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Abstract

A fruitful direction for future data mining research will
be the development of techniques that incorporate privacy
concerns. Speci�cally, we address the following question.
Since the primary task in data mining is the development
of models about aggregated data, can we develop accurate
models without access to precise information in individual
data records? We consider the concrete case of building a
decision-tree classi�er from training data in which the values
of individual records have been perturbed. The resulting
data records look very di�erent from the original records
and the distribution of data values is also very di�erent
from the original distribution. While it is not possible
to accurately estimate original values in individual data
records, we propose a novel reconstruction procedure to
accurately estimate the distribution of original data values.
By using these reconstructed distributions, we are able
to build classi�ers whose accuracy is comparable to the
accuracy of classi�ers built with the original data.

1 Introduction

Explosive progress in networking, storage, and proces-

sor technologies has led to the creation of ultra large

databases that record unprecedented amount of trans-

actional information. In tandem with this dramatic

increase in digital data, concerns about informational

privacy have emerged globally [Tim97] [Eco99] [eu998]

[O�98]. Privacy issues are further exacerbated now that

the World Wide Web makes it easy for the new data

to be automatically collected and added to databases

[HE98] [Wes98a] [Wes98b] [Wes99] [CRA99a] [Cra99b].

The concerns over massive collection of data are natu-

rally extending to analytic tools applied to data. Data

mining, with its promise to e�ciently discover valuable,

non-obvious information from large databases, is par-

ticularly vulnerable to misuse [CM96] [The98] [O�98]

[ECB99].

A fruitful direction for future research in data mining

will be the development of techniques that incorporate

privacy concerns [Agr99]. Speci�cally, we address the

following question. Since the primary task in data

mining is the development of models about aggregated

data, can we develop accurate models without access to

precise information in individual data records?

The underlying assumption is that a person will be

willing to selectively divulge information in exchange of

value such models can provide [Wes99]. Example of the

value provided include �ltering to weed out unwanted

information, better search results with less e�ort, and

automatic triggers [HS99]. A recent survey of web users

[CRA99a] classi�ed 17% of respondents as privacy fun-

damentalists who will not provide data to a web site

even if privacy protection measures are in place. How-

ever, the concerns of 56% of respondents constituting

the pragmatic majority were signi�cantly reduced by

the presence of privacy protection measures. The re-

maining 27% were marginally concerned and generally

willing to provide data to web sites, although they of-

ten expressed a mild general concern about privacy. An-

other recent survey of web users [Wes99] found that 86%

of respondents believe that participation in information-

for-bene�ts programs is a matter of individual privacy

choice. A resounding 82% said that having a privacy

policy would matter; only 14% said that was not impor-

tant as long as they got bene�t. Furthermore, people

are not equally protective of every �eld in their data

records [Wes99] [CRA99a]. Speci�cally, a person

� may not divulge at all the values of certain �elds;

� may not mind giving true values of certain �elds;

� may be willing to give not true values but modi�ed

values of certain �elds.

Given a population that satis�es the above assump-

tions, we address the concrete problem of building

decision-tree classi�ers [BFOS84] [Qui93] and show that

that it is possible to develop accurate models while re-



specting users' privacy concerns. Classi�cation is one

the most used tasks in data mining. Decision-tree clas-

si�ers are relatively fast, yield comprehensible models,

and obtain similar and sometimes better accuracy than

other classi�cation methods [MST94].

Related Work There has been extensive research in

the area of statistical databases motivated by the de-

sire to be able to provide statistical information (sum,

count, average, maximum, minimum, pth percentile,

etc.) without compromising sensitive informationabout

individuals (see excellent surveys in [AW89] [Sho82].)

The proposed techniques can be broadly classi�ed into

query restriction and data perturbation. The query re-

striction family includes restricting the size of query

result (e.g. [Fel72] [DDS79]), controlling the overlap

amongst successive queries (e.g. [DJL79]), keeping au-

dit trail of all answered queries and constantly check-

ing for possible compromise (e.g. [CO82]), suppression

of data cells of small size (e.g. [Cox80]), and cluster-

ing entities into mutually exclusive atomic populations

(e.g. [YC77]). The perturbation family includes swap-

ping values between records (e.g. [Den82]), replacing the

original database by a sample from the same distribu-

tion (e.g. [LST83] [LCL85] [Rei84]), adding noise to the

values in the database (e.g. [TYW84] [War65]), adding

noise to the results of a query (e.g. [Bec80]), and sam-

pling the result of a query (e.g. [Den80]). There are neg-

ative results showing that the proposed techniques can-

not satisfy the con
icting objectives of providing high

quality statistics and at the same time prevent exact

or partial disclosure of individual information [AW89].

