

8 5k + x6e
�i 2⇡

8 6k + x7e
�i 2⇡

8 7k

=
h
x0 + x2e

�i 2⇡
8 2k + x4e

�i 2⇡
8 4k + x6e

�i 2⇡
8 6k

i

e�i 2⇡
8 k

h
x1 + x3e

�i 2⇡
8 2k + x5e

�i 2⇡
8 4k + x7e

�i 2⇡
8 6k

i
.

The sums in the square brackets are rearranged and are split again

Xk =
h⇣

x0 + x4e
�i 2⇡

8 4k
⌘

+ e�i 2⇡
8 2k

⇣
x2 + x6e

�i 2⇡
8 4k

⌘i

+ e�i 2⇡
8 k

h⇣
x1 + x5e

�i 2⇡
8 4k

⌘
+ e�i 2⇡

8 2k
⇣
x3 + x7e

�i 2⇡
8 4k

⌘i

=
⇥�

x0 + x4e
�i⇡k

�
+ e�i ⇡

2 k
�
x2 + x6e

�i⇡k
�⇤

+ e�i ⇡
4 k

⇥�
x1 + x5e

�i⇡k
�

+ e�i ⇡
2 k

�
x3 + x7e

�i⇡k
�⇤

. (4.12)

The original, 8-item DFT, has been rewritten as three levels of summation. The
top (or outer) level consists of two parts, one with data items xn with even indices n
and the other with odd indices. Each lower (or inner) level similarly consists of two
parts that we also refer to as even and odd. In general, the number of levels is log2 N .
In the expression above, the innermost level is surrounded by parentheses, the middle
level has square brackets, and the top level has no brackets. Each level has its own type
of exponential, and the first step toward speeding up the calculations is to employ the
periodicity of our exponentials. We use the identities ei(�+2⇡) = ei� and ei(�+⇡) = �ei�,
which result in the following sets of values for each summation level. The set for the
inner level is

e�i⇡k =
⇢

1 k = 0, 2, 4, 6,
�1 k = 1, 3, 5, 7.

For the middle level the set of exponentials we need is

e�i ⇡
2 k =

8
><

>:

1 k = 0, 4,
�i k = 1, 5,
�1 k = 2, 6,
i k = 3, 7.

The eight exponentials for the top level use the values of sine and cosine of ⇡/4 =
45�, which are ± 1p

2
⇡ ±0.7071. In order to shorten our expressions we will simply use
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the rough approximation ±0.7 for those numbers, which are

e�i ⇡
4 k =

8
>>>>>>>>><

>>>>>>>>>:

1 k = 0,
0.7� 0.7i k = 1,
�i k = 2,
�0.7� 7i k = 3,
�1 k = 4,
�0.7 + 0.7i k = 5,
i k = 6,
0.7 + 7i k = 7.

However, in the computations of X[k] that follow, as well as in the final diagrams, the
better value, 0.7071, is used, even when it is written as 0.7.

Notice that our exponentials are mostly complex numbers and (most important)
each of the exponential tables above can be divided into a top and bottom halves,
which di↵er by their signs. Also, the total number of exponentials needed for N = 8 is
N + N/2 + N/4 = 8 + 4 + 2, and for an arbitrary N it is

N +
N

2
+

N

4
+ · · · = N


1 +

1
2

+
1
4

+ · · ·
�

,

A number that approaches 2N for large values of N . This means that all the exponentials
needed by the algorithm can be precomputed once before the main body of the algorithm
starts and saved for the duration, since the maximum storage can never exceed 2N
locations, each large enough for a complex number.

The next step toward speeding up the calculations is to identify those parts of
Equation (4.12) that are used more than once. They would have to be saved and
reused, thereby saving much time. We start with the first term of the inner level of
Equation (4.12), namely (x0 +x4e�i⇡k). The exponent used here has been precomputed
and equals either 1 (for k = 0, 2, 4, 6) or �1 (for k = 1, 3, 5, 7). The algorithm should
therefore add (x0 + x4) and use this sum to compute output Xk for the even values of
k. Then subtract (x0 � x4) and use this di↵erence to compute output Xk for the odd
values of k. This simple process is repeated for the three other sums of the inner level.
Each is computed by a single addition and a single subtraction, resulting in six more
numbers, for a total of eight numbers as follows

a = (x0 + x4), b = (x0 � x4), c = (x2 + x6), d = (x2 � x6),
e = (x1 + x5), f = (x1 � x5), g = (x3 + x7), h = (x3 � x7).

These numbers can be stored in the locations so far occupied by the original data xn,
since this data will no longer be needed. These eight numbers are also sent to the next,
middle level to be processed further.

The middle level receives the eight numbers a through h and employs them to
compute its own eight results. Depending on k, these results are sums and di↵erences
of pairs of a through h, some of which are multiplied by e�i ⇡

2 k. Before being sent to
the top level, these eight results can be stored in the same locations that have recently
occupied a through h.
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The top level receives the eight results and computes each final Xk value by mul-
tiplying, when needed, by an exponent of the form e�i ⇡

4 k, and performing one addition
or subtraction. Here are the details of computing the first four outputs X[0] through
X[3], assuming the 8-item original data 1, -2 , 5, 7, -3, 8, 4, and 6.

X[0] =
⇥�

x0 + x4e
�i⇡0

�
+ e�i ⇡

2 0
�
x2 + x6e

�i⇡0
�⇤

+ e�i ⇡
4 0

⇥�
x1 + x5e

�i⇡0
�

+ e�i ⇡
2 0

�
x3 + x7e

�i⇡0
�⇤

=
⇥
(x0 + x4) + e�i ⇡

2 0 (x2 + x6)
⇤

+ e�i ⇡
4 0

⇥
(x1 + x5) + e�i ⇡

2 0 (x3 + x7)
⇤

= [(x0 + x4) + (x2 + x6)] + [(x1 + x5) + (x3 + x7)]
= [(1� 3) + (5 + 4)] + [(�2 + 8) + (7 + 6)] = 26.

X[1] =
⇥�

x0 + x4e
�i⇡1

�
+ e�i ⇡

2 1
�
x2 + x6e

�i⇡1
�⇤

+ e�i ⇡
4 1

⇥�
x1 + x5e

�i⇡1
�

+ e�i ⇡
2 1

�
x3 + x7e

�i⇡1
�⇤

=
⇥
(x0 + x4(�1)) + e�i ⇡

2 1 (x2 + x6(�1))
⇤

+ e�i ⇡
4 1

⇥
(x1 + x5(�1)) + e�i ⇡

2 1 (x3 + x7(�1))
⇤

= [(x0 � x4) + (�i) (x2 � x6)]
+ (0.7� 0.7i) [(x1 � x5) + (�i) (x3 � x7)]

= [(1 + 3) + (�i) (5� 4)]
+ (0.7� 0.7i) [(�2� 8) + (�i) (7� 6)] = �3.7781 + 5.3639i.

X[2] =
⇥�

x0 + x4e
�i⇡2

�
+ e�i ⇡

2 2
�
x2 + x6e

�i⇡2
�⇤

+ e�i ⇡
4 2

⇥�
x1 + x5e

�i⇡2
�

+ e�i ⇡
2 2

�
x3 + x7e

�i⇡2
�⇤

= [(x0 + x4) + (�1) (x2 + x6)]
+ (�i) [(x1 + x5) + (�1) (x3 + x7)]

= [(1� 3) + (�1) (5 + 4)] + (�i) [(�2 + 8) + (�1) (7 + 6)] = �11 + 7i.

X[3] =
⇥�

x0 + x4e
�i⇡3

�
+ e�i ⇡

2 3
�
x2 + x6e

�i⇡3
�⇤

+ e�i ⇡
4 3

⇥�
x1 + x5e

�i⇡3
�

+ e�i ⇡
2 3

�
x3 + x7e

�i⇡3
�⇤

= [(1� (�3)) + i (5� 4)]
+ (�0.7� 0.7i) [(�2� 8) + i (7� 6)] = 11.7781 + 7.3639i.

⇧ Exercise 4.8: Derive the remaining outputs X[4] through X[7].

A careful examination of the eight outputs shows that six of them form pairs of the
form a + bi and a � bi. These correspond to positive and negative frequenies and are
explained in the text found around Equation (4.5).

It is now easy to estimate the number of computations required for each output. In
our example there are three levels, and in general the number of levels is log2 N . In our
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example, each level requires 4 + 2 + 1 multiplications and the same number of additions
or subtractions. In general this number is

N

2
+

N

4
+

N

8
+ · · ·+ 4 + 2 + 1 = N


1
2

+
1
4

+
1
8

+ · · ·+ 1
N/2

+
1
N

�
< N.

The total time complexity is therefore N log2 N .
In spite of the complexity of this algorithm, it is possible to summarize it in a

single diagram. We start with Figure 4.45 which shows the complete, three-level path
from eight inputs to one output. This is shown for outputs X[3] (in red) and X[6]
(in green). Readers who follow these paths may find it possible, although perhaps
intimidating, to understand the entire process, which is summarized in the butterfly
diagram of Figure 4.46.

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

1

-2

5

7

-3

8

4

6

Figure 4.45: FFT by Decimation in Time. Two paths from Inputs to Outputs.

The short notation !N
def= e�2⇡i/N is used in Figure 4.46 instead of e�2⇡ikn/N . The

reader will also encounter the notation !kn
N , as well as !k+N/2

N = �!k
N .

Note the numbers 3 and 4 in circles in Figure 4.46. Their values were too long to
include in the figure, so they are listed here

Circle 3 = (�10 + (�i))(0.7� 0.7i) = �7.7781 + 6.3639i.
Circle 4 = (�i� (�10))(�0.7071� 0.7071i) = �7.7781� 6.3639i.

The bottom (innermost) level deals with the pairs of inputs with indices (0, 4), (2, 6),
(1, 5), and (3, 7), which is why the original input to the algorithm must be arranged in
this order before computations can start. Fortunately, this is easy and it involves only
bit reversal, an operation that changes, for example, 1102 = 6 to 0112 = 3. Thus, the
sequence 0, 1, 2, 3, 4, 5, 6, 7 becomes 0, 4, 2, 6, 1, 5, 3, and 7.

Once this example of eight inputs and eight outputs is clear, it is easy to see how
the general case of an arbitrary N is implemented in an algorithm. The main operations
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x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

1

-2

5

7

-3

8

4

6

1-3=-2 -2+9=7 7+19=26

(6+13)1=19 19-7=12

(13-6)(-i)=-7i

3 =-7.7781+6.3639i

4 =-7.7781-6.3639i

9-(-2)=11 11-7i

-11.7781-7.3639i-i-4=-4-i

-7i-11=-11-7i

4+(-i)=4-i 4-i+ 3 =-3.7781+5.3639i

(5+4)1=9

(5-4)(-i)=-i

-2+8=6

(7+6)1=13

(7-6)(-i)=-i

-2-8=-10

1-(-3)=4

3 -(4-i)=-11.7781+7.3639i

4 -(-4-i)=3.7781-5.3639i

data={1,-2,5,7,-3,8,4,6};
Fourier[data,FourierParameters->{1,1}]

Figure 4.46: FFT by Decimation in Time. Complete N = 8 Example.

are partitioning (splitting or decimating) and recursion. The code starts at the bottom
(innermost) level with the sequence of N original inputs. It computes N results by
performing one addition and one subtraction for each pair of data items. These N
results are sent to the next higher level, where similar operations are performed (with
some multiplications), resulting in a new set of N numbers that are sent to the next
level.

In summary, the DIT version of the basic FFT starts by arranging the input se-
quence according to the indices (even or odd) of the N data items. It then proceeds by
considering consecutive pairs of items (there are N/2 pairs) and computing two results
from each pair. Each such result comes from two original data items. The N results
are sent to the next level, where a pair of results (each coming from two data items) is
used to produce new results, each of which comes from four original data items. This
continues up the levels. Each level produces N new results, each of which comes from
more original data items. The last level produces N final results, each of which comes
from all N original data items.

In practice, such a loop is implemented with recursion. The pseudocode on Page 111
shows how this is done. Procedure fft invokes itself twice, first with the data items
with even indices, and then with those items with odd indices. When both recursive
calls return, the procedure performs one butterfly (multiply, add, subtract) and assigns
its two results to two output locations. This is short and elegant, but confusing when
seen for the first time.

The other version of the basic FFT, Decimation in Frequency (DIF), starts by
partitioning the original sequence of data items into two sequences containing the first
half and second half of the original items, respectively. The first level selects an item
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from each sequence, computes two results, and repeats for N/2 pairs of items. The N
new results are sent to the next level which also computes N results, each coming from
four original items, and so on. This process is summarized, for N = 8, in Figure 4.47.
Notice how similar this figure is to Figure 4.46. The two are essentially mirror images of
each other, even in the positions of the twiddle factors !k

N . (The dictionary definition
of twiddle is “to twist, move, or fiddle with (something), typically in a purposeless or
nervous way.”)

x[0]
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x[4]
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x[7]

X[0]
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X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

-

-

1

-2

5

7

-3

8

4

6

1-3=-2

-2+8=6

5+4=9

7+6=13

1-(-3)=4

-2-8=-10

5-4=1

7-6=1

-2 -2+9=7
7+19=26

7-19=-12

-2-9=-11 -11+7i

-11-7i

6-13=-7

4-(-i)=4+i

4-i

11.7781-7.3639i

-3.7781+5.3639i

1 = 7.7781+6.3639i

6+13=196

9

13

4x1=4

-10(0.7071-0.7071i)
 =-7.071+7.071i

1x(-i)=-i

1x(-0.7071-0.7071i)

7i

11.7781+7.3639i

-3.7781-5.3639i

2

data={1,-2,5,7,-3,8,4,6};
Fourier[data,FourierParameters->{1,-1}]

Figure 4.47: FFT by Decimation in Frequency. N = 8 Example.

The main di↵erences between DIT and DFT are the following:

DIT partitions the input sequence xn according to the parity of the indices n, while
DIF partitions the same sequence into its first half and second half.

The input sequence of DIT must first be rearranged in bit-reversed order and the
output sequence comes out in natural order. DIF employs the inverse scheme where the
input is in natural order and the output is generated in bit-reverse.

