
Answers to Exercises

A bird does not sing because he has an answer,
he sings because he has a song.

—Chinese Proverb

1: abstemious, abstentious, adventitious, annelidous, arsenious, arterious, face-
tious, sacrilegious.

2: When a software house has a popular product they tend to come up with new
versions. A user can update an old version to a new one, and the update usually
comes as a compressed file on a floppy disk. Over time the updates get bigger
and, at a certain point, an update may not fit on a single floppy. This is why
good compression is important in the case of software updates. The time it takes
to compress and decompress the update is unimportant since these operations are
typically done just once. Recently, software makers have taken to providing updates
over the Internet, but even in such cases it is important to have small files because
of the download times involved.

1.1: (1) ask a question, (2) absolutely necessary, (3) advance warning, (4) boiling
hot, (5) climb up, (6) close scrutiny, (7) exactly the same, (8) free gift, (9) hot water
heater, (10) my personal opinion, (11) newborn baby, (12) postponed until later,
(13) unexpected surprise, (14) unsolved mysteries.

1.2: An obvious way is to use them to code the five most common strings in the
text. Since irreversible text compression is a special-purpose method, the user may
know what strings are common in any particular text to be compressed. The user
may specify five such strings to the encoder, and they should also be written at the
start of the output stream, for the decoder’s use.

976 Answers to Exercises

1.3: 6,8,0,1,3,1,4,1,3,1,4,1,3,1,4,1,3,1,2,2,2,2,6,1,1. The first two numbers are the
bitmap resolution (6 × 8). If each number occupies a byte on the output stream,
then its size is 25 bytes, compared to a bitmap size of only 6 × 8 bits = 6 bytes.
The method does not work for small images.

1.4: RLE of images is based on the idea that adjacent pixels tend to be identical.
The last pixel of a row, however, has no reason to be identical to the first pixel of
the next row.

1.5: Each of the first four rows yields the eight runs 1,1,1,2,1,1,1,eol. Rows 6 and
8 yield the four runs 0,7,1,eol each. Rows 5 and 7 yield the two runs 8,eol each.
The total number of runs (including the eol’s) is thus 44.

When compressing by columns, columns 1, 3, and 6 yield the five runs 5,1,1,1,eol
each. Columns 2, 4, 5, and 7 yield the six runs 0,5,1,1,1,eol each. Column 8 gives
4,4,eol, so the total number of runs is 42. This image is thus “balanced” with respect
to rows and columns.

1.6: This results in five groups as follows:

W1 to W2 :00000, 11111,

W3 to W10 :00001, 00011, 00111, 01111, 11110, 11100, 11000, 10000,

W11 to W22 :00010, 00100, 01000, 00110, 01100, 01110,

11101, 11011, 10111, 11001, 10011, 10001,

W23 to W30 :01011, 10110, 01101, 11010, 10100, 01001, 10010, 00101,

W31 to W32 :01010, 10101.

1.7: The seven codes are

0000, 1111, 0001, 1110, 0000, 0011, 1111.

Forming a string with six runs. Applying the rule of complementing yields the
sequence

0000, 1111, 1110, 1110, 0000, 0011, 0000,

with seven runs. The rule of complementing does not always reduce the number of
runs.

1.8: As “11 22 90 00 00 33 44”. The 00 following the 90 indicates no run, and the
following 00 is interpreted as a regular character.

1.9: The six characters “123ABC” have ASCII codes 31, 32, 33, 41, 42 and 43.
Translating these hexadecimal numbers to binary produces “00110001 00110010
00110011 01000001 01000010 01000011”.
The next step is to divide this string of 48 bits into 6-bit blocks. They are
001100=12, 010011=19, 001000=8, 110011=51, 010000=16, 010100=20, 001001=9,

Answers to Exercises 977

000011=3. The character at position 12 in the BinHex table is “-” (position num-
bering starts at zero). The one at position 19 is “6”. The final result is the string
“-6)c38*$”.