The statistical quality is measured in terms of bias, pre-

cision, and consistency. Bias represents the di�erence

between the unperturbed statistics and the expected

value of its perturbed estimate. Precision refers to the

variance of the estimators obtained by the users. Con-

sistency represents the lack of contradictions and para-

doxes. An exact disclosure occurs if by issuing one or

more queries, a user is able to determine the exact value

of a con�dential attribute of an individual. A partial

disclosure occurs if a user is able to obtain an estimator

whose variance is below a given threshold.

While we share with the statistical database liter-

ature the goal of preventing disclosure of con�dential

information, obtaining high quality point estimates is

not our goal. As we will see, it is su�cient for us to

be able to reconstruct with su�cient accuracy the orig-

inal distributions of the values of the con�dential at-

tributes. We adopt from the statistics literature two

methods that a person may use in our system to mod-

ify the value of a �eld [CS76]:

� Value-Class Membership. Partition the values into

a set of disjoint, mutually-exhaustive classes and

return the class into which the true value xi falls.

� Value Distortion. Return a value xi + r instead

of xi where r is a random value drawn from some

distribution.

We discuss further these methods and the level of

privacy they provide in the next section.

We do not use value dissociation, the third method

proposed in [CS76]. In this method, a value returned for

a �eld of a record is a true value, but from the same �eld

in some other record. Interestingly, a recent proposal

[ECB99] to construct perturbed training sets is based

on this method. Our hesitation with this approach is

that it is a global method and requires knowledge of

values in other records.

The problem of reconstructing original distribution

from a given distribution can be viewed in the general

framework of inverse problems [EHN96]. In [FJS97],

it was shown that for smooth enough distributions

(e.g. slowly varying time signals), it is possible to to

fully recover original distribution from non-overlapping,

contiguous partial sums. Such partial sums of true

values are not available to us. We cannot make a

priori assumptions about the original distribution; we

only know the distribution used in randomizing values

of an attribute. There is rich query optimization

literature on estimating attribute distributions from

partial information [BDF+97]. In the OLAP literature,

there is work on approximating queries on sub-cubes

from higher-level aggregations (e.g. [BS97]). However,

these works did not have to cope with information that

has been intentionally distorted.

Closely related, but orthogonal to our work, is the

extensive literature on access control and security (e.g.

[Din78] [ST90] [Opp97] [RG98]). Whenever sensitive

information is exchanged, it must be transmitted over a

secure channel and stored securely. For the purposes of

this paper, we assume that appropriate access controls

and security procedures are in place and e�ective in

preventing unauthorized access to the system. Other

relevant work includes e�orts to create tools and

standards that provide platform for implementing a

system such as ours (e.g. [Wor] [Ben99] [GWB97]

[Cra99b] [AC99] [LM99] [LEW99]).

Paper Organization We discuss privacy-preserving

methods in Section 2. We also introduce a quanti-

tative measure to evaluate the amount of privacy of-

fered by a method and evaluate the proposed methods

against this measure. In Section 3, we present our re-

construction procedure for reconstructing the original

data distribution given a perturbed distribution. We

also present some empirical evidence of the e�cacy of

the reconstruction procedure. Section 4 describes tech-

niques for building decision-tree classi�ers from per-

turbed training data using our reconstruction proce-

dure. We present an experimental evaluation of the



accuracy of these techniques in Section 5. We conclude

with a summary and directions for future work in Sec-

tion 6.

We only consider numeric attributes; in Section 6, we

brie
y describe how we propose to extend this work to

include categorical attributes. We focus on attributes

for which the users are willing to provide perturbed

values. If there is an attribute for which users are

not willing to provide even the perturbed value, we

simply ignore the attribute. If only some users do

not provide the value, the training data is treated

as containing records with missing values for which

e�ective techniques exist in the literature [BFOS84]

[Qui93].

2 Privacy-Preserving Methods

Our basic approach to preserving privacy is to let

users provide a modi�ed value for sensitive attributes.