Computer Generated Text

The fast Fourier transform (FFT) is an e�cient algorithm for computing the discrete
Fourier transform (DFT) of a sequence. The DFT is a mathematical operation that
transforms a sequence of n complex numbers x[0], x[1], . . . , x[n � 1] into another
sequence of n complex numbers X[0], X[1], . . . , X[n� 1], where each X[k] is given by:

X[k] =
n�1X

i=0

x[i] e�2⇡ik/n.
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The FFT is a divide-and-conquer algorithm that recursively breaks down the DFT
into smaller DFTs, using the fact that the DFT can be computed by summing two DFTs
of half the size. Here is some pseudocode for the FFT algorithm:

def fft(x):
n = len(x)
if n == 1:
return x

even = [x[i] for i in range(0, n, 2)]
odd = [x[i] for i in range(1, n, 2)]
X_even = fft(even)
X_odd = fft(odd)
X = [0] * n
for k in range(n//2):
t = cmath.exp(-2*cmath.pi*k/n) * X_odd[k]
X[k] = X_even[k] + t
X[k + n//2] = X_even[k] - t

return X

The FFT algorithm has a time complexity of O(n log2 n), which is much faster than
the naive algorithm for computing the DFT, which has a time complexity of O(n2).
The FFT is widely used in signal processing and other applications where the DFT is
needed.

Generated by ChatGPT, 22 Dec 2022.

4.8.2 A Di↵erent Look at the FFT

We now change our viewpoint and use references [reducible 20a,b] to look at the FFT
from a di↵erent and (to some) more familiar direction, that of polynomial multiplication.
The assumption is that a reader who wants to understand Fourier methods in general
and the FFT in particular would likely be familiar with polynomials and arithmetic
operations on them. It turns out that the FFT can be understood by looking at polyno-
mial multiplication, and especially at the problem of converting a polynomial from its
traditional coe�cient representation to the completely di↵erent value representation.

The traditional method of multiplying polynomials relies on their distributive prop-
erty, which is illustrated by the identity a(b + c) = ab + ac. Given the two polynomials
A(x) = �x2 + 4x� 1.5 and B(x) = 2x2 + 3, we can write

A(x)·B(x) = (�x2+4x�1.5)(2x2+3) = �x2(2x2+3)+4x(2x2+3)�1.5(2x2+3) = . . . ,

and continue to distribute items until we have a long sum where each term is a product of
the form cixi, where ci is a constant. It is easy to see that this method of multiplication
is slow. Each term in A(x) must be multiplied by every term of B(x). If the two
polynomials have degrees a and b, the multiplication requires ab operations (except
when certain terms are missing, such as the term x in our B(x)). If both polynomials
have degree d, the time complexity of the multiplication is denoted by O(d2), very slow.
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When manipulating polynomials in a computer, the most natural way of storing
them is to store the n + 1 coe�cients of a degree-n polynomial in an array according
to increasing powers of the variable. Thus, the two polynomials above would be stored
in the arrays (�1.5, 4,�1) and (3, 0, 2). This way, the coe�cient of xk is stored in
location k+1 of the array. We can call this representation of a polynomial its coe�cient
representation.

We now consider the problem of speeding up polynomial multiplication. We start
with the simplest, degree-1 polynomial, whose expression is P (x) = p0 + p1x. This
mathematical object can also be considered a linear function and can be graphed as a
straight line with slope p1 (the degree-1 term) and y-intercept p0 (the degree-0 term).
Those familiar with analytic geometry (the study of geometry using a coordinate system)
know that such a line can also be represented in other ways, such as the following:

Polar coordinates. Given a straight line inclined at ✓ degrees relative to the x-axis
and passing through point P = (h, k), its polar equation is Q(x, y) = (h + r cos ✓, k +
r sin ✓), where r is the distance of point Q from P , and it can vary in any desired interval.

Parametrically. The expression P(t) = (1 � t)A + tB is the parametric (or two-
point) equation of a straight line, where A and B are two distinct points on the line.
When varying t from 0 to 1, the line progresses from A to B.

The Lagrange polynomial extends the basic two-point representation of a straight
line to arbitrary polynomial curves. Given n+1 distinct data points P0 = (x0, y0), P1 =
(x1, y1), . . . ,Pn = (xn, yn), we search for a function y = f(x) that will pass through all
of them. We first try an expression of the form y =

Pn
i=0 yiLn

i (x). This is a weighted
sum of the individual yi coordinates where the weights Ln

i depend on the xi coordinates.
This sum will pass through the points if

Ln
i (x) =

⇢
1, x = xi,
0, otherwise.

A good mathematician can easily guess that such functions are given by

Ln
i (x) =

⇧j 6=i(x� xj)
⇧j 6=i(xi � xj)

=
(x� x0)(x� x1) · · · (x� xi�1)(x� xi+1) · · · (x� xn)

(xi � x0) · · · (xi � xi�1)(xi � xi+1) · · · (xi � xn)
.

(Note that (x � xi) is missing from the numerator and (xi � xi) is missing from the
denominator.) The function y(x) =

Pn
i=0 yiLn

i (x) is called the Lagrange polynomial,
reference [Lagrange 77], and it is a polynomial of degree n, denoted by LP.

Example. Given the four points (1, 1), (2, 8), (3, 27), and (4, 64), the Lagrange
polynomial that passes through them is

L(x) = 1⇥ (x� 2)(x� 3)(x� 4)
(1� 2)(1� 3)(1� 4)

+ 8⇥ (x� 1)(x� 3)(x� 4)
(2� 1)(2� 3)(2� 4)

+ 27⇥ (x� 1)(x� 2)(x� 4)
(3� 1)(3� 2)(3� 4)

+ 64⇥ (x� 1)(x� 2)(x� 3)
(4� 1)(4� 2)(4� 3)

= x3.
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Given a set of points, there are many curves that pass through the points, but the
Lagrange method produces only one of them. This may be a serious disadvantage in
practical computer graphics work, which is why the LP is not used much in practice.

⇧ Exercise 4.9: Show that the LP is unique.

The existence of the Lagrange polynomial suggests another representation of poly-
nomials, the value representation. Given a degree-d polynomial P (x), its value repre-
sentation is a list, any list, of n distinct points, where n � d + 1, through which P (x)
passes, something of the form

⇥�
x0,P(x0)

�
,
�
x1,P(x1)

�
, . . . ,

�
xd,P(xd)

�⇤
.

Our interest in the value representation is that it simplifies the multiplication of poly-
nomials. Imagine two univariate quadratic polynomials A(x) = x2 + 3x + 1 and B(x) =
x2� 3x + 1. (Univariate means there is no binary term such as xy.) The graphs of such
functions are parabolas, an infinite curve where x varies in the interval [�1,1]. For
any x value, such a curve has a corresponding y value. The product C(x) = A(x) ·B(x)
is a degree-4 polynomial, so its value representation requires five points. We cleverly
choose the five x values �2, �1, 0, 1, and 2, and compute their corresponding y values
for A(x) and B(x). The results are

�
(�2,�1), (�1,�1), (0, 1), (1, 5), (2, 11)

�
and

�
(�2, 12), (�1, 6), (0, 2), (1, 0), (2, 0)

�
,

respectively.
We now multiply the polynomials by first computing five new points. The x co-

ordinates of these are the same as of the points above, going from �2 to 2. Each y
coordinate is the product of the y coordinates of the corresponding pair of the points
above. Thus, the y coordinates of the first points of the two lists above are multiplied
to produce (�1) · 12 = �12. The resulting five points are

�
(�2,�12), (�1,�6), (0, 2), (1, 0), (2, 0)

�
,

and the important fact is that this process required only five multiplications. So far,
the time complexity has been O(d), instead of the traditional polynomial multiplication,
based on the coe�cient representation, which requires O(d2) individual multiplications.

We still want to derive the actual expression of the product polynomial C(x), and
for now, we do this with the Lagrange polynomial. In our example, the result is the
expression C(x) = x4 � 6x2 + 3x + 2. The Mathematica code for this process is listed
here.

pa[x_]:=x^2+3x+1;
qa=Table[{x,pa[x]}, {x,-2,2}]
pb[x_]:=x^2-3x+2;
qb=Table[{x,pb[x]}, {x,-2,2}]
pq=Table[{x,pa[x]pb[x]},{x,-2,2}]
Simplify[InterpolatingPolynomial[pq,x]]
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We finally get to the FFT. We will show how to use the FFT instead of the Lagrange
polynomial. We start with two degree-d polynomials A and B, choose 2d + 1 points on
each, multiply them as shown earlier to obtain a set of 2d + 1 points that are the value
representation of the polynomial product C = A · B. Finally, we employ the FFT
to derive the expression for polynomial C from the points that constitute the value
representation.

A clever way to choose 2d + 1 points is to take advantage of symmetry. If our
polynomial is P (x) = x2, then it is an even function which satisfies P (�x) = P (x) and
we can choose points with x coordinates ±1, ±2, and so on (a set of ± paired points). For
each pair, we only need one calculation to determine both P (x) and P (�x). Similarly, if
our polynomial is P (x) = x3, then it is an odd function, which satisfies P (�x) = �P (x)
and we again can do one computation for each pair of paired points.

Most functions are neither odd nor even, but polynomials are simple functions. A
polynomial with only even (positive or negative) exponents of the variable x is an even
function, and similarly for a polynomial with only odd exponents of x. This leads to the
first of the several simple, ingenious ideas (some of which had originally been proposed
by Gauss) that make the FFT possible. This idea is partition. Given an arbitrary,
degree-n polynomial such as P (x) = 8x5 � 6x4 + x3 + 4x2 � 5x + 1, simply partition it
into two parts, even and odd, as follows:

P (x) = (�6x4 + 4x2 + 1) + (8x5 + x3 � 5x)
= (�6x4 + 4x2 + 1) + x(8x4 + x2 � 5)
= Pe(x) + xPo(x). (4.13)

Notice that the new, smaller-degree polynomials have only even exponent terms,
which is why we can consider them functions of x2 instead of x and write them as
Pe(x2) = �6x2 + 4x + 1 and Po(x2) = 8x2 + x � 5, both of degree n/2 � 1. (For now,
let’s assume that n is even and discuss this point later.) Another point to keep in mind
is that now, that these two small polynomials are functions of x2, we have to compute
each at the points x2

1, x2
2, . . . , x2

n/2, which are all nonnegative numbers and therefore
unpaired.

⇧ Exercise 4.10: Given the degree-6 polynomial P (x) = 9x6+8x5�6x4+x3+4x2�5x+1,
partition it into two parts, even and odd, as shown in the text.

At this point we conclude that partitioning has transformed the original polynomial
P (x) to the sum Pe(x2) + xPo(x2), i.e., a polynomial that is almost even, because for
any particular parameter xi it satisfies

P (xi) = Pe(x2
i ) + xiPo(x2

i ) and P (�xi) = Pe(x2
i )� xiPo(x2

i ), (4.14)

a relation which saves computations in two ways as follows:

Once we compute Pe(x2
i ) and Po(x2

i ) in order to evaluate P (xi), we can use them
to also evaluate P (�xi).

Both Pe(x2
i ) and Po(x2

i ) are degree 2, compared to the degree 5 of the original
P (x). Recall that the time complexity of computing the values of a polynomial in the
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coe�cient representation is O(n2), which is why we benefit from the fact that twice
O(22) is less than a single O(52) and that this disparity gets bigger with n.

Example. We choose the degree-5 polynomial P (x) = 8x5�6x4 +x3 +4x2�5x+1,
and compute its values at the six paired points ±1, ±2, and ±3. Partitioning P (x) as in
Equation (4.13), we compute its values at the six paired points as shown in the following
code. First (on line 4) directly and then (lines 5–6) according to Equation (4.14). The
result, produced by the given Mathematica code, is (3,�5, 175,�333, 1507,�2405) in
both cases.

1 pp[x_] := 8 x^5 - 6 x^4 + x^3 + 4 x^2 - 5 x + 1;
2 pe[x_] := -6 x^2 + 4 x + 1;
3 po[x_] := 8 x^2 + x - 5;
4 Table[pp[x], {x, {1, -1, 2, -2, 3, -3}}]
5 Table[pe[x^2] + x po[x^2], {x, {1, 2, 3}}]
6 Table[pe[x^2] - x po[x^2], {x, {1, 2, 3}}]

In the general case, we start with an even integer n and a degree-(n�1) polynomial
P (x) that we want to evaluate at n paired points ±x1, ±x2, . . . , ±xn/2. We partition
P (x) into two, degree n/2�1 polynomials Pe(x2) and Po(x2). We then compute Pe(x2

1)
and x1Po(x2

1) and apply Equation (4.14) to evaluate P (x1) = Pe(x2
1) + x1Po(x2

1). Once
this is done, we can evaluate P (�x1) = Pe(x2

1) � x1Po(x2
1) at the extra cost of one

addition and one subtraction. The total cost to evaluate P (x) at the two points ±x1

is therefore (1) the costs to evaluate the two, smaller-degree Pe(x2
1) and x1Po(x2

1) once,
and (2) an addition and a subtraction. This is repeated for the remaining pairs of points.

The idea of partitioning the original, high-degree polynomial into two smaller poly-
nomials leads naturally to the second of the simple, ingenious ideas that make the FFT
fast, namely recursion. What if we partition each of the two, degree n/2�1 polynomials
into smaller, degree n/4 � 1 children polynomials and repeat this process recursively
until only polynomials of degree 1 remain? (An important note! In order for all those
smaller polynomials to have integer degrees, n itself must be a power of 2. Thus, the
recursive FFT version described here is limited to such values of n.)

Now that we decided to use recursion, our problem can be stated as follows: We
start with a degree-n polynomial P (x) that we want to evaluate at n points in order to
find its value representation. Our thinking went through the following three stages

1. Partition P (x) into two, degree-n/2 children polynomials Pe(x2) and Po(x2),
both of which are even.

2. Evaluate each of these children on a set of ± paired points of the form (±x1,
±x2, . . . , ±xn/2). This results in two sets of values

h
Pe(x2

1), Pe(x2
2), . . . , Pe(x2

n/2)
i

and
h
Po(x2

1), Po(x2
2), . . . , Po(x2

n/2)
i
. (4.15)

Now employ Equation (4.14) on each pair of values Pe(x2
i ) and Po(x2

i ) twice, to com-
pute points P (xi) and P (�xi) at the cost of one multiplication, one addition, and one
subtraction.