1.10: Exercise 2.1 shows that the binary code of the integer i is 1 + �log2 i� bits
long. We add �log2 i� zeros, bringing the total size to 1 + 2�log2 i� bits.

1.11: Table Ans.1 summarizes the results. In (a), the first string is encoded with
k = 1. In (b) it is encoded with k = 2. Columns (c) and (d) are the encodings of the
second string with k = 1 and k = 2, respectively. The averages of the four columns
are 3.4375, 3.25, 3.56 and 3.6875; very similar! The move-ahead-k method used
with small values of k does not favor strings satisfying the concentration property.

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d bcadmnop 3
d bcdamnop 2
c bdcamnop 2
b bcdamnop 0
a bcdamnop 3
m bcadmnop 4
n bcamdnop 5
o bcamndop 6
p bcamnodp 7
p bcamnopd 6
o bcamnpod 6
n bcamnopd 4
m bcanmopd 4

bcamnopd

(a)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d cbadmnop 3
d cdbamnop 1
c dcbamnop 1
b cdbamnop 2
a bcdamnop 3
m bacdmnop 4
n bamcdnop 5
o bamncdop 6
p bamnocdp 7
p bamnopcd 5
o bampnocd 5
n bamopncd 5
m bamnopcd 2

mbanopcd

(b)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d bcadmnop 3
m bcdamnop 4
n bcdmanop 5
o bcdmnaop 6
p bcdmnoap 7
a bcdmnopa 7
b bcdmnoap 0
c bcdmnoap 1
d cbdmnoap 2
m cdbmnoap 3
n cdmbnoap 4
o cdmnboap 5
p cdmnobap 7

cdmnobpa

(c)

a abcdmnop 0
b abcdmnop 1
c bacdmnop 2
d cbadmnop 3
m cdbamnop 4
n cdmbanop 5
o cdmnbaop 6
p cdmnobap 7
a cdmnopba 7
b cdmnoapb 7
c cdmnobap 0
d cdmnobap 1
m dcmnobap 2
n mdcnobap 3
o mndcobap 4
p mnodcbap 7

mnodcpba

(d)

Table Ans.1: Encoding with Move-Ahead-k.

1.12: Table Ans.2 summarizes the decoding steps. Notice how similar it is to
Table 1.16, indicating that move-to-front is a symmetric data compression method.

2.1: It is 1 + �log2 i� as can be seen by simple experimenting.

2.2: Two is the smallest integer that can serve as the basis for a number system.

2.3: Replacing 10 by 3 we get x = k log2 3 ≈ 1.58k. A trit is thus worth about
1.58 bits.

978 Answers to Exercises

Code input A (before adding) A (after adding) Word

0the () (the) the
1boy (the) (the, boy) boy
2on (boy, the) (boy, the, on) on
3my (on, boy, the) (on, boy, the, my) my
4right (my, on, boy, the) (my, on, boy, the, right) right
5is (right, my, on, boy, the) (right, my, on, boy, the, is) is
5 (is, right, my, on, boy, the) (is, right, my, on, boy, the) the
2 (the, is, right, my, on, boy) (the, is, right, my, on, boy) right
5 (right, the, is, my, on, boy) (right, the, is, my, on, boy) boy

(boy, right, the, is, my, on)

Table Ans.2: Decoding Multiple-Letter Words.

2.4: We assume an alphabet with two symbols a1 and a2, with probabilities P1 and
P2, respectively. Since P1 + P2 = 1, the entropy of the alphabet is −P1 log2 P1 −
(1 − P1) log2(1 − P1). Table Ans.3 shows the entropies for certain values of the
probabilities. When P1 = P2, at least 1 bit is required to encode each symbol,
reflecting the fact that the entropy is at its maximum, the redundancy is zero, and
the data cannot be compressed. However, when the probabilities are very different,
the minimum number of bits required per symbol drops significantly. We may not
be able to develop a compression method using 0.08 bits per symbol but we know
that when P1 = 99%, this is the theoretical minimum.