The modi�ed value may be generated using custom

code, a browser plug-in, or extensions to products such

as Microsoft's Passport (http://www.passport.com) or

Novell's DigitalMe (http://www.digitalme.com). We

consider two methods for modifying values [CS76]:

Value-Class Membership In this method, the val-

ues for an attribute are partitioned into a set of disjoint,

mutually-exclusive classes. We consider the special case

of discretization in which values for an attribute are

discretized into intervals. All intervals need not be of

equal width. For example, salary may be discretized

into 10K intervals for lower values and 50K intervals

for higher values. Instead of a true attribute value, the

user provides the interval in which the value lies. Dis-

cretization is the method used most often for hiding

individual values.

Value Distortion Return a value xi + r instead

of xi where r is a random value drawn from some

distribution. We consider two random distributions:

� Uniform: The random variable has a uniform

distribution, between [��; + �]. The mean of the

random variable is 0.

� Gaussian: The random variable has a normal

distribution, with mean � = 0 and standard

deviation � [Fis63].

We �x the perturbation of an entity. Thus, it is not

possible for snoopers to improve the estimates of the

value of a �eld in a record by repeating queries [AW89].

2.1 Quantifying Privacy

For quantifying privacy provided by a method, we use

a measure based on how closely the original values of

a modi�ed attribute can be estimated. If it can be

Con�dence

50% 95% 99.9%

Discretization 0:5�W 0:95�W 0:999�W

Uniform 0:5� 2� 0:95� 2� 0:999� 2�

Gaussian 1:34� � 3:92� � 6:8� �

Table 1: Privacy Metrics

estimated with c% con�dence that a value x lies in

the interval [x1; x2], then the interval width (x2 � x1)

de�nes the amount of privacy at c% con�dence level.

Table 1 shows the privacy o�ered by the di�erent

methods using this metric. We have assumed that the

intervals are of equal width W in Discretization.

Clearly, for 2� = W , Uniform and Discretization

provide the same amount of privacy. As � increases,

privacy also increases. To keep up with Uniform,

Discretization will have to increase the interval width,

and hence reduce the number of intervals. Note that

we are interested in very high privacy. (We use 25%,

50%, 100% and 200% of range of values of an attribute

in our experiments.) Hence Discretization will lead

to poor model accuracy compared to Uniform since

all the values in a interval are modi�ed to the same

value. Gaussian provides signi�cantly more privacy

at higher con�dence levels compared to the other

two methods. We, therefore, focus on the two value

distortion methods in the rest of the paper.

3 Reconstructing The Original

Distribution

For the concept of using value distortion to protect

privacy to be useful, we need to be able to reconstruct

the original data distribution from the randomized data.

Note that we reconstruct distributions, not values in

individual records.

We view the n original data values x1; x2; : : : ; xn of a

one-dimensional distribution as realizations of n inde-

pendent identically distributed (iid) random variables

X1; X2; : : : ; Xn, each with the same distribution as the

random variable X. To hide these data values, n in-

dependent random variables Y1; Y2; : : : ; Yn have been

used, each with the same distribution as a di�erent ran-

dom variable Y . Given x1+y1; x2+y2; : : : ; xn+yn (where

yi is the realization of Yi) and the cumulative distribu-

tion function FY for Y , we would like to estimate the

cumulative distribution function FX for X.

Reconstruction Problem Given a cumulative dis-

tribution FY and the realizations of n iid random sam-

ples X1+Y1; X2+Y2; : : : ; Xn+Yn, estimate FX .

Let the value of Xi + Yi be wi(= xi + yi). Note



that we do not have the individual values xi and yi,

only their sum. We can use Bayes' rule [Fis63] to

estimate the posterior distribution function F
0

X1
(given

thatX1+Y1 = w1) forX1, assumingwe know the density

functions fX and fY for X and Y respectively.

F
0

X1
(a)

�

Z a

�1

fX1
(z jX1+Y1 = w1) dz

=

Z a

�1

fX1+Y1(w1 jX1 = z) fX1
(z)

fX1+Y1 (w1)
dz

(using Bayes' rule for density functions)

=

Z a

�1

fX1+Y1(w1 jX1 = z) fX1
(z)R

1

�1
fX1+Y1 (w1 jX1 = z0) fX1

(z0) dz0
dz

(expanding the denominator)

=

R a
�1

fX1+Y1 (w1 jX1 = z) fX1
(z) dzR

1

�1
fX1+Y1 (w1 jX1 = z) fX1

(z) dz

(inner integral is independent of outer)

=

R a
�1

fY1(w1�z) fX1
(z) dzR

1

�1
fY1(w1�z) fX1

(z) dz

(since Y1 is independent of X1)

=

R a
�1

fY (w1�z) fX (z) dzR
1

�1
fY (w1�z) fX (z) dz

(since fX1
� fX and fY1 � fY )

To estimate the posterior distribution function F
0

X

given x1 + y1; x2 + y2; : : : ; xn + yn, we average the

distribution functions for each of the Xi.