3. This process can be speeded up if instead of evaluating each of the children Pe(x2)
and Po(x2) on a set of n/2 paired points, we partition each child into two smaller, degree-
n/4, grandchildren polynomials, and then come back and use those four to evaluate the
children Pe(x2) and Po(x2). This naturally introduces the idea of recursion. Instead
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of evaluating the four new, degree-n/4, grandchildren polynomials, we can partition
each into smaller, degree-n/8 polynomials, and continue partitioning recursively, without
evaluating, until we end up with n degree-1 polynomials. Those are trivial to evaluate,
and then the recursion can return step by step, evaluating higher-degree polynomials at
each step with one multiplication, one addition, and one subtraction

These are three stages of algorithm development that seemed promising, but once
we try implementing these ideas we run into a problem. Consider the stage where we
partition the two degree-n/2 children polynomials Pe(x2) and Po(x2) into four smaller
ones. Once the recursion goes all the way to the end (degree-1 polynomials) and arrives
back at the children Pe(x2) and Po(x2), we realize that each needs to be evaluated at
the n/2 points x2

1, x2
2, up to x2

n/2 and those points are unpaired.
This may be confusing, so here is a short summary. The original polynomial P (x)

had to be evaluated at the set of paired points ±xi and this was fast and easy to do
with Equation (4.14) from the children Pe(x2) and Po(x2). Each child was evaluated at
the n/2 points x2

i , and the final result was the set of n points listed in Equation (4.15).
At that time, we could have evaluated Pe(x2) and Po(x2) at all the x2

i directly, but we
decided to try the recursive approach. With this approach, we plan to evaluate the two
children from their four grandchildren, and the problem is that points x2

i are unpaired;
in fact, they are nonnegative! We can benefit from the ideas of stage 2 above only if we
evaluate a polynomial at a set of paired points, so our new problem is to find a set of
±xi paired points that will remain paired (identical but with opposite signs) when they
become polynomial values such as Pe(x2

i ) and Po(x2
i ).

A good way to visualize such an initial set of points is to examine a simple example.
Let’s consider the case n = 4, i.e., a degree-3 polynomial, such as P (x) = x3 +x2 +x�1.
We need to compute the values of this P (x) on a set of four paired points, so let’s denote
them by ±x1 and ±x2. In the first recursive step we partition P (x) into an even and
odd pair Pe(x2) and Po(x2) of polynomials, which is done by

P (x) = (x2 � 1) + (x3 + x) = (x2 � 1) + x(x2 + 1) = Pe(x) + xPo(x).

Thus, Pe(x2) = x � 1 and Po(x2) = x + 1. The two should later be evaluated (from
their children) both at x2

1 and x2
2, and in order to do so with Equation (4.14), x2

1 and
x2

2 must be a pair, x2
2 = �x2

1. In the next and last step of the recursion we end up with
the single point x4

1. This structure is illustrated by Figure 4.48(a).
We now try to assign numeric values to this structure of seven points, and the

simplest initial choice is to choose 1 as the value of x1. Figure 4.48(b) shows the results
of this choice. Point �x1 must be �1, causing the pair x2

1 and �x2
1 to also be 1 and �1.

At the bottom level there is only one point, so its value is also 1. This leaves the initial
pair x2 and �x2 and the figure shows that x2

2 must be �1, which implies the obvious
choice x2 = i. This is how complex numbers enter the FFT.

To generalize this example to arbitrary n, we examine part (c) of Figure 4.48. The
bottom level, which is 1, is the value of x4

1. In the formal language of mathematics, this
means that the four numbers at the top must be four solutions of the equation x4

1 = 1.
As long as we are limited to real numbers, this equation has only the two solutions
x1 = ±1, which is why we have to look at a wider number field for our four solutions.

Those familiar with complex numbers may now realize that the four numbers at the
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Figure 4.48: Tentative Points for a Two-Step Recursion.

top level are the 4th roots of unity, as discussed on Page 7. It has been mentioned earlier
that the recursive version of FFT described here requires n to be a power of 2. It is also
known that for each power 2n there are 2n nth roots of unity. These facts are what is
needed to choose the initial set of ± paired points. Given a polynomial of degree d, we
first choose the smallest n that satisfies n � (d + 1) as well as n = 2k for some integer
k, and compute the set of nth roots of unity to become the initial points for the first
recursion step. (The reader is invited to review the three sets of exponentials that start
on Page 105, since those are also roots of unity.)

As explained on Page 7, those roots are the powers (1,!1,!2, . . . ,!n�1) of ! =
e2⇡i/n and they are ± paired because !j+n/2 = �!j . The pairing is shown in Figure In-
tro.4, where lines connect the two points of each pair. In the first recursion step, we
select half the initial points and use the sequence (1,!2,!4, . . . ,!n/2�1) of paired points
to evaluate polynomials Pe(x2) and Po(x2). The FFT recursion continues in this way
until the last step, where only one point remains.

The discussion so far has explained each of the three main ideas—partition, recur-
sion, and roots of unity—behind the basic, recursive version of the FFT. We are now
ready for a summary of the main steps of the algorithm.

We start with (1) choosing a power of 2 as the value of n and (2) a degree-(n� 1)
polynomial P (x). We define ! = e2⇡i/n (or, equivalently ! = e�2⇡i/n) and start the
recursion. Each recursion step invokes itself recursively twice, once for the even-degree
terms of the current polynomial and one for its odd-degree terms. Each of these smaller,
degree n/2 polynomials is evaluated at (n/2)-roots-of-unity points, ending up with the
following values

ye =
⇥
Pe(!0), Pe(!2), . . . , Pe(!n�2)

⇤
, and yo =

⇥
Po(!0), Po(!2), . . . , Po(!n�2)

⇤
. (4.16)

These values are saved and are now used to compute the n values of the original, degree-
(n � 1) polynomial. This is done with the value representation, Equation (4.14), du-
plicated here with a slight change of index and with a root !j instead of an arbitrary,
unknown point xj

P (!j) = Pe(!2j) + !jPo(!2j) and P (�!j) = Pe(!2j)� !jPo(!2j),
P (!j) = Pe(!2j) + !jPo(!2j) and P (!j+n/2) = Pe(!2j)� !jPo(!2j)
P (!j) = ye(j) + !jyo(j) and P (!j+n/2) = ye(j)� !jyo(j), (4.14)

j = 0, 1, . . . , (n/2� 1).
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The second line above is based on the identity �!j = !j+n/2, that is satisfied by the
roots of unity. The third line comes from Equation (4.16).

Once the n values of P (x) at the roots of unity have been evaluated, the algorithm
returns, with the value y =

⇥
P (!0), P (!1), . . . , P (!n�1)

⇤
as its output.

The excellent references [reducible 20a,b] cover this material in video form and
include detailed flowcharts and a step by step example of recursion.

4.9 Postscript

Fourier methods prove that, at the lowest level, one-dimensional signals, two-dimensional
images, and even three-dimensional objects consist of sinusoidal waves, but why? A
possible explanation is that the laws of nature can very often be expressed in terms
of partial di↵erential equations. Such equations are di�cult to solve, but they contain
functions of physical properties such as size, mass, density, and electrical conductivity.
These functions have coe�cients, and if those coe�cients are constant in space and time,
the solutions of such an equation are in the form of exponential and sinusoidal functions
which describe waves propagating in space and time. This may be the reason why our
universe can be expressed in terms of waves.

—Jon Claerbout, Fourier Transforms and Waves, 1999.

Fourier’s theorem is not only one of the most beautiful
results of modern mathematics, but it may be said to

furnish an indispensable instrument in the treatment of
nearly every recondite question in modern physics.

—Ron Bracewell.



5
The Sampling Theorem

Many historians agree that the first industrial revolution started in 1776, when James
Watt introduced his design of the steam engine commercially. This allowed manufactur-
ers to gradually switch from manual production to machine fabrication using steam and
water power. The use of machines was first adopted by textile manufacturing, followed
by the iron industry, agriculture, and mining.

Similarly, it makes sense to claim that the second industrial revolution started in
1869, when the first transcontinental railroad was completed, joining the two coasts
of the United States. The transcontinental telegraph, which went together with the
railroad, is also a reason to consider the period 1869 to 1914, revolutionary.

The modern electronic computer was first envisioned by Charles Babbage around
1837. The first steps toward building such a machine came during World War II, when
Alan Turing and Tommy Flowers constructed special-purpose computers for enemy code
breaking. After the war, several researchers started designing and building digital com-
puters, but the third industrial revolution, the digital revolution, had to wait until
around 1968–1969. It was at that time that two little-known developments gave us com-
puter networks and personal computers, and in this way started a revolution that took
the world by surprise as well as by storm.

The story of computer networks and the Internet has been well documented. See,
for example, Wikipedia article “History of the Internet.” The personal computer came
about when Busicom (Bijikon Kabushiki-gaisha), a small Japanese company specializing
in computer-related products, decided to make a very small calculator, a novelty item.
Not knowing how to squeeze a screen, keypad, battery, and electronics into a small
package, in 1968 Busicom executives went to Intel, a semiconductor company in Santa
Clara, California, asking for help. The job was assigned to “Ted” Ho↵ who decided to
design the electronic circuits as a (microprogrammed) computer. The resulting device,
known as the Intel 4004, became the first microprocessor and its more powerful successors
started powering the personal computers that immediately followed.



120 5.1 The Sampling Theorem

This is why computer networks, combined with our powerful personal computers
and with mathematical theories, have changed the way we process information from
analog to digital and gave meaning to the term digital revolution or the third industrial
revolution.

5.1 The Sampling Theorem

This section introduces the sampling theorem, one of those magical, unexpected mathe-
matical results that a↵ect and improve our lives even though most are unaware of their
existence. The sampling theorem claims that we can scan an image, convert it into
pixels, and still be able (if we do it right) to compute the colors of image points between
pixels. This is possible if the image is scanned at a high-enough resolution. Images are
two dimensional, but the sampling theorem holds for any number of dimensions, which
is why it is considered the most important idea that made our vast digital media world
possible.

Because of its importance, we try to state the essence of the sampling theorem in
various ways as follows: (1) It proves that the digital world of bits and pixels (which we
cannot see or hear) can accurately represent the real world, which is basically analog
and is visible. (2) It shows that discrete data (a finite set of numbers) can faithfully
represent the solid, smooth, and uncountably (@1) continuous objects we are familiar
with, regardless of their number of dimensions. (3) It implies that we can get rid of a
vast amount of information without losing anything, because we can always reconstruct
the original information perfectly; it’s like getting something from nothing. (4) When
we carry a CD with music on it, we do not carry the music itself. We carry a large set
of numbers, the audio samples (or a compressed version of an audio file) that can be
processed to produce and play the music. In contrast, when we carry an old, analog vinyl
record, we carry the infinite analog representation of the sound (actually, a small subset
of it, due to the limited precision of the track on vinyl). (5) The sampling theorem is
not just an existence theorem, because it shows exactly how to achieve the surprising,
magical goal of ideal sampling and perfect reconstruction.

We first illustrate the sampling theorem with audio, which is one dimensional. The
following exchange is typical:

John: “No, o�cer, I didn’t say that. I said I thought it was him, but it was dark
and I couldn’t be sure.”

O�cer: “I heard you say you saw him.”
Anna: “No, o�cer. I’m sure he only said he may have seen him.”
Sound is fleeting. You say something and it is immediately gone. People hear you,

they think they understand you, but just a few seconds later they may not agree on
exactly what they have heard. This is why the invention of the phonograph (by Thomas
Edison in 1877), was so revolutionary. For the first time in human history it became
possible to record sound, store it indefinitely, and play it back. Following Edison, many
engineers and inventors developed advanced techniques and media for sound recording
and constantly improved the results. Sound was recorded on wax cylinders, electrical
wires, steel tape, magnetic disks, and magnetic tapes, but all these devices were analog.
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The first successful digital sound recording was the CD format, developed and adopted
by a consortium of several manufacturers in the 1980’s. For the first time, it became
possible to record sound at a high fidelity and copy it many times without degradation
of quality.

The main shortcoming of any analog representation is the gradual degradation of
copies. You write something on paper, place it in a copy machine and copy it easily, but
the copy is not as sharp as the original, and copies of this copy feature more and more
degradation. On the other hand, if you write text on the computer, and save it as a text
file, you can copy it and copy its copies indefinitely without any loss of quality. Each
copy is identical to the original file. Thus, a chief advantage of a digital representation
of any data is the ability to make true copies.

Sound is a wave in the air. When we generate sound, air molecules move back and
forth, forming a wave in the air. This sound wave is an analog representation of the
sound. When a microphone picks up a sound wave, it converts it to an electrical wave, a
voltage that varies with time in accordance with the sound. This wave is another analog
representation of sound. Digitizing sound, converting its representation from analog to
digital, is done by measuring the amplitude (the voltage) of this wave many times each
second. Each voltage measurement is converted to a number, an audio sample, and
those numbers constitute an audio file.

(The terms voxel and soxel are derived from pixel. The former is a small unit of
volume, while the latter, which is introduced in the excellent book [Smith, Alvy Ray 21],
is a contraction of sonic element, and denotes an audio sample.)

Figure 5.1 illustrates a simple example. A very small part of a sound wave is
sampled and is converted to about two dozen audio samples. The magnitude of each
sample is indicated in red. It is clear that there are not enough samples to reconstruct
the original sound wave. Many parts of the wave (some are marked by green boxes)
cannot be predicted from our samples. Thus, the most important question in digitizing
sound is how often to sample a given sound wave.

Figure 5.1: Sampling a Sound Wave.

It is intuitively clear that the sampling rate must depend on the frequency of the
sound, as illustrated by Figure 5.2. The figure shows a simple sine wave that is sampled
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several times. In part (a) of the figure, the wave is sampled once per period, the samples
are identical, and the simplest reconstruction (in green) is a constant signal. Naturally,
this is very di↵erent from the original sine wave. In part (b) of the figure, three samples
are taken for every two periods of the wave, and the most obvious reconstruction is a
sine wave with a frequency that is much lower than that of the original. Part (c) shows
what happens when two samples are taken in each period of the wave. The result is a
sine wave with the same frequency but a much smaller amplitude. Only part (d), where
eight samples are taken, seems promising. At least, it is not immediately clear how
anything other than the original sine wave can be reconstructed from those samples.

A digression. The black and green waves of parts (a) through (c) of Figure 5.2 are
di↵erent, but because of the low sampling rate they cannot be distinguished. Given the
set of samples, we can use it to reconstruct either wave. This is a case of aliasing. Here
is what wikipedia has to say about this term “In signal processing and related fields,
aliasing is an e↵ect that causes di↵erent signals to become indistinguishable (or aliases
of one another) when sampled.” Thus, when a sound wave is sampled at a rate that is
too low, the reconstructed sound is di↵erent from the original sound and features low
frequencies. When an image is sampled (scanned or photographed) at a low rate, its
reconstruction also features low pixel frequencies. Such frequencies are associated with
important image features, which is why aliasing causes significant distortions. In his
outstanding lectures on photography, Marc Levoy defines aliasing as high frequencies
masquerading as low frequencies due to insu�ciently closely-spaced samples (lecture 7
of [Levoy 16]). End of digression.

