
4.1 Phased-In Codes

Many of the prefix codes described here were developed for the compression of specific
types of data. These codes normally contain codewords of various lengths and they
are suitable for the compression of data where individual symbols have widely different
probabilities. Data where symbols have equal probabilities cannot be compressed by
VLCs and is normally assigned fixed-length codes. The codes of this section (also called
phased-in binary codes, see Appendix A-2 in [Bell et al. 90]) constitute a compromise.
A set of phased-in codes consists of codewords of two lengths and may contribute some-
thing (although not much) to the compression of data where symbols have roughly equal
probabilities.

Given n data symbols, where n = 2m (implying that m = log2 n), we can assign
them m-bit codewords. However, if 2m−1 < n < 2m, then log2 n is not an integer. If
we assign fixed-length codes to the symbols, each codeword would be dlog2 ne bits long,
but not all the codewords would be used. The case n = 1,000 is a good example. In
this case, each fixed-length codeword is dlog2 1,000e = 10 bits long, but only 1,000 out
of the 1,024 possibe codewords are used.

In the approach described here, we try to assign two sets of codes to the n symbols,
where the codewords of one set are m − 1 bits long and may have several prefixes and
the codewords of the other set are m bits long and have different prefixes. The average
length of such a code is between m− 1 and m bits and is shorter when there are more
short codewords.

A little research and experimentation leads to the following method of constructing
the two sets of codes. Given a set of n data symbols (or simply the integers 0 through
n − 1) where 2m ≤ n < 2m+1 for some integer m, we denote n = 2m + p where
0 ≤ p < 2m − 1 and also define P

def= 2m − p. We construct 2p long (i.e., m-bit)
codewords and P short, (m − 1)-bit codewords. The total number of codewords is
always 2p + P = 2p + 2m − p = (n − 2m) + 2m = n and there is an even number of
long codewords. The first P integers 0 through P − 1 receive the short codewords and
the remaining 2p integers P through n− 1 are assigned the long codewords. The short
codewords are the integers 0 through P − 1, each encoded in m − 1 bits. The long
codewords consist of p pairs, where each pair starts with the m-bit value P , P + 1, . . . ,
P + p− 1, followed by an extra bit, 0 or 1, to distinguish between the two codewords of
a pair.

The following tables illustrate both the method and its compression performance.
Table 4.1 lists the values of m, p, and P for n = 7, 8, 9, 15, 16, and 17. Table 4.2 lists
the actual codewords.

Table 4.2 is also the key to estimating the compression ratio of these codes. The
table shows that when n approaches a power of 2 (such as n = 7 and n = 15), there are
few short codewords and many long codewords, indicating low efficiency. When n is a
power of 2, all the codewords are long and the method does not produce any compression
(the compression ratio is 1). When n is slightly greater than a power of 2 (such as n = 9
and 17), there are many short codewords and therefore better compression.

2 4. Dummy Chapter

n m p = n− 2m P = 2m − p

7 2 3 1
8 3 0 8
9 3 1 7

15 3 7 1
16 4 0 16
17 4 1 15

Table 4.1: Parameters of Phased-In Codes.

i n = 7 8 9 15 16 17
0 00 000 000 000 0000 0000
1 010 001 001 0010 0001 0001
2 011 010 010 0011 0010 0010
3 100 011 011 0100 0011 0011
4 101 100 100 0101 0110 0100
5 110 101 101 0110 0101 0101
6 111 110 110 0111 0110 0110
7 111 1110 1000 0111 0111
8 1111 1001 1000 1000
9 1010 1001 1001

10 1011 1010 1010
11 1100 1011 1011
12 1101 1100 1100
13 1110 1101 1101
14 1111 1110 1110
15 1111 11110
16 11111

Table 4.2: Six Phased-In Codes.

The total size of the n phased-in codewords for a given n is

P ×m + 2p(m + 1) = (2m+1 − n)m + 2(n− 2m)(m + 1)

where m = blog2 nc, whereas the ideal total size of n fixed-length codewords (keeping
in mind the fact that log2 n is normally a noninteger), is ndlog2 ne. Thus, the ratio of
these two quantities is the compression ratio of the phased-in codes. It is illustrated in
Figure 4.3 for n values 2 through 256.

It is obvious that the compression ratio goes up toward 1 (indicating worse com-
pression) as n reaches a power of 2, then goes down (indicating better compression) as
we pass that value.

See http://f-cpu.seul.org/whygee/phasing-in_codes/phasein.html for other
examples and a different way to measure the efficiency of these codes.

Another advantage of phased-in codes is the ease of encoding and decoding them.

4.1 Phased-In Codes 3

50 100 150 200 250

0.85

0.90

0.95

1.00

m:=Floor[Log[2,n]];
Plot[(n m+2 n-2^(m+1))/(n Ceiling[Log[2,n]]), {n,2,256}]

Figure 4.3: Efficiency of Phased-In Codes.

Once the encoder is given the value of n, it computes m, p, and P . Given an integer i
to be encoded, if it is less than P , the encoder constructs an m-bit codeword with the
value i. Otherwise, the encoder constructs an (m + 1)-bit codeword where the first m
bits (the prefix) have the value P + (i− P)÷ 2 and the rightmost bit is (i− P) mod 2.
Using n = 9 as an example, we compute m = 3, p = 1, and P = 7. If i = 6, then
i < P , so the 3-bit codeword 110 is prepared. If i = 8, then the prefix is the three bits
7 + (8− 7)÷ 2 = 7 = 1112 and the rightmost bit is (8− 7) mod 2 = 1.

The decoder also starts with the given value of n and computes m, p, and P . It
inputs the next m bits into i. If this value is less than P , then this is the entire codeword
and it is returned by the decoder as the result. Otherwise, the decoder inputs the next
bit b and appends it to 2(i− P) + P . Using n = 9 as an example, if the decoder inputs
the three bits 111 (equals P) into i, it inputs the next bit into b and appends it to
2(7− 7) + 7 = 1112, resulting in either 1110 or 1111, depending on b.

The phased-in codes are closely related to the minimal binary code of Section .
See [seul.org 06] for a Mathematica notebook to construct phased-in codes.
It is also possible to construct suffix phased-in codes. We start with a set of fixed-

length codes and convert it to two sets of codewords by removing the leftmost bit of
some codewords. This bit is removed if it is a 0 and if its removal does not create
any ambiguity. Table 4.4 (where the removed bits are in italics) illustrates an example
for the first 24 nonnegative integers. The fixed-sized representation of these integers
requires five bits, but each of the eight integers 8 through 15 can be represented by only
four bits because 5-bit codes can represent 32 symbols and we have only 24 symbols.
A simple check verifies that, for example, coding the integer 8 as 1000 instead of 01000
does not introduce any ambiguity, because none of the other 23 codes ends with 1000.
One-third of the codewords in this example are one bit shorter, but if we consider only
the 17 integers from 0 to 16, about half will require four bits instead of five. The
efficiency of this code depends on where n (the number of symbols) is located in the

4 4. Dummy Chapter

00000 00001 00010 00011 00100 00101 00110 00111
01000 01001 01010 01011 01100 01101 01110 01111
10000 10001 10010 10011 10100 10101 10110 10111

Table 4.4: Suffix Phased-In Codes.

interval [2m, 2m+1 − 1).
The suffix phased-in codes are suffix codes (if c has been selected as a codeword,

no other codeword will end with c). Suffix codes can be considered the complements of
prefix codes and are also mentioned in Section .