F
0

X (a) =
1

n

nX
i=1

F
0

Xi
=

1

n

nX
i=1

R a
�1

fY (wi � z) fX (z) dzR
1

�1
fY (wi � z) fX (z) dz

The corresponding posterior density function, f
0

X is

obtained by di�erentiating F 0X :

f
0

X (a) =
1

n

nX
i=1

fY (wi � a) fX(a)R
1

�1
fY (wi � z) fX (z) dz

(1)

Given a su�ciently large number of samples, we expect

f
0

X in the above equation to be very close to the

real density function fX . However, although we know

fY ,
1 we do not know fX . Hence we use the uniform

distribution as the initial estimate f0X , and iteratively

re�ne this estimate by applying Equation 1. This

algorithm is sketched out in Figure 1.

Using Partitioning to Speed Computation As-

sume a partitioning of the domain (of the data values)

into intervals. We make two approximations:

1For example, if Y is the standard normal, fY (z) =

(1=
p

(2�))e�z
2=2.

(1) f
0
X := Uniform distribution

(2) j := 0 // Iteration number

repeat

(3) f
j+1

X (a) := 1
n

Pn

i=1

fY (wi�a) f
j

X
(a)R

1

�1

fY (wi�z) f
j

X
(z)dz

(4) j := j + 1

until (stopping criterion met)

Figure 1: Reconstruction Algorithm

� We approximate the distance between z and wi (or

between a and wi) with the distance between the

mid-points of the intervals in which they lie, and

� We approximate the density function fX (a) with the

average of the density function over the interval in

which a lies.

Let I(x) denote the interval in which x lies, m(Ip)

the mid-point of interval Ip, and m(x) the mid-

point of interval I(x). Let fX (Ip) be the average

value of the density function over the interval Ip, i.e.

fX (Ip) =
R
Ip
fX (z)dz =

R
Ip
dz. By applying these two

approximations to Equation 1, we get

f
0

X (a) =
1

n

nX
i=1

fY (m(wi)�m(a)) fX (I(a))R
1

�1
fY (m(wi)�m(z)) fX (I(z)) dz

Let Ip; p = 1 : : :k denote the k intervals, and Lp the

width of interval Ip. We can replace the integral in the

denominator with a sum, since m(z) and fX (I(z)) do

not change within an interval:

f
0

X(a) =
1

n

nX
i=1

fY (m(wi)�m(a)) fX (I(a))Pk

t=1 fY (m(wi) �m(It)) fX (It)Lt
(2)

We now compute the average value of the posterior

density function over the interval Ip.

f
0

X (Ip)

=

Z
Ip

f
0

X (z)dz = Lp

=

Z
Ip

1

n

nX
i=1

fY (m(wi)�m(z)) fX (I(z)) dzPk

t=1 fY (m(wi)�m(It)) fX (It)Lt
=Lp

(substituting Equation 2)

=

Z
Ip

1

n

nX
i=1

fY (m(wi)�m(Ip)) fX (Ip) dzPk

t=1 fY (m(wi)�m(It)) fX (It)Lt
=Lp

(since I(z) = Ip within Ip)

=
1

n

nX
i=1

fY (m(wi)�m(Ip)) fX (Ip)Pk

t=1 fY (m(wi)�m(It)) fX (It)Lt

(since
R
Ip
dz = Lp)
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Figure 2: Reconstructing the Original Distribution

Let N (Ip) be the number of points that lie in interval Ip
(i.e. number of elements in the set fwijwi 2 Ipg. Since

m(wi) is the same for points that lie within the same

interval,

f
0

X (Ip) =

1

n

kX
s=1

N (Is)�
fY (m(Is)�m(Ip)) fX (Ip)Pk

t=1 fY (m(Is)�m(It)) fX (It)Lt

Finally, let Pr0(X 2 Ip) be the posterior probability of

X belonging to interval Ip, i.e. Pr
0(X 2 Ip) = f

0

X (Ip)�

Lp. Multiplying both sides of the above equation by

Lp, and using Pr(X 2 Ip) = fX (Ip)� Lp, we get:

Pr0(X 2 Ip) = (3)

1

n

kX
s=1

N (Is)�
fY (m(Is)�m(Ip)) Pr(X 2 Ip)Pk

t=1 fY (m(Is)�m(It)) Pr(X 2 It)

We can now substitute Equation 3 in step 3 of the

algorithm (Figure 1), and compute step 3 in O(m2)

time.2

2A naive implementation of Equation 3 will lead to O(m3)
time. However, since the denominator is independent of Ip, we

can re-use the results of that computation to get O(m2) time.

Stopping Criterion With omniscience, we would

stop when the reconstructed distribution was statisti-

cally the same as the original distribution (using, say,

the �2 goodness-of-�t test [Cra46]). An alternative is to

compare the observed randomized distribution with the

result of randomizing the current estimate of the origi-

nal distribution, and stop when these two distributions

are statistically the same. The intuition is that if these

two distributions are close to each other, we expect our

estimate of the original distribution to also be close to

the real distribution. Unfortunately, we found empir-

ically that the di�erence between the two randomized

distributions is not a reliable indicator of the di�erence

between the original and reconstructed distributions.

Instead, we compare successive estimates of the

original distribution, and stop when the di�erence

between successive estimates becomes very small (1%

of the threshold of the �2 test in our implementation).

Empirical Evaluation Two original distributions,

\plateau" and \triangles", are shown by the \Original"

line in Figures 2(a) and (b) respectively. We add a

Gaussian random variable with mean 0 and standard



rid Age Salary Credit Risk
0 23 50K High
1 17 30K High
2 43 40K High
3 68 50K Low
4 32 70K Low
5 20 20K High

(a) Training Set

Salary < 50K

High

High Low

Age < 25

(b) Decision Tree

Figure 3: Credit Risk Example

deviation of 0.25 to each point in the distribution.

Thus a point with value, say, 0.25 has a 95% chance

of being mapped to a value between -0.26 and 0.74, and

a 99.9% chance of being mapped to a value between -

0.6 and 1.1. The e�ect of this randomization is shown

by the \Randomized" line. We apply the algorithm

(with partitioning) in Figure 1, with a partition width

of 0.05. The results are shown by the \Reconstructed"

line. Notice that we are able to pick out the original

shape of the distribution even though the randomized

version looks nothing like the original.

Figures 2(c) and (d) show that adding an uniform,

discrete random variable between 0.5 and -0.5 to each

point gives similar results.

4 Decision-Tree Classi�cation over

Randomized Data

4.1 Background

We begin with a brief review of decision tree classi�-

cation, adapted from [MAR96] [SAM96]. A decision

tree [BFOS84] [Qui93] is a class discriminator that re-

cursively partitions the training set until each parti-

tion consists entirely or dominantly of examples from

the same class. Each non-leaf node of the tree con-

tains a split point which is a test on one or more at-

tributes and determines how the data is partitioned.

Figure 3(b) shows a sample decision-tree classi�er based

on the training shown in Figure 3a. (Age < 25) and

(Salary < 50K) are two split points that partition the

records into High and Low credit risk classes. The de-

cision tree can be used to screen future applicants by

classifying them into the High or Low risk categories.

A decision tree classi�er is developed in two phases:

a growth phase and a prune phase. In the growth

Partition(Data S)

begin

(1) if (most points in S are of the same class) then

(2) return;

(3) for each attribute A do

(4) evaluate splits on attribute A;

(5) Use best split to partition S into S1 and S2;

(6) Partition(S1);

(7) Partition(S2);

end

Initial call: Partition(TrainingData)

Figure 4: The tree-growth phase

phase, the tree is built by recursively partitioning the

data until each partition contains members belonging

to the same class. Once the tree has been fully grown,

it is pruned in the second phase to generalize the

tree by removing dependence on statistical noise or

variation that may be particular only to the training

data. Figure 4 shows the algorithm for the growth

phase.

While growing the tree, the goal at each node is

to determine the split point that \best" divides the

training records belonging to that node. We use the gini

index [BFOS84] to determine the goodness of a split.