⇧ Exercise 5.1: Show simple examples of spatial and temporal aliasing (aliasing in space
and in time). The former should be a simple image where high frequencies combine to
form low frequencies. The latter should be a simple system that moves one way in time,
but seems to slowly go back in time when we sample it at a low rate.

We are now ready for the sampling theorem. Most references that discuss this
topic refer to it as the Shannon-Nyquist sampling theorem [Nyquist 15] and claim that
it is due to Harry Nyquist and Claude Shannon. However, the excellent book [Smith,
Alvy Ray 21] corrects this tradition and informs us that the originator of this important
theorem, in 1933, was the Soviet engineer and scientist Vladimir Kotelnikov (Figure 5.3).

Later researchers put this result on a more solid theoretical foundation, but its basic
claim hasn’t changed. The sampling theorem states that any wave can be reconstructed
perfectly from a finite set of samples if the sampling rate is greater than twice the
maximum frequency (the cuto↵ frequency or the Nyquist rate or the Nyquist frequency)
of the wave.

A rigorous proof of this theorem is outside the scope of this book, but Subsection 5.2
attempts to give the reader an overall picture of such a proof in two steps, the first
is mathematical and the second is intuitive. The claim of the sampling theorem is
simple and it comes as a surprise. We intuitively feel that a perfect reconstruction of
a continuous analog wavy (undulating) signal requires infinitely many samples, but the
theorem says that a wavy signal featuring any frequencies can be fully reconstructed
from a finite number of samples. This sounds like getting something for nothing. How
can a finite number of samples represent the total information included in a continuous
analog signal which consists of infinitely many points? The explanation is that the
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(a)

(b)

(c)

(d)

Figure 5.2: Sampling a Sine Wave.
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Nyquist

Kotelnikov

Shannon

Figure 5.3: The Fathers of the Sampling Theorem.

process of reconstructing and computing the infinite number of points of the original,
continuous signal requires an infinite amount of computations, thereby cancelling out
any advantage obtained when the signal was originally sampled (when its original, analog
infinity was repackaged in a finite form). However, in practice we skip most of these
computations and obtain a very close approximation of the original signal by performing
a finite number of steps. The following discussion sheds more light on the meaning of
the sampling theorem.

Chapter 4 discusses the Fourier transform and explains how a continuous, analog
periodic signal can be represented as an infinite sum of pure sine waves of increasing
frequencies. Each wave is fully described by its amplitude and phase. The frequencies
do not have to be explicitly stated because they are implied in the sum. This is another
example of throwing away an infinite amount of information without losing anything.
The original, analog signal contains an uncountable (@1) amount of point information,
while its transform consists of a finite amount, or at most a countable (@0) amount of
numbers, namely two per sine wave. Thus, in much the same way that Newton stood
on the shoulders of giants, Nyquist, Shannon, and Kotelnikov stand on the shoulders of
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Fourier.
Imagine that we convert each audio sample to a two-dimensional point as follows.

The value of the sample becomes the y coordinate of the point, while its x coordinate
is the time the sample was taken. The original sound wave can be visualized as a
two-dimensional curve with time as the x axis, and the problem of reconstructing the
sound wave is now equivalent to finding all the curves that pass through the points and
selecting the right one. The simplest way to generate a curve is to connect the points
with straight segments, in the same way as the game of connect the dots. The result is
rarely the right curve, and Subsection 5.2 shows how to interpolate the points in order
to end up with the original curve.

Given a sound wave whose frequency is less than 1,000 Hz, we sample it at 2,100 Hz
and end up with 2,100 samples for each second of sound. The theorem guarantees that
this number of samples would be enough to fully reconstruct the wave. It is pointless
to sample at a higher rate, because out of all the curves that pass through all the 2,100
sampled points, there would be only one curve whose frequency is less than 1,000 Hz.

Often, it is not known in advance what frequencies are included in a wave and
what its maximum frequency is. In such a case, the best that we can do is to estimate,
digitize the wave, and try to reconstruct it. Sound waves are all di↵erent and each may
consist of a mixture of many frequencies. We don’t know in advance what frequencies
are included in a given sound wave, but we can use our knowledge of human physiology
to solve this problem.

The range of human hearing is typically from 16–20 Hz to 20,000–22,000 Hz, de-
pending on the person and on age. When sound is digitized at high fidelity, it should
therefore be sampled at a little over the Nyquist rate of 2⇥22,000 = 44,000 Hz. This is
why high-quality digital sound is based on (at least) a 44,100-Hz sampling rate. Any-
thing lower than this rate may result in distortions, while higher sampling rates do
not improve the reconstruction (playback) of the sound. We can consider the sampling
rate of 44,100 Hz a lowpass filter, since it e↵ectively removes all the frequencies above
22,000 Hz.

Applying the sampling theorem to audio is simple, because audio is one dimensional.
Our interest, however, is in images, which are two dimensional. It turns out that images
also feature frequencies and therefore obey the sampling theorem. The concept of pixel
frequencies is easy to understand when we consider bi-level (black-and-white) images.
Figure 5.4 shows a small, 5⇥8 bi-level image that illustrates pixel frequencies. The top
row of this image is uniform, so we can assign it zero frequency. The following rows
feature increasing pixel frequencies as measured by the number of color changes along a
row. The four waves on the right roughly correspond to the frequencies of the four top
rows of the image.

a
b

c

d

Figure 5.4: Image Frequencies.
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A digression. Image frequencies are important because they make it possible to
distinguish between the important features of an image and the features that are mere
details. Low pixel frequencies correspond to the important image features, while high
frequencies correspond to the details of the image, which are generally less important.
This fact is the basis of image compression by means of transforms. (End of digression.)

Today (in 2022), bi-level images are fairly rare and most digital images are in color.
A pixel in a color image consists of three parts, for the three color components. Given
a color image, we start by separating the three parts and considering each a grayscale
image. Thus, we need to consider how to measure pixel frequencies in a grayscale image.
We assume that a grayscale image is given where a pixel can have values from 0 (black)
to 255 (white). The frequencies of pixels in this image can be measured in several ways
as follows:

If each row of the image consists of the n pixels P1 through Pn, we first convert
them to the two-dimensional points (1, P1) through (n, Pn) and then compute the degree-
(n� 1) Lagrange polynomial (Subsection 4.8.2) that passes through the points. Fourier
analysis is then used to break down this curve into its constituent sine waves.

Apply the discrete cosine transform (see Wikipedia) to all the 8⇥ 8 blocks of the
image. In each block, the 63 AC coe�cients of this transform indicate the strengths of
the various pixel frequencies in the block. Specifically, if a certain pixel frequency does
not appear in the block, its AC coe�cient will be zero. This makes it easy to choose the
maximum pixel frequency of each block.

Measure the size (in millimeters) of the smallest discernible detail in the image.
This can often be done manually, by looking through a magnifying glass and measuring
distances on the image with a ruler. If the size of this detail (its smallest dimension) is
d, we can define the highest frequency of the image as 1/d cycles-per-mm and scan it at
a resolution of d(2/d)+ ✏e gray-level samples per mm, where ✏ is a number much smaller
than 1/d.

In practice, however, we are restricted by the fixed resolution of our devices. When
scanning an image, the resolution of the scanner is either fixed, or is limited to a few
values such as 300, 600, and 1200 samples per inch. If we use a camera, the image
resolution is simply the resolution of its image sensor, which is high, but fixed.

Measure the smallest discernible change in the gray level. However, such measure-
ments are highly subjective and are better done by machine, a scanner. We denote the
gray levels from 0 (black) to 1 (white). If the smallest discernible change in the gray level
is g, then we can assume that the highest image frequency is 1/g and we need to scan
the image at a resolution of d(2/g) + ✏e gray-levels. Thus, for example, if g = 0.0085,
meaning that our scanner can discern gray levels as close as x and x + 0.0085, then
2/g ⇡ 235.29 and we should scan at a resolution of 236 gray levels. In practice, this
would mean 28 = 256 levels or eight bits per sample, but again we are limited to the
resolution of the scanner at hand.

The approaches above are not very practical. In practice, both digital cameras and
scanners capture images on image sensors, which consist of discrete photosites. Thus,
instead of measuring pixel frequencies, we consider the smallest detail that we want to
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be able to discern in an image. Similarly, instead of computing a sampling rate that is
greater than twice the maximum pixel frequency, we compare the size d of the smallest
detail to the size f of a photosite. Once we migrate from pixel frequencies to a size d and
from sampling rates to the photosite size f , the sampling theorem becomes the simple
relation d > 2f . The image must be scaled (or zoomed) such that the smallest detail we
are interested in covers more than two photosites. Figure 5.5 illustrates various relations
between d (the diameter of the white circle, our detail) and f (the size of the square
photosites).

In part (a) of the figure, the smallest detail is the same size as a photosite. The
detail is captured as a single square photosite, very di↵erent from a circle. This capturing
of the small detail is also inaccurate on the right-hand side of part (a), where the circle
falls on the intersection of photosites. The circle is captured as a large, dim square
because its light energy is now split among four pixels.

In part (b) of the figure, the smallest detail (the white circle) is the size of two
photosites. On the left-hand side, the circle is captured by four pixels, resulting in a
large gray square, significantly di↵erent from the circle. On the right side, however, the
circle is centered on a photosite and is captured by a group of 3 ⇥ 3 pixels that better
approximates its round shape.

(a)

(b)

(c)

Figure 5.5: Three Scan Resolutions.

In part (c) of the figure, the smallest detail (the white circle) is the size of three
photosites. Its round shape is captured on both sides of part (c). On the left, it is
centered on a photosite and is captured by a group of 3 ⇥ 3 pixels. On the right, it is
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centered on the intersection of four photosites and its shape is reflected even better by
a group of 4⇥ 4 pixels.

The advantage of the sampling theorem is now obvious. This theorem makes it
possible to enlarge a continuous image to any size and without any loss of detail by
scanning (or sampling) it at a high rate. Imagine dragging a large camera with a
4000 Mpixel sensor up the Acropolis in Athens, and taking a picture of a large part
of the city below. The resulting digital image would contain enough pixels to easily
distinguish small details, such as people and cars, seen in the distance. In general, if a
continuous image is photographed or scanned at high-enough resolution, it is possible
to compute the image intensity and color at any point between adjacent pixels and in
this way to create as many new pixels as desired. The end result of such a process is
a large image that is as close to the real, continuous image as desired. A surprising,
unexpected, and useful result.

5.2 The Sampling Theorem: Reconstruction

Once an analog signal has been sampled, saved, and possibly also edited, a time may
come when it has to be reconstructed. This is the magical process where a finite set
of numbers is converted to a continuous, analog signal containing, in principle, an un-
countable infinity of values. The discussion here consists of three parts. The first part
looks at signal reconstruction as a process of interpolation. The second part attempts
to be rigorous and uses mathematics. The third part is intuitive and relies on diagrams.
First, some terms used in the field of signal processing.

We can think of a time signal as a point moving in an ambient (i.e., boundless)
space, leaving a trace behind it, which ends up as a graph. If we know the mathematical
expression of this graph, we say that the point is a dynamic system.

The term impulse response (or impulse response function), of a dynamic system
is the reaction of the system in response to some external change. More accurately, the
impulse response is the output resulting from multiplying the system by an impulse (a
brief input signal).

The unit impulse function, also referred to as the Dirac delta (�) function, is
an unusual mathematical object. We can think of it as a curve whose value is zero
everywhere except at x = 0, where it is infinite, and whose integral over the entire real
number line is equal to 1. It can be described naively as

�(x) =
⇢

+1, x = 0
0, x 6= 0 , and

Z 1

�1
�(x)dx = 1,

but it is wrong to say that a mathematical quantity equals infinity because infinity is
not a number. It is therefore common to define the delta function as the limit

�(t) = lim
a!1

a e�⇡(ax)2 ,
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(*Dirac delta definition*)

del[t_, a_] := a Exp[-Pi (a t)^2];

Plot[del[t, 12], {t, -1, 1}, Filling -> Axis, PlotRange -> All]

Assuming[a > 0, Integrate[del[t, a], {t, -Infinity, Infinity}]]
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Figure 5.6: The Dirac delta as a Limit

which is illustrated by Figure 5.6. The figure also shows that the area under the delta
curve equals 1 regardless of the value of a.

In engineering diagrams the Dirac delta is depicted as a vertical arrow of any length
and can be shifted horizontally such that the arrow may be located at any point on the
x axis (which usually serves as the time axis). The delta function is used by scientists
to model abstractions such as a point charge, point mass, or electron point. Engineers
use it to model a tall narrow spike function (an impulse), which is why they often refer
to it as the unit impulse symbol. We normally refer to �(x) as a function for historical
reasons, even though it is not a function in the conventional sense. A mathematical
function must have a definite value at each point in its domain, but �(x) approaches
infinity at x = 0 and therefore cannot be used in mathematical analysis like an ordinary
function.

A note. The delta function and the familiar cosine are dual in the sense that
each is the Fourier transform of the other, as is illustrated in Figure 5.7. To prove this
little-known relation, we first point out that the famous Euler formula implies

cos(!t) =
1
2
(ei!t + e�i!t).

From this, we show that the Fourier transform of x(t) = cos(!0t) is

X(!) = ⇡
�
�(! � !0) + �(! + !0)

�
,
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and we do this by considering the inverse Fourier tranform of X(!)

F�1{X(!)} =
1
2⇡

Z 1

�1
X(!)ei!td!

=
1
2⇡

Z 1

�1
⇡�(! � !0)ei!td! +

Z 1

�1
⇡�(! + !0)ei!td!

�

=
1
2
(ei!0t + e�i!0t)

= cos(!0t).

Once this relation is clear, we start with cos(t) in the time domain and pass it
through the Fourier transform to end up with the frequency-domain function X(!)
above, which is a delta.

X(!) =
Z 1

�1
cos(t)e�i!tdt =

Z 1

�1
cos(t) cos(!t)dt.

Figure 5.7 shows the resulting approximations of the delta function. In principle, the
limits of the integration should be from �1 to 1, but for practical reasons, the four
parts of the figure have limits in the intervals [�t, t] for t = 5, 10, 15, and 50. Note how
the height of the delta equals parameter a. The cosine function is also shown, in yellow,
for comparison.

Armed with these terms, we plunge into the first part of the discussion of recon-
struction. We are given a one-dimensional continuous time-signal xc(t) and we already
have a set x[n] of samples that satisfy the sampling theorem and that are set T time
units apart. We start with simple, intuitive attempts to estimate any point on xc(t)
from the one or two samples nearest it in time.

The left column of Figure 5.8 illustrates three such attempts. It is obvious that
the nearest neighbor method is almost always wrong because it always relies on a single
sample. The green point is estimated as the nearest sample to its right, whereas it is
clear that its value should be determined by the two samples surrounding it.

The zero-order hold method is similar, with the only di↵erence being that the thick
polygon representing the estimates has been shifted to the right half the distance between
samples.

The first-order hold method is much better. It estimates a point on the recon-
structed curve by linearly interpolating its two nearest samples.

It is now obvious that a second-order hold method should use a cubic (or other form
of) interpolation of three consecutive samples to yield a better estimate of a point on
the reconstructed curve. Similarly, higher-order interpolations could use more and more
adjacent samples to result in better and better estimates.

The other two columns of Figure 5.8 illustrate how the various hold methods can
be expressed formally in terms of the delta function combined with the operation of
convolution (Chapter 6). We replace each sample with a delta function of the same
height and convolve each delta with an appropriate impulse response filter (shown in the
rightmost column). For zero- and first-order holds, the impulse response is a rectangle
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a = 50;

Plot[{ NIntegrate[Cos[t] Cos[ w t], {t, -a, a}], Cos[w]}, {w, -4, 4},

BaseStyle -> {FontFamily -> "cmr10", FontSize -> 10},

PlotRange -> All, AspectRatio -> 27/44, ImageSize -> 72*2.45]

Figure 5.7: The delta as the Fourier Transform of a cosine

of width T and height 1, while for the second-order hold, it is a triangle of width 2T
and height 1.

Figure 5.9a shows several examples of how a series of such triangles, shifted and
vertically scaled, can generate each point of the first-order linear interpolation as the
sum of points from two triangle sides. Three examples are given, using green circles to
indicate points from triangle sides, and how they are added to form a black circle that
is located on the reconstructed curve.

It can be shown that perfect reconstruction is achieved when the special sinc func-
tion is used as the impulse response filter. This function (Figures 5.9b and 5.10) is
defined as sin(x)/x, except for x = 0, where it is indeterminate and is defined as 1. It is
infinite in the horizontal direction, but its amplitude decays fast as we move away from
x = 0.

Part (c) of Figure 5.9 illustrates two sinc functions (in red and green) convolved
with delta functions. Once each sample is replaced with the convolution of a delta and
a sinc, each point on the original, analog curve can be computed as the sum of points
on many sinc functions. There is one sinc function for each sample, which is why each
point on the reconstructed curve is the sum of points on N sinc functions, where N is
the number of samples. The figure shows two such points, in red and green. In practice,
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Figure 5.8: Intuitive Reconstruction.

N is normally very large, which is why a point on the reconstructed curve is computed
as the sum of only a few functions, those that correspond to nearby samples.

Finally, Figure 5.9d shows the 2D sinc function, resembling a sombrero, which is
used in reconstructing images from their samples. Its equation is sinc(

p
x2 + y2) and it

is used repeatedly on each point sample in an array of samples (pixels). Its e↵ect is to
spread each pixel based on all (in practice, only several of) the other pixels in the image.

Now, for the second part of the discussion of signal reconstruction, starting with
the concept of impulse sampling of a continuous-time signal. This term refers to how we
represent the sampling process of a signal as the product of the signal with an impulse
train. Figure 5.11 shows a continuous-time signal x(t) and a train p(t) of unit impulses
separated by a distance Ts (which will later be interpreted as the inverse of the Nyquist
frequency fs). We can consider this train an infinite, continuous, periodic function which
is mostly zero and has a pulse of height 1 in each period. Another way of looking at
p(t) is as a sifting function whose job is to sift out the values of the original signal x(t)
at many points that become samples. The product x(t) · p(t) which is denoted by x�(t),
is another train of impulses that become our samples.
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Figure 5.9: Better Reconstruction.
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Figure 5.10: The Sinc Function in Real Life.
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Figure 5.11: Impulse Sampling of a Signal.

The product x�(t) = x(t) ·p(t) can be written explicitly in the time domain because
p(t) is not simply a bunch of separate impulses but is a continuous, periodic function of
unit impulses separated by distance Ts. Thus p(t) =

P1
n=�1 �(t� nTs), and

x�(t) = x(t) ·
1X

n=�1
�(t� nTs). (5.1)

In order to convert this product to the frequency domain, we use the well-known convo-
lution theorem (see Chapter 6 and especially Section 6.3, for a discussion of convolution)
which states that convolution in one domain equals pointwise multiplication in the other
domain. Equation (5.1) is a multiplication in the time domain, implying that its fre-
quency domain equivalent is the convolution

X�(!) =
1
2⇡

X(!) ? P (!),
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where X(!) is the Fourier transform (the spectrum) of signal x(t) and P (!) is the
Fourier transform of p(t).

Since x(t) is a known signal, we can compute its spectrum X(!), which leaves us
with the task of figuring out the Fourier transform P (!) of a pulse train p(t). Since the
period of p(t) is Ts = 1/fs, its fundamental frequency is !0 = 2⇡fs = 2⇡/Ts, and we
start with the Fourier transform of a single, arbitrary period Pk of p(t), centered on the
pulse

Pk =
1
Ts

Z Ts/2

�Ts/2
e�ik!0tdt =

1
Ts

e�ik!0t |t=0=
1
Ts

.

The unexpected result is that the Fourier transform of an arbitrary period Pk of p(t)
does not depend on k and is simply a pulse of height 1/Ts = fs. The entire transform
is an infinite train of such pulses, separated by the fundamental frequency !0,

P (!) = 2⇡
1X

k=�1
Pk �(! � k !0) =

2⇡
Ts

1X

k=�1
�(! � k !0).

Now that we have P (!), we can compute the convolution

X�(!) =
1
2⇡

X(!) ? P (!)

=
1
2⇡

X(!) ?
2⇡
Ts

1X

k=�1
�(! � k !s)

=
1
Ts

1X

k=�1
X(! � k !s). (5.2)

(This is because convolving with pulses is simple; just place the spectrum X(!) in the
location of the impulse.) Thus, the sampled spectrum X�(!), the frequency domain
equivalent of the product x(t) · p(t) consists of an infinite train of copies of the original
spectrum X(!) of x(t). The copies are scaled down vertically by a factor Ts and are
shifted by a multiple of !s = 2⇡fs = 2⇡/Ts. Ideal reconstruction is obtained if fs is
greater than or equals the Nyquist frequency of the original signal x(t). Once X(!) has
been computed, the entire set of its copies is prepared and can be edited if needed. After
editing, this set can be used to reconstruct the edited version of the original signal x(t).

Figure 5.12 illustrates the relation between the single copy of X(!) and the train
of X�(!) of copies. We assume that a time-signal x(t) is given, whose Fourier transform
(spectrum) X(!) is the triangle of height 1 shown in part (a) of the figure, where ! is
the highest frequency contained in the spectrum. Part (b) shows two copies of X(!) on
both sides of the original triangle. These copies are scaled down vertically by a factor of
1/Ts and are separated by a distance of !s, which in part (b) happens to be large (larger
than 2!), thereby resulting in copies that are widely separated. Part (c) of the figure
shows the train of copies for the case where !s = 2!, the Nyquist frequency. Here, the
individual copies of X(!) butt each other perfectly.

When the user chooses a small value for !s, a value less than the Nyquist value
of 2!, the individual copies of the spectrum may overlap, as shown in part (d) of the
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figure. In such a case of undersampling, the original spectrum is partly obscured by
copies, making it impossible to recognize its original shape, which leads to errors in
the reconstruction. Such a case is referred to as aliasing, and it has been mentioned
elsewhere that in his excellent lectures, Marc Levoy defines aliasing as high frequencies
masquerading as low frequencies due to insu�ciently closely-spaced samples.

In order to understand the reconstruction, we assume no editing. The task of
reconstruction is simply to convert the set X�(!) of copies (the sampled spectrum) to the
original spectrum X(!), which is a single copy. Once this is done, the resulting original
spectrum is passed through the inverse Fourier transform to obtain the original temporal
signal x(t). Converting X�(!) to X(!) requires getting rid of all the copies except the
central one, and scaling this copy vertically by a factor of Ts. This is accomplished
by a rectangular filter Hr(!) with the frequency response: height Ts and width in the
frequency interval [�!s/2,!s/2]. Mathematically, since we are still in the frequency
domain, we express the filtering by the equation X(!) = Hr(!) ·X�(!). Applying again
the convolution theorem, Section 6.3, we conclude that going back to the time domain
and reconstructing the original signal is done by the convolution x(t) = hr(t) ? x�(t)
where x�(t) is given by Equation (5.1) and hr(t) is the time-domain equivalent of the
rectangular filter. The example discussed on Page 52 shows that this equivalent is the
sinc function, defined on Page 136. Our particular rectangular filter is a function of !,
has a height of Ts and width of !s. A search in a table of Fourier transforms indicates
that it converts to the specific sinc function Ts · !s

2⇡ · sinc(!s
2 t). Thus, we end up with

x(t) = hr(t) ? x�(t)

= sinc(
!s

2
t) ?

1X

n=�1
x(nTs)�(t� nTs)

=
1X

n=�1
x(nTs)sinc[!s(t� nTs)/2]. (5.3)

(This is because !s = 2⇡fs = 2⇡/Ts.)
Equation (5.3) is an infinite weighted sum of time-shifted sinc functions. Technically,

it is referred to as an ideal band-limited (or I.B.L) interpolation.
This is the mathematics of sample reconstruction. It shows that the sinc function

is the ideal tool for perfect reconstruction of an analog signal, but it (the mathematics)
may be more than the average reader cares to know. Earlier, I promised a three-part
explanation of reconstruction, so here is the third part, where the process described by
Equation (5.3) is explained intuitively, with the use of figures and “hand waiving.”

The discussion is based on the excellent 2021 book A Biography of the Pixel, by Alvy
Ray Smith, reference [Smith, Alvy Ray 21], where the reconstruction is explained with
the help of the spreader, a simple, well-known, and very useful function. In mathematics,
the term sinc is used for the spreader, while engineers call it a reconstruction filter.

The basic (unnormalized) sinc function is defined as sinc(x) = sin(x)/x and is
illustrated in red in Figure 5.13. This expression is clearly undefined for x = 0, which
is why the complete definition includes sinc(0) = 1, because 1 is the limit of sinc(x)
for x approaching zero. The spreader that is actually used in digital reconstruction is
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Figure 5.12: Impulse Sampling of a Signal.
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the normalized sinc (blue in Figure 5.13), whose definition is sin(⇡x)/⇡x, again with
sinc(0) = 1. Notice how the zeros of this function are at integer (positive and negative)
values of the x axis.
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Figure 5.13: The Spreader (Sinc Function).

The principle of reconstructing an analog signal from discrete points by using the
spreader is first explained for the one-dimensional case, where we start with an analog
wave and digitize it into audio samples that (following [Smith, Alvy Ray 21]) we call
soxels, a contraction of sonic element. Figure 5.14a shows two adjacent soxels chosen
out of a set of many that came from a sound wave S. The height of a soxel indicates
the amplitude of the original, analog wave at a point in time, and the location of the
soxel indicates the time it was sampled. The first step in the reconstruction is to place
the (normalized) spreader on top of the soxel, with its zeros on the x axis, and scale
it vertically such that its central amplitude equals the soxel’s amplitude (part (b) of
the figure). Notice that the scaling does not change the horizontal dimensions (the
frequency) of the spreader. We then do the same for the second soxel, place the spreader
on top of it and scale it vertically (part (c) of the figure). Finally, we add the two scaled
spreaders. The resulting curve (in green) is a continuous function (or an analog signal)
that can in principle be computed at uncountably many points.

However, it is easy to see that the sum of the two spreaders, the green curve of
Figure 5.14c, drops very low in the space between the soxels. This is because our soxels
are spaced too far apart, as a result of a very low sampling rate. Figure 5.14d shows how
moving the soxels closer improves the reconstruction. Notice also how the frequencies
of the two spreaders are identical, but out of phase.

The Nyquist rate is achieved in this case when the distance between consecutive
soxels is at least half the period of the spreader. In this case, each period of the green
sum contains at least two soxels, as the sampling theorem demands. This can be seen
in Figure 5.14d by noticing that the distance between the two soxels is exactly half the
period of the spreaders. In other words, the soxels must be close enough such that the
period of the spreader would equal that of the highest-frequency term of the discrete
Fourier transform (DFT), Equation (4.2), of the original sound wave S. Phrased another
way, the spreader would be that term, except for amplitude.

The part of the green curve between the soxels is a smooth, reasonable interpolation
of the soxels, while the parts outside the soxels would be improved later, when more
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Figure 5.14: Reconstructing Soxels With a Spreader.

spreaders are placed on all the soxels and are vertically scaled and added to the sum of
spreaders.

Figure 5.15 shows a pure sine wave and above it, part of an analog signal with
some soxels. A manual check will verify that each of the seven periods of the sine wave
corresponds to two soxels in the analog signal. Thus, this sine wave has the Nyquist
frequency, and is therefore the highest-frequency wave in the discrete Fourier transform
of the analog signal.

Figure 5.15: Reconstructing With the Nyquist Rate.

In practice, the spreaders are infinitely wide, which results in a vast number of
computations for each soxel. Even one second of sound typically produces, when digi-
tized, more than 44,000 soxels, a number that may tax the capabilities of our present
digital devices (computers and smart phones). This is why practical reconstructions of
one-dimensional time signals often use only the central part of the spreader, shown in
Figure 5.16. This so-called cubic spreader includes just the central part and two small
negative lobes of the original spreader. It reduces the computation time significantly,
while only slightly a↵ecting the quality of the reconstructed wave.

Once the reader has grasped this one-dimensional reconstruction process, its exten-
sion to two dimensions, i.e., image pixels, is in principle straightforward but is harder to
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Figure 5.16: Reconstructing With a Truncated Spreader.

visualize and it involves many more computations. An image is generated on the sensor
of a camera. Each photosite becomes a pixel, and the pixels are arranged in a matrix,
which is the two-dimensional equivalent of a one-dimensional time-signal x(t).

The main di↵erences between the one- and two-dimensional cases are (1) a two-
dimensional spreader is required, which is placed on every pixel value and then scaled
vertically, and (2) a two-dimensional sum of all the spreaders, which produces a smooth,
continuous surface IMG that can be visualized as floating above the tops of the pixels.
Once the expression of IMG is ready, the intensity (grayscale) of the image can be obtained
at any mathematical point on IMG simply be measuring the height (i.e., value) of IMG
at the point. Figure 5.17 shows a two-dimensional truncated spreader, together with a
cut in its middle, which proves that its profile is the familiar one-dimensional spreader.
Such a spreader, which has circular symmetry, can also be referred to as a bicubic sinc
function.