For a data set S containing examples from m classes,

gini(S) = 1�
P

p
2
j where pj is the relative frequency of

class j in S. If a split divides S into two subsets S1 and

S2, the index of the divided data ginisplit(S) is given

by ginisplit(S) =
n1
n
gini(S1) +

n2
n
gini(S2). Note that

calculating this index requires only the distribution of

the class values in each of the partitions.

4.2 Training Using Randomized Data

To induce decision trees using perturbed training data,

we need to modify two key operations in the tree-growth

phase (Figure 4):

� Determining a split point (step 4).

� Partitioning the data (step 5).

We also need to resolve choices with respect to recon-

structing original distribution:

� Should we do a global reconstruction using the whole

data or should we �rst partition the data by class

and reconstruct separately for each class?

� Should we do reconstruction once at the root node

or do reconstruction at every node?

We discuss below each of these issues.

For pruning phase based on the MinimumDescription

Length principle [MAR96], no modi�cation is needed.



Determining split points Since we partition the do-

main into intervals while reconstructing the distribu-

tion, the candidate split points are the interval bound-

aries. (In the standard algorithm, every mid-point be-

tween any two consecutive attribute values is a candi-

date split point.) For each candidate split-point, we

use the statistics from the reconstructed distribution to

compute gini index.

Partitioning the Data The reconstruction proce-

dure gives us an estimate of the number of points in each

interval. Let I1; :::Im be the m intervals, and N (Ip) be

the estimated number of points in interval Ip. We as-

sociate each data value with an interval by sorting the

values, and assigning the N (I1) lowest values to inter-

val I1, and so on.3 If the split occurs at the boundary

of interval Ip�1 and Ip, then the points associated with

intervals I1; : : : ; Ip�1 go to S1, and the points associ-

ated with intervals Ip; : : : ; Im go to S2. We retain this

association between points and intervals in case there is

a split on the same attribute (at a di�erent split-point)

lower in the tree.

Reconstructing the Original Distribution We

consider three di�erent algorithms that di�er in when

and how distributions are reconstructed:

� Global: Reconstruct the distribution for each

attribute once at the beginning using the complete

perturbed training data. Induce decision tree using

the reconstructed data.

� ByClass: For each attribute, �rst split the training

data by class, then reconstruct the distributions

separately for each class. Induce decision tree using

the reconstructed data.

� Local: As in ByClass, for each attribute, split the

training data by class and reconstruct distributions

separately for each class. However, instead of doing

reconstruction only once, reconstruction is done at

each node (i.e. just before step 4 in Figure 4). To

avoid over-�tting, reconstruction is stopped after the

number of records belonging to a node become small.

A �nal detail regarding reconstruction concerns the

number of intervals into which the domain of an

attribute is partitioned. We use a heuristic to determine

the number of intervals, m. We choose m such that

there are an average of 100 points per interval. We

then bound m to be between 10 and 100 intervals i.e.

if m < 10, m is set to 10, etc.

Clearly, Local is the most expensive algorithm in

terms of execution time. Global is the cheapest

3The interval associated with a data value should not be

considered an estimator of the original value of that data value.

algorithm. ByClass falls in between. However, it

is closer to Global than Local since reconstruction is

done in ByClass only at the root node, whereas it

is repeated at each node in Local. We empirically

evaluate the classi�cation accuracy characteristics of

these algorithms in the next section.

4.3 Deployment

In many applications, the goal of building a classi�-

cation model is to develop an understanding of di�er-

ent classes in the target population. The techniques

just described directly apply to such applications. In

other applications, a classi�cation model is used for pre-

dicting the class of a new object without a preassigned

class label. For this prediction to be accurate, although

we have been able to build an accurate model using

randomized data, the application needs access to non-

perturbed data which the user is not willing to disclose.

The solution to this dilemma is to structure the applica-

tion such that the classi�cation model is shipped to the

user and applied there. For instance, if the classi�ca-

tion model is being used to �lter information relevant to

a user, the classi�er may be �rst applied on the client

side over the original data and the information to be

presented is �ltered using the results of classi�cation.

5 Experimental Results

5.1 Methodology

We compare the classi�cation accuracy of Global,

ByClass, and Local algorithms against each other and

with respect to the following benchmarks:

� Original, the result of inducing the classi�er on

unperturbed training data without randomization.

� Randomized, the result of inducing the classi�er

on perturbed data but without making any correc-

tions for randomization.