SetOptions[Plot3D, ImageSize -> 72*2.45,
ColorFunction -> "LightTerrain", Mesh -> None, Axes -> None];

Plot3D[Sinc[x] Sinc[y], {x, -7, 7}, {y, -7, 7}, PlotRange -> All,
AspectRatio -> 13/16, ImageSize -> 72*2.45]
Export["/Users/davidsalomon/Desktop/sinc1.pdf", %]
Plot3D[Sinc[x] Sinc[y], {x, -7, 7}, {y, -4, 0}, PlotRange -> All,
AspectRatio -> 13/16, ImageSize -> 72*2.45]
Export["/Users/davidsalomon/Desktop/sinc2.pdf", %]

Figure 5.17: A Three-Dimensional Truncated Spreader.

Most current digital images are in color, with each pixel having three color com-
ponents. The reconstruction process of such an image starts by collecting the first
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component (often red) of all the pixels, to become a new, “red” set of pixels. The above
one-dimensional reconstruction process is then applied to this set, with two-dimensional
spreaders, to generate a smooth mathematical surface IMGr that will become the red
component of the final image. Similar steps are then taken for the remaining two pixel
components, producing surfaces IMGg and IMGb. To determine the color of a mathemat-
ical point on the surface, measure the heights of the three surfaces IMGn at the point,
and use them as the (R,G,B) components of the color of the reconstructed image at the
point.

A Summary. This chapter is concerned with the sampling theorem and its e↵ect
on our daily lives. This summary attempts to shed more light on this important subject
by following the “life” of a typical video. Imagine a video, perhaps a concert or a
documentary, performed by musicians, singers, or actors. The video and associated
audio are picked up by a camera and its microphone and are digitized. After being
edited, the digital data becomes two streams, one of soxels (audio samples) and the
other of pixels (triplets of color values).

The streams are then compressed, an error-control code is included for added re-
liability, and the result is recorded, as a large set of numbers, on a DVD. You buy
the DVD, feeling that you have a long, complete video in it, whereas this plastic disc
contains many soxels and pixels, edited, compressed, and protected by the error-control
code. We can say that the sampling/digitizing process has converted the analog data,
which in principle can have infinite capacity, to a finite set of numbers, thereby losing
an infinite amount of information.

Eventually, you may decide to watch the DVD, and this is when the sampling
theorem performs its magic, converting the finite stream of discrete numbers to analog
signals for the audio and video. We can say that the reconstruction process fills up the
gap between the discrete pixels with an interpolation that is controlled by the spreader.
While this is done, you can already hear and see the performance, but it is fleeting. It
disappears as soon as you sense and enjoy it. All that is materially left is the same
DVD with the same numbers, ready to reconstruct the content and play it again for
your enjoyment.

The sampling theorem is the most important theoretical
result in the field of digital signal processing.

—Richard G. Lyons.
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Convolution

The term convolution, as used in image processing, is the process of applying a filter to
an image. Pixels, the basic elements of an image, are discrete, which is why the discrete
version of convolution is used with images and is the one discussed here. Many signals
are one dimensional, but images are two dimensional, which is why this chapter starts
with the one-dimensional discrete convolution, and then extends it to two dimensions.

Convolution
1. Something that is very complicated and di�cult to understand: a twist or curve.
2. (In mathematics) a function derived from two given functions by integration that
expresses how the shape of one is modified by the other.
3. An integral that expresses the amount of overlap of one function g as it is shifted
over another function f . It therefore “blends” one function with another. (From
MathWorld—A Wolfram Web Resource.)

—Dictionary definitions of convolution.

6.1 Example

We start with a simple example. Given an array a of numbers, our task is to smooth
the di↵erences between consecutive numbers. This can easily be done by replacing each
number with the average of itself and its two immediate neighbors, an operation that
can be written as

b[i] (a[i�1]+a[i]+a[i+1])/3 = a[i�1]h[�1]+a[i]h[0]+a[i+1]h[1] =
1X

j=�1

a[i+j]h[j],

(6.1)
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where index i varies over all the elements of a. Figure 6.1 illustrates two steps of this
process. Array h, the convolution kernel (or the filter kernel), contains 1/3 in each of
its three elements. The kernel is also often referred to as the system’s impulse response.

5
a[0] a[1] a[2] a[3] a[4] a[5]

48 3 1 6

1/3 1/3 1/3
× × ×

h

a

5.33 5.33
b[0] b[1] b[2] b[3] b[4] b[5]

b

5
a[0] a[1] a[2] a[3] a[4] a[5]

48 3 1 6

1/3 1/3 1/3
× × ×

h

a

b[0] b[1] b[2] b[3] b[4] b[5]
4b

Figure 6.1: Smoothing as a Convolution.

For reasons that will be explained shortly, it is customary to assign descending index
values to the convolution kernel h and label its elements h[1], h[0], and h[�1], which
changes Equation (6.1) to

b[i] a[i� 1]h[1] + a[i]h[0] + a[i + 1]h[�1] =
i+1X

j=i�1

a[j]h[i� j]. (6.2)

The star symbol ? is used to indicate convolution, so Equation (6.2) is normally
written as

b[i] = (a ? h)[i] =
X

j

a[j]h[i� j], (6.3)

where the summation index j varies over a range that includes all the nonzero elements
of the kernel h. In technical jargon we say that the output array (or output signal) b
equals the input signal a convolved with the impulse response h.

The ends (or edges) of the signal array a always present a problem and may cause
wrong results, because some signal values are missing from the sum of Equation (6.3). In
our example, the computation of b[0] requires the value of a[�1] and that of b[5] requires
the value of a[6]. These values do not exist, which is why practical implementations of
convolution employ solutions such as the following:

Do not compute convolution values for b[0], b[5] or any other cases where input
values are missing.

Assume that any missing values are zeros.

Copy the nearest value to cover any missing values. In our example, element a[�1]
would become 8 (a copy of a[0]) and element a[6] would be 6 (a[5]).

Assume that the signal array is periodic. The last element a[5] of our array would
be followed by a[0] and the first element a[0] would be preceded by a[5].



6 Convolution 145

Perhaps the best way to understand convolution is to work out a detailed example
twice, first from the point of view of the input signal a and then from the viewpoint of the
output signal b. The former view illustrates the relation between convolution and signal
processing, while the latter view clarifies the mathematical operations of convolution and
explains why it may be interpreted as a weighted sum. Our example consists of the input
signal a = (0.5, 0,�0.8,�1.2,�1.2,�2, 0.2, 1, 0) and the kernel h = (0.1, 0.3, 0.5,�1).

The input side process illustrates how each input value (or input sample) contributes
to the final output. It consists of two steps as follows:

Multiply each of the nine input values by the four elements of the kernel, creating
four numbers, shifted as illustrated in Figure 6.2. Each of the first nine parts of the
figure displays the impulse response contributed by one of the elements of the input
signal a. These impulse responses are shifted and are also scaled by the kernel h. Notice
that the last three steps create numbers with indexes 9, 10, and 11. Thus, the length
of the output in our example is 12. In general, the length of the output created by this
variant of convolution is one less than the sum of the lengths of the input and the kernel.

Add the nine results. Notice that each consists of 12 numbers, of which eight are
zeros and four are the result of a multiplication in step 1. The final result is also shown
graphically in Figure 6.2 bottom-right.

The nine results are

(0.05, 0.15, 0.25,�0.5, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0,�0.08,�0.24,�0.4, 0.8, 0, 0, 0, 0, 0, 0)
(0, 0, 0,�0.12,�0.36,�0.6, 1.2, 0, 0, 0, 0, 0)
(0, 0, 0, 0,�0.12,�0.36,�0.6, 1.2, 0, 0, 0, 0)

(0, 0, 0, 0, 0,�0.2,�0.6,�1., 2, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0.02, 0.06, 0.1,�0.2, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0.1, 0.3, 0.5,�1, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and their 12-point sum, the final output, is

b = (0.05, 0.15, 0.17,�0.86,�0.88,�0.36, 0.02, 0.36, 2.4, 0.3,�1, 0).

The two steps involve only multiplications and additions, which are commutative.
Those who carefully follow this example will agree that convolution is commutative. Ex-
changing the input and kernel would result in the same 12-point final output. However,
even though the mathematics is simple and is commutative, there is a physical di↵erence
between the input and the kernel. The former is given by the physical problem at hand,
while the latter is specified by the user, based on his experience and intuition.

Now, for the output-side viewpoint. This process examines the output values b[] to
figure out what input samples a[i] contribute to each output value b[j]. This knowledge
is useful because any practical software for convolution should consist of a loop where
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Figure 6.2: Input-Side Convolution Example.

each iteration computes one output value b[j] from several input samples and from all
the values of the kernel. Each value b[j] should be computed independently of the other
output values. We use the above example to figure out how the sixth output value
b[5] = �0.36 = 0.8�0.6�0.36�0.2 was obtained. This value is the sum of the columns
labeled 5 in Figure 6.2 (only four of these columns are nonzero).

a[2] · h[3] + a[3] · h[2] + a[4] · h[1] + a[5] · h[0]
= �0.8 · (�1)� 1.2 · 0.5� 1.2 · 0.3� 2 · 0.1

=
5X

i=2

a[i]h[5� i].

From this result we conclude that the general output value b[j] is computed as the
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sum

b[j] =
jX

i=j�3

a[i]h[j � i]. (6.4)

(The value 3 in the subscript is one less than the length of the kernel.) The important
point here is that each output value b[j] is computed as the dot product of some elements
of a with the elements of the kernel, where the latter are taken in reverse order. This
explains the unusual choice of index in Equation (6.2).

Figure 6.3 is a graphic representation of this process. An element of the output b
is computed as the dot product of part of the input a and a left-to-right flipped version
of the kernel h. The flipped kernel (in the dashed box) is then slid to the right and the
process is repeated for all the elements of the input a.
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Figure 6.3: Output-Side Convolution As a Dot Product.

Introducing discrete convolution by means of the example above is simple, easy
to follow, and it produces Equation (6.4), the main convolution equation, in a natural
way. This should be compared to the way discrete convolution is typically introduced in
textbooks on image processing. Such a book may simply say “Discrete time convolution
is an operation on two discrete time signals defined by the integral. . . ,” a definition
which does not explain why the elements of the kernel h are used in reverse order.

Edge e↵ects. It is easy to implement convolution from Equation (6.4), but notice
that for extreme values of the output index j, the results are wrong. The sum of
Equation (6.4) goes from i = j � 3 to j, so for j = 0, index i should vary from �3 to
0, but input samples a[�3], a[�2], and a[�1] do not exist, so the sum reduces to the
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single product a[0]h[0]. (The technical term for this is that the impulse response is not
fully immersed in the input signal.) Similarly, for j = 1, index i should vary from �2
to 1, but the actual result is only a[0]h[1] + a[1]h[0]. A similar situation exists for the
largest values of j, where some input samples do not exist and the sum can be only
partly computed. Several methods to handle edge e↵ects have been discussed earlier.

The mathematical aspect of convolution can now be summarized as follows. Each
input sample contributes a scaled and shifted version of the impulse response (the kernel)
to the final output. Conversely, each output value is a contribution of several input
samples, each multiplied by a value from the flipped impulse response.

While true, this summary does not tell us why convolution is so useful in image
processing or in the more general field of digital signal processing (DSP). We can begin
to grasp its importance when we again examine Equation (6.4) and Figure 6.3. They
both illustrate how each output value is a weighted sum of several input samples, with
the elements of the kernel as the weights. The very first example in this section employs
a kernel, each of whose three elements equals 1/3. This kernel generates output values
each of which is the average of three input samples. Viewing convolution as a weighted
sum is the key to understanding its operation and how to use it in practice.

Figure 6.4 illustrates the e↵ects of various kernels on a one-dimensional signal.
Blurring, sharpening, and shifting kernels are shown.

6.2 2D Convolution

Image processing is concerned with images, and a digital image is a two-dimensional
array of pixels. The method of convolution can be directly extended to such arrays. All
that is needed is a two-dimensional kernel. The kernel is flipped twice, vertically and
horizontally, and then it is slid over the entire image row by row to create the output
image. This can be summarized by the equation

b[m,n] = a[m,n] ? h[m,n] =
X

j

X

i

a[i, j]h[m� i, n� j]. (6.5)

As an example, given a 3⇥ 3 kernel whose rows and columns are labeled from �1 to 1,
this equation results in the sum

b[1, 1] =
X

j

X

i

a[i, j]h[1� j, 1� i]

=a[0, 0]h[1, 1] + a[1, 0]h[0, 1] + a[2, 0]h[�1, 1]
+a[0, 1]h[1, 0] + a[1, 1]h[0, 0] + a[2, 1]h[�1, 0]
+a[0, 2]h[1,�1] + a[1, 2]h[0,�1] + a[2, 2]h[�1,�1].

Figure 6.5 is an example of five typical filters obtained by a two-dimensional con-
volution. The original image shows the Wat Phra Kaew, Grand Palace in Bangkok, and
the filters were achieved by the following kernels:
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Sharpening kernel

Shifted rect kernel

Gaussian kernel

Rectangular kernel

Original signal

Figure 6.4: Various Convolution Kernels.

1 1 1
1 1 1
1 1 1

0 0 0
-1 1 0
0 0 0

0 1 0
1 -4 0
0 1 0

0 -1 0
-1 5 -1
0 -1 0

-2 -1 0
-1 1 1
0 1 2

Blur Edge enhance Edge detect Sharp Emboss

The kernel of a two-dimensional convolution does not have to be symmetric. Asym-
metric kernels can be used to, for example, blur the image in the horizontal direction
and sharpen it in the vertical direction.

The Sobel edge detection operator, an application of convolution

The Sobel operator for edge detection [Sobel 14] is a simple linear filter that has
been used since 1968 to detect a wide variety of edges in images. It is based on a 3⇥ 3
kernel which features four main directions. An edge will be detected by this kernel if
it is vertical, horizontal, or is oriented in one of the two main diagonals of the kernel.
When used to identify edges in an image, this kernel is placed over adjacent 3⇥3 regions
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Original image Blurred

EmbossedSharpened

Edge DetectionEdge Enhancing

Figure 6.5: Five Filters as 2D Convolutions.

of nine pixels each, and is convolved with each region. The two original Sobel kernels,
for horizontal and vertical edges, are

HS
x =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 , and HS
y =

2

4
1 2 1
0 0 0
�1 �2 �1

3

5 .
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(*Detect edges with Sobel Kernel*)
img = Import["/Users/davidsalomon/Desktop/Pema.tif"]
kernely = {{-1, 0, 1}, {-2, 0, 2}, {-1, 0, 1}};
kernelx = {{1, 2, 1}, {0, 0, 0}, {-1, -2, -1}};
a = ImageConvolve[img, kernelx];
ImageAdjust[a, {0, 6}]
a = ImageConvolve[img, kernely];
ImageAdjust[a, {0, 6}]

Figure 6.6: Horizontal and Vertical Edges with the Sobel Operator.