Clearly, we want to come as close to Original in accuracy

as possible. The accuracy gain over Randomized re
ects

the advantage of reconstruction.

We used the synthetic data generator from [AGI+92]

for our experiments. We used a training set of

100,000 records and a test set of 5,000 records, equally

split between the two classes. Table 2 describes

the nine attributes, and Table 3 summarizes the

�ve classi�cation functions. These functions vary

from having quite simple decision surface (Function

1) to complex non-linear surfaces (Functions 4 and

5). Functions 2 and 3 may look easy, but are quite

di�cult. The distribution of values on age are identical

for both classes, unless the classi�er �rst splits on salary.

Further, the classi�er has to exactly �nd �ve split-points

on salary: 25, 50, 75, 100 and 125 to perfectly classify

the data. The width of each of these intervals is less



Group A Group B

Function 1 (age < 40) _ ((60 � age) otherwise

Function 2 ((age < 40) ^ (50K � salary � 100K)) _ otherwise

((40 � age < 60) ^ (75K � salary � 125K)) _
((age � 60) ^ (25K � salary � 75K))

Function 3 ((age < 40) ^ (((elevel 2 [0::1]) ^ (25K � salary � 75K)) _ otherwise

((elevel 2 [2::3]) ^ (50K � salary � 100K)))) _
((40 � age < 60) ^ (((elevel 2 [1::3]) ^ (50K � salary � 100K)) _

(((elevel = 4)) ^ (75K � salary � 125K)))) _
((age � 60) ^ (((elevel 2 [2::4]) ^ (50K � salary � 100K)) _

((elevel = 1)) ^ (25K � salary � 75K))))

Function 4 (0:67� (salary + commission)� 0:2� loan� 10K) > 0 otherwise

Function 5 (0:67� (salary + commission)� 0:2� loan+ 0:2� equity � 10K) > 0 otherwise

where equity = 0:1� hvalue�max(hyears � 20; 0)

Table 3: Description of Functions

Attribute Description

salary uniformly distributed from 20K to 150K
commission salary � 75K ) commission = 0 else

uniformly distributed from 10K to 75K
age uniformly distributed from 20 to 80
elevel uniformly chosen from 0 to 4
car uniformly chosen from 1 to 20
zipcode uniformly chosen from 9 zipcodes
hvalue uniformly distributed from k � 50K

to k � 150K, where k 2 f0 � � � 9g
depends on zipcode

hyears uniformly distributed from 1 to 30
loan uniformly distributed from 0 to 500K

Table 2: Attribute Descriptions

than 20% of the range of the attribute. Function 2

also contains embedded XORs which are known to be

troublesome for decision tree classi�ers.

Perturbed training data is generated using both

Uniform and Gaussian methods (Section 2). All

accuracy results involving randomization were averaged

over 10 runs. We experimented with large values for the

amount of desired privacy: ranging from 25% to 200%

of the range of values of an attribute. The con�dence

threshold for the privacy level is taken to be 95% in

all our experiments. Recall that if it can be estimated

with 95% con�dence that a value x lies in the interval

[x1; x2], then the interval width (x2 � x1) de�nes

the amount of privacy at 95% con�dence level. For

example, at 50% privacy, Salary cannot be estimated

(with 95% con�dence) any closer than an interval of

width 65K, which is half the entire range for Salary.

Similarly, at 100% privacy, Age cannot be estimated

(with 95% con�dence) any closer than an interval of

width 60, which is the entire range for Age.

5.2 Comparing the Classi�cation

Algorithms

Figure 5 shows the accuracy of the algorithms for

Uniform and Gaussian perturbations, for privacy levels

of 25% and 100%. The x-axis shows the �ve functions

from Table 3, and the y-axis the accuracy.

Overall, the ByClass and Local algorithms do re-

markably well at 25% and 50% privacy, with accuracy

numbers very close to those on the original data. Even

at as high as 100% privacy, the algorithms are within

5% (absolute) of the original accuracy for Functions 1, 4

and 5 and within 15% for Functions 2 and 3. The advan-

tage of reconstruction can be seen from these graphs by

comparing the accuracy of these algorithms with Ran-

domized.