They are illustrated in Figure 6.6 which also lists the Mathematica code.

6.3 The Convolution Theorem

The following is not strictly a proof of the convolution theorem, because it uses the
infinite in a loose way, as if it were a number. However, many readers may find the
derivation here both readable and illuminating.

We look at the DTFT, the discrete time version of the Fourier transform (Page 58),
the one that applies when the time signal input is both discrete and infinite, and show
that x(t)y(t) = 1/(2⇡)[X(!) ? Y (!), where x(t) is a time signal and X(!) is its DTFT
transform, or its frequency domain. Thus, if

X(!) =
1X

n=�1
x(n)e�i!n and Y (!) =

1X

n=�1
y(n)e�i!n,

then the DTFT of the convolution x(n) ? y(n) equals the product X(!)Y (!).
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DTFT [x(n) ? y(n)] =
1X

n=�1
[x(n) ? y(n)] e�i!n

=
1X

n=�1

" 1X

k=�1
x(n) y(n� k)

#

e�i!n

=
1X

k=�1
x(k)

1X

n=�1
y(n� k) e�i!n

(substituting n = m + k)

=
1X

k=�1
x(k)

1X

m+k=�1
y(m)e�i!(m+k)

(naively assuming that m + k starting at �1
is the same as m starting at �1� k)

=
1X

k=�1
x(k)

1X

m=�1
y(m)e�i!me�i!k

=
1X

k=�1
x(k)e�i!k

1X

m=�1
y(m)e�i!m

= X(!) · Y (!).

Again, this is a “hand waving” sort of proof because it implicitly assumes that we
can treat the infinite naively and either vary m from �1� k or from �1.

I am, somehow, less interested in the weight and convolutions of
Einstein’s brain than in the near certainty that people of equal

talent have lived and died in cotton fields and sweatshops.

—Stephen Jay Gould, The Panda’s Thumb, p. 151., (1980)
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Answers to Exercises
A good goal is like a strenuous exercise, it makes you stretch.

—Mary Kay Ash.

Intro.1: Figure Ans.1 shows how the inner product of sin(8t) with sin(7t) produces
13 red points, all lying on the x axis.

Intro.2: We start with the four roots for n = 4. If ↵ is such a root, then ↵4 = 1,
implying that ↵8 = 12 = 1, making ↵ one of the eight roots for n = 8. Four more
roots are needed, and we guess that

p
i is one of them. To prove this, we observe that

if ↵ =
p

i then ↵2 = i and ↵8 = i4 = 1, but what number is
p

i? If we write
p

i = a + bi
and square both sides, we get i = a2 + 2abi � b2, which implies that a2 � b2 = 0 and
2ab = 1. Thus

p
i =
p

2
2

+ i

p
2

2
. The other roots are

p
2

2
� i

p
2

2
, �
p

2
2

+ i

p
2

2
, and �

p
2

2
� i

p
2

2
.

1.1: Here are several reasons.

Any physical system that oscillates or resonates produces motion (of air molecules
or atoms in solids) that is sinusoidal or very close to it.

The human ear starts analyzing incoming sound by splitting it into its sinusoidal
components.

Sinusoids of the same frequency constitute a set that is closed with respect to
addition and subtraction. If we select several sinusoids with various amplitudes and
phases but with the same frequency, and add and subtract them in various ways, the
result is a sinusoid at the same frequency. Moreover, the sinusoid is the only periodic
waveform that has this property.

The sine and cosine are orthogonal. Their inner product
R 2⇡
0 cos(mt) sin(nt)dt is

zero for m 6= n. See also Equation (3.2).
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1 Clear["Global‘*"]
2 signal[t_] := 0.3 Sin[8t + 60 Degree];
3 tb = Table[Integrate[signal[t] Sin[8t + p], {t, 0, 2 Pi}],
4 {p, 0, 2 Pi, Pi/6}]
5 tickMarks = Table[i, {i, 0, 2 Pi, Pi/6}];
6 g1 = ListLinePlot[tb, InterpolationOrder -> 3, DataRange -> {0, 2 Pi},
7 AspectRatio -> 1/Pi, Ticks -> {tickMarks, Automatic}];
8 g2 = ListPlot[tb, PlotStyle -> {Red, PointSize[0.015]},
9 DataRange -> {0, 2 Pi}, AspectRatio -> 1/Pi];

10 Show[g1, g2]
11

12 {0.471, 0.8162, 0.942, 0.8162, 0.471, 0., -0.471,
13 -0.816, -0.942, -0.816, -0.471, 0., 0.471}
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Figure Ans.1: The Inner Product as a Measure of Closeness.

The derivative of sine is a cosine and the derivative of a cosine is a negative sine.
This associates the two functions with their derivatives in a simple way and simplifies
the mathematics of waves. In contrast, the derivatives of a circle are very di↵erent from
a circle and tend to be complicated functions. Here is why.

The Cartesian equation of a circle is (x� a)2 + (y � b)2 = r2 where r is the radius
and (a, b) is the center. The polar equation of a circle of radius a and a center at (r0,�)
is

r2 � 2r r0 cos(✓ � �) + r2
0 = a2,

a complex expression which, when solved for r, becomes the even more elaborate

r = r0 cos(✓ � �)±
q

a2 � r2
0 sin2(✓ � �).

Such expressions are di�cult to work with and manipulate mathematically.
On the other hand, the parametric equation of a circle with a center at (a, b) is the
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much simpler
x = a + r cos t, y = b + r sin t,

but since it depends on the sine and cosine functions, it is better to use the latter as the
basis for representing waves.

For completeness, we mention the alternative parametric representation

x = a + r
1� t2

1 + t2
, y = b + r

2t
1 + t2

.

But it is obvious that this equation provides no advantages over the basic sine and
cosine.

Because of these reasons, we also refer to the sine waves as harmonic. They are
simple, pleasing, elegant, in short, perfect.

1.2: An Internet search produces the following information: A person’s respiratory
rate is the number of breaths you take per minute. The normal respiration rate for an
adult at rest is 12 to 20 breaths per minute. The former value translates to 12/60 = 1/5
breaths per second or 0.2 Hz, and the former is 20/60 = 1/3 or 0.33 Hz.

3.1: As usual, we start with deriving the three Fourier coe�cients

a0 =
1
2⇡

Z ⇡

�⇡
f(t)dt =

2
2⇡

Z 0

�⇡
(�t)dt + 0

�
=

1
2⇡

t2

2

���
0

�⇡
= ⇡/4,

an =
1
⇡

Z ⇡

�⇡
f(t) cos(nt)dt =

1
⇡

Z 0

�⇡
(�t) cos(nt)dt

=
1
⇡


�t

n
sin(nt)

���
0

�⇡
+

1
n

Z 0

�⇡
sin(nt)dt

�

=
1

n⇡


0 +
�1
n

cos(nt)
���
0

�⇡

�
�1
n2⇡

�
cos(0)� cos(�nt)

�
=
�1
n2⇡

(1� (�1)n),

where the last pair of parentheses is 0 for even n and �2 for odd n.

bn =
1
⇡

Z ⇡

�⇡
f(t) sin(nt)dt =

1
⇡

Z 0

�⇡
(�t) sin(nt)dt =

1
⇡


t

n
cos(nt)

���
0

�⇡
� 1

n

Z 0

�⇡
cos(nt)dt

�

=
1
⇡


t

n
cos(nt)� 1

n2
sin(nt)

�
�⇡0 =

�1
n⇡

�
0 · cos(0)� (�⇡) cos(�nt)

�

=
�1
n

cos(�n⇡) =
⇢

1
n , n even
� 1

n , n odd.

Once this is done, the final Fourier sum is

f(t) = ⇡/4 +
1X

n=1

�2
(2n� 1)2⇡

cos
�
(2n� 1)t

�
+

1X

n=1

(�1)n

n
sin(nt).

The Mathematica code
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Plot[(Pi/4) + Sum[(-2/(n^2 Pi))Cos[n t], {n, {1, 3, 5, 7}}] +

Sum[((-1)^n/n)Sin[n t], {n, 1, 7}], {t, -5, 5}]

generates the wave, although convergence is slow.

3.2: Figure Ans.2 lists the Mathematica code for this series, the original function (a
surface) and the first five terms of its Fourier series. A list of the expressions (messy) of
each term is also included.

3.3: The period of this signal is N = 10 and the derivation is similar to the example
in the text.

X[n] = sin
✓

2⇡
10

n

◆
=

1
2i

⇥
e2⇡i n

10 � e�2⇡i n
10

⇤

=
1
2i

e2⇡i(1) n
10 � 1

2i
e2⇡i(�1) n

10 = C1e
2⇡i(1) n

10 + C�1e
2⇡i(�1) n

10 .

Thus, C1 = 1/2i and C�1 = C9 = �1/2i. All other coe�cients are zero.

4.1: The following identity comes from page 346 of reference [Nahin 95]. It shows how
the simple sum a cos ✓ + b sin ✓ can be written in the form c cos(✓ + �) and can therefore
also be expressed as a sine. We start by applying one of the trigonometric addition
formulas, which gives us the expansion

c cos(✓ + �) = c cos(✓) cos(�)� c sin(✓) sin(�).

Equating the coe�cients of the above expansion with those of the original sum, we get
a = c cos � and b = �c sin �. This implies

tan � =
sin �

cos �
and a2 + b2 = c2(cos2 � + sin2 �) = c2,

which implies

� = tan�1

✓
� b

a

◆
and c = ±

p
a2 + b2.

(In order for the original sum to exist, a must be nonzero, but either or both a and b
can be negative.)

The final result is

a cos ✓ + b sin ✓ = sgn(a)
p

a2 + b2 cos

✓ + tan�1

✓
� b

a

◆�
.

Thus, given quantities a, b, and ✓, the sum a cos ✓ + b sin ✓ can be written as a phase-
shifted cosine, which also equals a phase-shifted sine, but with a di↵erent phase.
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(*2D Fourier series from AneesAbdulMFSslides.pdf*)
Clear["Global‘*"]
f[x_, y_] := Cos[x^2] Sin[y];
Plot3D[f[x, y], {x, -Pi, Pi}, {y, -Pi, Pi}, PlotRange -> All]
an[y_] := (1/Pi) Integrate[f[x, y] Cos[n x], {x, -Pi, Pi}];
bn[y_] := (1/Pi) Integrate[f[x, y] Sin[n x], {x, -Pi, Pi}];
Do[p = (1/(2 Pi)) Integrate[f[x, y], {x, -Pi, Pi}]

+ Sum[an[y] Cos[n x] + bn[y] Sin[n x], {n, 1, k}];
Print[{Plot3D[p, {x, -Pi, Pi}, {y, -Pi, Pi}], p}], {k, 1, 4}]

Order 3 Order 4 Order 5

Original Order 1 Order 2

Figure Ans.2: A 2D Fourier Series of cos(x2)⇥ sin(y).
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4.2: When the number m of data samples (and also the matrix size) is even, the top
row of the matrix is still full of 1’s and produces the sum of the data samples (the DC
component). An odd number of rows, from row 2 to row m, remain. Each pair of rows
k and m + 2 � k produces, when multiplied by the data array, a complex number and
its conjugate. Row m + 2 � dm/2e, which is midway between rows 2 and m, contains
only +1’s and �1’s, so when multiplied by the data samples, it produces a frequency
coe�cient which is a real number and so equals its conjugate.

4.3: The pixels on both sides of a sharp edge feature very di↵erent colors and therefore
resemble tiny details.

4.4: Figure Ans.3 illustrates the principle with a simple example. It is obvious that
the same swaps would bring the four quadrants back to their original locations.

4.5: Figure Ans.4 lists the commands. They are based on the (obsolete but correct) in-
formation at tinyurl.com/92u67mbm. The original and final matrices are also displayed
graphically, with arrows indicating the movements of several cells.

4.6: Figure Ans.5 shows the simple function kr and some of its outputs.

4.7: Referring to Equation (4.2) and assuming that the complex exponentials have been
computed in advance and are stored in a table, the sum from 0 to N �1 in this equation
requires N � 1 complex additions and N complex multiplications for each frequency
coe�cient Xk.

A complex addition requires two real additions, so the contribution of (N � 1)
complex additions to the sum is 2(N � 1). A complex multiplication requires one real
addition, one real subtraction, and four real multiplications, a total of six real arithmetic
operations. Its contribution to the sum is therefore 6N real operations.

The total number of real operations for the N frequency coe�cients Xk is therefore
N [2(N � 1) + 6N ] = 8N2 � 2N .

4.8: The details are listed here.

X[4] =
⇥�

x0 + x4e
�i⇡4

�
+ e�i ⇡

2 4
�
x2 + x6e

�i⇡4
�⇤

+ e�i ⇡
4 4

⇥�
x1 + x5e

�i⇡4
�

+ e�i ⇡
2 4

�
x3 + x7e

�i⇡4
�⇤

= [(1 + (�3)) + 1 (5 + 4)]
� 1 [(�2 + 8) + 1 (7 + 6)] = �12.

X[5] =
⇥�

x0 + x4e
�i⇡5

�
+ e�i ⇡

2 5
�
x2 + x6e

�i⇡5
�⇤

+ e�i ⇡
4 5

⇥�
x1 + x5e

�i⇡5
�

+ e�i ⇡
2 5

�
x3 + x7e

�i⇡5
�⇤

= [(1� (�3)) + (�i) (5� 4)]
(�0.7 + 0.7i) [(�2� 8) + (�i) (7� 6)] = 11.7781� 7.3639i.