Overall, the Global algorithm performs worse than

ByClass and Local algorithms. The de�ciency of

Global is that it uses the same merged distribution

for all the classes during reconstruction of the original

distribution. It fares well on Functions 4 and 5, but

the performance of even Randomized is quite close to

Original on these functions. These functions have a

diagonal decision surface, with equal number of points

on each side of the diagonal surface. Hence addition

of noise does not signi�cantly a�ect the ability of

the classi�er to approximate this surface by hyper-

rectangles.

As we stated in the beginning of this section, though

they might look easy, Functions 2 and 3 are quite

di�cult. The classi�er has to �nd �ve split-points on

salary and the width of each interval is 25K. Observe

that the range over which the randomizing function

spreads 95% of the values is more than 5 times the width

of the splits at 100% privacy. Hence even small errors

in reconstruction result in the split points being a little

o�, and accuracy drops.

The poor accuracy of Original for Function 2 at 25%

privacy may appear anomalous. The explanation lies in
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Figure 5: Classi�cation Accuracy

there being a buried XOR in Function 2. When Original

reaches the corresponding node, it stops because it does

not �nd any split point that increases gini. However,

due to the perturbation of data with randomization, the

other algorithms �nd a \false" split point and proceed

further to �nd the real split.

5.3 Varying Privacy

Figure 6 shows the e�ect of varying the amount of

privacy for the ByClass algorithm. (We omitted the

graph for Function 4 since the results were almost

identical to those for Function 5.) Similar results were

obtained for the Local algorithm. The x-axis shows the

privacy level, ranging from 10% to 200%, and the y-axis

the accuracy of the algorithms. The legend ByClass(G)

refers to ByClass with Gaussian, Random(U) refers to

Randomized with Uniform, etc.

Two important conclusions can be drawn from these

graphs:

� Although Uniform perturbation of original data

results in a much large degradation of accuracy

before correction compared to Gaussian, the e�ect

of both distributions is quite comparable after

correction.

� The accuracy of the classi�er developed using

perturbed data, although not identical, comes fairly

close to Original (i.e. accuracy obtained from using

unperturbed data).

6 Conclusions and Future Work

In this paper, we studied the technical feasibility of

realizing privacy-preserving data mining. The basic

premise was that the sensitive values in a user's record

will be perturbed using a randomizing function so

that they cannot be estimated with su�cient precision.

Randomization can be done using Gaussian or Uniform

perturbations. The question we addressed was whether,

given a large number of users who do this perturbation,
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Figure 6: Change in Accuracy with Privacy

can we still construct su�ciently accurate predictive

models.

For the speci�c case of decision-tree classi�cation,

we found two e�ective algorithms, ByClass and Local.

The algorithms rely on a Bayesian procedure for

correcting perturbed distributions. We emphasize that

we reconstruct distributions, not individual records,

thus preserving privacy of individual records. As a

matter of fact, if the user perturbs a sensitive value

once and always return the same perturbed value,

the estimate of the true value cannot be improved by

successive queries. We found in our empirical evaluation

that:

� ByClass and Local are both e�ective in correcting

for the e�ects of perturbation. At 25% and 50%

privacy levels, the accuracy numbers are close to

those on the original data. Even at 100% privacy,

the algorithms were within 5% to 15% (absolute) of

the original accuracy. Recall that if privacy were

to be measured with 95% con�dence, 100% privacy

means that the true value cannot be estimated any

closer than an interval of width which is the entire

range for the corresponding attribute. We believe

that a small drop in accuracy is a desirable trade-o�

for privacy in many situations.

� Local performed marginally better than ByClass,

but required considerably more computation. Inves-

tigation of what characteristics might make Local a

winner over ByClass (if at all) is an open problem.

� For the same privacy level, Uniform perturbation

did signi�cantly worse than Gaussian before correct-

ing for randomization, but only slightly worse after

correcting for randomization. Hence the choice be-

tween applying the Uniform or Gaussian distribu-

tions to preserve privacy should be based on other

considerations: Gaussian provides more privacy at

higher con�dence thresholds, but Uniform may be

easier to explain to users.



FutureWork We plan to investigate the e�ectiveness

of randomization with reconstruction for categorical at-

tributes. The basic idea is to randomize each categorical

value as follows: retain the value with probability p, and

choose one of the other values at random with proba-

bility 1�p. We may then derive an equation similar

to Equation 1, and iteratively reconstruct the original

distribution of values. Alternately, we may be able to

extend the analytical approach presented in [War65] for

boolean attributes to derive an equation that directly

gives estimates of the original distribution.
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