Answers to Exercises 161

1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

3,5 3,6 3,7

1,5 1,6 1,7

2,5 2,6 2,7

3,5 3,6 3,7

4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,1 6,2 6,3 6,4

4,1 4,2 4,3 4,4

5,1 5,2 5,3 5,4

6,1 6,2 6,3 6,4

6,5 6,6 6,7

4,5 4,6 4,7

5,5 5,6 5,7

6,5 6,6 6,7

(*Shifting a DFT matrix by swapping quadrants 1<->4, 2<->3*)

ClearAll[matShiftQuad, mm, i, j, c1, c2, r1, r2];
matShiftQuad[mm_] := Module[{dim, c, r, i, j},
dim = Dimensions[mm];
b = Table[0, {i, dim[[1]]}, {j, dim[[2]]}];
i = Floor[dim[[1]]/2];
If[2 i < dim[[1]], r1 = i + 1; r2 = i, r1 = r2 = i];
j = Floor[dim[[2]]/2];
If[2 j < dim[[2]], c1 = j + 1; c2 = j, c1 = c2 = j];
b[[dim[[1]] - r1 + 1 ;; dim[[1]], dim[[2]] - c1 + 1 ;; dim[[2]]]] =
mm[[1 ;; r1, 1 ;; c1]];
b[[dim[[1]] - r1 + 1 ;; dim[[1]], 1 ;; c2]] =
mm[[1 ;; r1, c1 + 1 ;; dim[[2]]]];
b[[1 ;; r2, c2 + 1 ;; dim[[2]]]] = mm[[r1 + 1 ;; dim[[1]], 1 ;; c1]];
b[[1 ;; r2, 1 ;; c2]] =
mm[[r1 + 1 ;; dim[[1]], c1 + 1 ;; dim[[2]]]];

]

(*Test*)
a = Table[RandomInteger[{0, 99}], {i, 3}, {j, 4}];
a // MatrixForm
matShiftQuad[a]
b // MatrixForm

Figure Ans.3: Shifting By Moving Quadrants.

X[6] =
⇥�

x0 + x4e
�i⇡6

�
+ e�i ⇡

2 6
�
x2 + x6e

�i⇡6
�⇤

+ e�i ⇡
4 6

⇥�
x1 + x5e

�i⇡6
�

+ e�i ⇡
2 6

�
x3 + x7e

�i⇡6
�⇤

= [(1� 3) + (�1) (5 + 4)]
i [(�2 + 8) + (�1) (7 + 6)] = �11� 7i.
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ml={{1961.00,-388.23,-0.26,118.49,118.49,-0.26,-388.23},
{-56.89,-119.26,70.29,7.54,-196.00,-91.88,-4.72},
{-96.32,47.30,48.45,74.98,-43.60,-85.47,-35.35},
{-123.80,-29.10,37.81,133.31,-92.31,39.70,98.81},
{-123.80,98.81,39.70,-92.31,133.31,37.81,-29.10},
{-96.32,-35.35,-85.47,-43.60,74.98,48.45,47.30},
{-56.89,-4.72,-91.88,-196.00,7.54,70.29,-119.26}};
MatrixPlot[ml]
dim=Dimensions[ml]
If[OddQ[dim[[2]]],c=Ceiling[dim[[2]]/2],c=dim[[2]]/2]
If[OddQ[dim[[1]]],r=Ceiling[dim[[1]]/2],r=dim[[1]]/2]
ml=RotateLeft[ml,{0,c}];
ml=RotateLeft[ml,r];
MatrixPlot[ml]

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure Ans.4: Shifting Rows and Columns in 7⇥7 Image.

X[7] =
⇥�

x0 + x4e
�i⇡7

�
+ e�i ⇡

2 7
�
x2 + x6e

�i⇡7
�⇤

+ e�i ⇡
4 7

⇥�
x1 + x5e

�i⇡7
�

+ e�i ⇡
2 7

�
x3 + x7e

�i⇡7
�⇤

= [(1� (�3)) + i (5� 4)]
(0.7 + 0.7i) [(�2� 8) + i (7� 6)] = �3.7781� 5.3639.

4.9: A root of the degree-n polynomial Pn(x) is a value xr such that Pn(xr) = 0. A
polynomial Pn(x) can have at most n distinct roots (unless it is the zero polynomial).
Suppose that there is another polynomial Qn(x) that passes through the same n + 1
data points. At the points, we would have Pn(xi) = Qn(xi) = yi or (Pn �Qn) (xi) = 0.
The di↵erence (Pn �Qn) is a polynomial whose degree must be  n, so it cannot have
more than n distinct roots. On the other hand, this di↵erence is 0 at the n + 1 data
points, so it has n + 1 roots. We conclude that it must be the zero polynomial, which
implies that Pn(x) and Qn(x) are identical.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n = 32;
kr[w_] := Table[UnitBox[1 - Sqrt[x^2 + y^2]/w],
{x, -n/2 + 1, n/2}, {y, -n/2 + 1, n/2}];
(* or use [UnitBox[Sqrt[x^2 + y^2]/w] *)
kr[8]

Figure Ans.5: Using the UnitBox Command to Prepare Circular Fourier Filters.

This uniqueness theorem can also be employed to show that the Lagrange weights
Ln

i (x) are barycentric; their sum is always 1. Given a function f(x), select n + 1
distinct values x0 through xn, and consider the n+1 support points

�
x0, f(x0)

�
through�

xn, f(xn)
�
. The uniqueness theorem states that there is a unique polynomial p(x) of

degree n or less that passes through the points, i.e., p(xk) = f(xk) for k = 0, 1, . . . , n.
We say that this polynomial interpolates the points. Now consider the constant function
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f(x) ⌘ 1. The Lagrange polynomial that interpolates its points is

LP(x) =
nX

i=0

yiL
n
i (x) =

nX

i=0

1⇥Ln
i (x) =

nX

i=0

Ln
i (x).

On the other hand, LP(x) must be identical to 1, because LP(xk) = f(xk) and f(xk) = 1
for any point xk. Thus, we conclude that

Pn
i=0 Ln

i (x) = 1 for any x.

4.10: This is straightforward

P (x) = (9x6 � 6x4 + 4x2 + 1) + (8x5 + x3 � 5x)

= (9x6 � 6x4 + 4x2 + 1) + x(8x4 + x2 � 5)
= Pe(x) + xPo(x).

The only di↵erence is that when we write Pe(x) and Po(x) as functions of x2, they no
longer have identical degrees. Thus Pe(x2) = 9x3�6x2+4x+1 and Po(x2) = 8x2+x�5.

5.1: The top of Figure Ans.6 shows two sets of parallel horizontal lines that form a
low-frequency Moiré pattern after one of them has been rotated 5�. The bottom part of
the figure shows several positions of a wheel that rotates clockwise. If we look only at
positions 1, 4, and 7 (in red), the wheel seems to slowly rotate counter-clockwise.

1 2
3

4 5 6
7

Figure Ans.6: Temporal Aliasing.

An answer is only as good as the question it addresses.

—Anonymous.



Index

I tried to make the index items as complete as possible, including middle names and
dates. Any errors and omissions brought to my attention are welcome. They will be
added to an errata list and will be included in any future editions, if any.

2D Fourier series, 38
2D discrete Fourier series, 41
44,100-Hz sampling rate, 78, 125

AC coe�cient (of a transform), 126
aliasing (of signals), 77–78, 122, 136

temporal, 122
amplitude

ambiguous, 50
of a complex number, 51
of a sine wave, 13, 50
of an arbitrary wave, 50

Ash, Mary Kay (1918–2001), 155
audio sample, 125

Babbage, Charles (1791–1871), 119
bandpass filtering, 92
bandstop filtering (with inverse Fourier

transform, 75
bi-level image (pixel frequencies), 125
bit reversal in FFT, 108
Bonaparte, Napoleon (1769–1821), 2, 3
Bracewell, Ronald Newbold (1921–2007),

118
Brown, Robert (1773–1858), 62
Brownian motion, 62, 65
Busicom (and the personal computer), 119
butterfly diagrams in FFT, 108

ChatGPT generated text, 25, 46, 111
circle and sine/cosine, 12, 156
Claerbout, Jon F. (1938–), 118
Clemens, Samuel Langhorne (1835–1910), vi
convolution, v, 143–152

and signal sampling, 134
and the FT, 47
continuous, 48

convolution theorem, 134, 136
derivation of, 151

Cooley, James William (1926–2016), 58, 103

DC component
of Fourier series, 18
of Fourier transform, 71, 160

decimation (definition of), 104
decimation in frequency (↵t), 104, 109–110
decimation in time (↵t), 104–109
delta (�) function

blurred, 69
definition of, 128

Devlin, Keith J. (1947–), 7
DFT, 40, 48, 51, 55–103

as a special case of DTFT, 58
frequency resolution in, 69
negative frequencies, 5, 61

explained, 72
periodicity of, 85
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power spectrum of, 51, 72
reconstruction, 138
reduced dynamic range of, 88
reversible, 58
two-dimensional, 82–103

inverse, 92–97
used to clean noisy images, 92
zero padding, 75–76

Dirichlet, Johann Peter Gustav Lejeune
(1805–1859), 3

discrete cosine transform, 44, 126
discrete Fourier series, 40–42
discrete Fourier transform, see DFT
dot product (definition of), 3
DTFS, see Fourier series discrete time
DTFT

and convolution, 151
definition of, 58
discrete time FT, 75

dynamic system (definition of), 128

edge detection, 149
Edison, Thomas Alva (1847–1931), 120
Einstein, Albert (1879–1955), viii
Emerson, Ralph Waldo (1803–1882), 153
Euler’s formula, 5, 54, 56

and circular motion, 11
and Fourier series, 14
and Fourier transform, 24, 49, 56
circular motion, 5
derivation of, 7
much praised, 5

Euler’s identity, 5

fast Fourier transform, see FFT
FFT, 58, 103–118

and polynomial multiplication, 111
butterfly diagrams, 108
roots of unity, 117
twiddle factor, 110

filters (image processing)
and DFT, 92
bandpass, 92
high pass, 92
ideal band-limited, 136
kernel of, 144
low pass, 92
rect, 52
sinc, 52

Flowers, Thomas Harold (1905–1998), 119
Fourier series, 23–42

2D, 38
DC component of, 18
discrete, 40–42

2D, 41
discrete-time (DTFS), 40

Fourier transform, 43–118, 124
DC component of, 71, 160

Fourier, Jean-Baptiste Joseph (1768–1830),
1–3, 11, 125

frequencies of pixels, 125–128
frequency domain, 24, 44, 45, 49, 58
frequency resolution in DFT, 69

and sampling rate, 70

Gauss, Carl Friedrich (1777–1855), 58, 103,
114

Gibbs phenomenon, ii
Gould, Stephen Jay (1941–2002), 152

harmonic analysis, 9
harmonic waves, 157
Hertz (Hz, cycles per second, 24
Hertz (Hz, cycles per second), 49
high pass filtering, 92
Hough edge detection, 44
Hz (Hertz), definition of, 11

image compression, 126
image frequencies, 125–128
image processing techniques

convolution, 143–152
impulse response (convolution kernel), 144
impulse response (definition of), 128
industrial revolutions, 119–120
inner product, 3–5, 47, 155, 156

definition of, 3, 56
in the DFT, 56

inner product of functions, 5, 14, 25
Intel 4004, 119
inverse DFT, 73–75, 92–97

Jacobi, Carl Gustav Jacob (1804–1851), 12

kernel of a filter, 144
Kotelnikov, Vladimir Aleksandrovich

(1908–2005), i, 122, 124
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Lagrange polynomial, 112, 126
Lagrange, Joseph-Louis (1736–1813), 2, 112
Laplace, Pierre-Simon (1749–1827), 2
least squares and Fourier coe�cients, 29–32
Levoy, Marc (1953–), 78, 122, 136
longitudinal wave (definition of), 10
low pass filtering, 92
Lyons, Richard G., 141

Marcian, Edward “Ted” Ho↵ Jr. (1937–),
119

Mark Twain, see Clemens
Maxwell, James Clerk (1831–1879), 42
Miller indices, 19, 22
Moiré pattern, 164
Monge, Gaspard (1746–1818), 2

Nabolione, see Bonaparte
Napoleon, see Bonaparte
negative frequencies in DFT, 5, 61

explained, 72
Nelson, Horatio (1758–1805), 2
Nyquist frequency, 61, 122

of an image, 87, 88
Nyquist rate, 122
Nyquist, Harry Theodor (1889–1976), i, 122,

124

odd and even functions, 33, 39
orthogonal functions, 4, 14, 25

periodicity
in DFT, 41, 85, 86
in FFT, 105
in sine waves, 19

periodization (of a signal), 46
phase of a sine wave, 14, 51, 92
phonograph (invention of), 120
photosites (smallest detail), 127
polynomial multiplication (and FFT), 111
power spectrum (of DFT), 51, 72

random walk, 62
reconstruction filter, see spreader
Ripley, LeRoy Robert (1890–1949), i
Roberspierre, Maximilien François Marie

Isidore de (1758–1794), 2
Roman numerals, 44
roots of unity, 7–8, 155

and FFT, 117
DFT, 70

sampling rate
and aliasing, 78
and frequency resolution, 70
definition of, 69
for digital sound, 78

sampling theorem (Shannon-Nyquist), iv,
76, 77, 120–141

explained, 122
reconstruction, 128–141

scalar product, see dot product
Shannon, Claude Elwood (1916–2001), 122,

124
signal stationarity, 78–82
sinc

as an interpolator, 76
bicubic, 140
definition of, 136
dual to rect, 52, 54
its beauty, 54

sine (origin of term), 11
sine waves

complex, 14, 15
one-dimensional, 13–19
properties of, 14
three-dimensional, 19–22
two-dimensional, 19

sine, cosine, and circle, 12, 156
Smith, Alvy Ray (1943–), v, 49, 136
Sobel edge detection operator, 149
soxel (sonic element), 121
spatial signal, 9
spectral resolution in DFT, 69
spreader (in digital reconstruction), 136–141
spreader (two-dimensional), 140
stationarity of a signal

ambiguous, 78
definition of, 78

stationarity of signals, 78–82

temporal aliasing, 122
temporal resolution (definition of), 69
time domain, 24, 49, 55
time series, 44
time signal, 9

definition of, 128
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Tokieda, Tadashi (1968–), v
transforms

AC coe�cient, 126
definition of, 43
DFT, 40, 48, 51, 55–103

negative frequencies, 5, 61, 72
periodicity of, 85

discrete cosine, 44, 126
FFT, 103–118
Fourier, 43–118, 124

transverse wave (definition of), 10
trigonometric functions (and circle), 12
Tukey, John Wilder (1915–2000), 58, 103
Turing, Alan (1912–1954), 119
twiddle factor (FFT), 110

two-dimensional sine waves, 19

unity (roots of), 7–8, 155

voxel (definition of), 121

Watt, James (1736–1819), 119
wave (definition of), 10
white noise, 62, 64
Wilde, Oscar (1854–1900), i
Wright, Steven (1955–), 22

zero padding
in the frequency domain, 76
in the time domain, 75–76

An index is a map of the world. It is a way of understanding the
world. And it is a way of communicating the world to others.

—Michael Wilkerson, The Index Revolution, (2016).