P1 P2 Entropy
99 1 0.08
90 10 0.47
80 20 0.72
70 30 0.88
60 40 0.97
50 50 1.00

Table Ans.3: Probabilities and Entropies of Two Symbols.

An essential tool of this theory [information] is a quantity for mea-
suring the amount of information conveyed by a message. Suppose
a message is encoded into some long number. To quantify the in-
formation content of this message, Shannon proposed to count the
number of its digits. According to this criterion, 3.14159, for ex-
ample, conveys twice as much information as 3.14, and six times
as much as 3. Struck by the similarity between this recipe and the
famous equation on Boltzman’s tomb (entropy is the number of
digits of probability), Shannon called his formula the “information
entropy.”

Hans Christian von Baeyer, Maxwell’s Demon, 1998

Answers to Exercises 979

2.5: It is easy to see that the unary code satisfies the prefix property, so it definitely
can be used as a variable-size code. Since its length L satisfies L = n we get
2−L = 2−n, so it makes sense to use it in cases were the input data consists of
integers n with probabilities P (n) ≈ 2−n. If the data lends itself to the use of the
unary code, the entire Huffman algorithm can be skipped, and the codes of all the
symbols can easily and quickly be constructed before compression or decompression
starts.

2.6: The triplet (n, 1, n) defines the standard n-bit binary codes, as can be verified
by direct construction. The number of such codes is easily seen to be

2n+1 − 2n

21 − 1
= 2n.

The triplet (0, 0,∞) defines the codes 0, 10, 110, 1110,. . .which are the unary codes
but assigned to the integers 0, 1, 2,. . . instead of 1, 2, 3,. . . .

2.7: The number is (230 − 21)/(21 − 1) ≈ A billion.

2.8: This is straightforward. Table Ans.4 shows the code. There are only three
different codewords since “start” and “stop” are so close, but there are many codes
since “start” is large.

a = nth Number of Range of
n 10 + n · 2 codeword codewords integers

0 10 0 x...x︸︷︷︸
10

210 = 1K 0–1023

1 12 10 xx...x︸ ︷︷ ︸
12

212 = 4K 1024–5119

2 14 11 xx...xx︸ ︷︷ ︸
14

214 = 16K 5120–21503

Total 21504

Table Ans.4: The General Unary Code (10,2,14).

2.9: Each part of C4 is the standard binary code of some integer, so it starts with
a 1. A part that starts with a 0 thus signals to the decoder that this is the last bit
of the code.

2.10: We use the property that the Fibonacci representation of an integer does
not have any adjacent 1’s. If R is a positive integer, we construct its Fibonacci
representation and append a 1-bit to the result. The Fibonacci representation
of the integer 5 is 001, so the Fibonacci-prefix code of 5 is 0011. Similarly, the
Fibonacci representation of 33 is 1010101, so its Fibonacci-prefix code is 10101011.
It is obvious that each of these codes ends with two adjacent 1’s, so they can be
decoded uniquely. However, the property of not having adjacent 1’s restricts the
number of binary patterns available for such codes, so they are longer than the
other codes shown here.

980 Answers to Exercises

2.11: Subsequent splits can be done in different ways, but Table Ans.5 shows one
way of assigning Shannon-Fano codes to the 7 symbols.

Prob. Steps Final

1. 0.25 1 1 :11
2. 0.20 1 0 :101
3. 0.15 1 0 :100
4. 0.15 0 1 :01
5. 0.10 0 0 1 :001
6. 0.10 0 0 0 0 :0001
7. 0.05 0 0 0 0 :0000

Table Ans.5: Shannon-Fano Example.

The average size in this case is 0.25× 2 + 0.20× 3 + 0.15× 3 + 0.15× 2 + 0.10× 3 +
0.10 × 4 + 0.05 × 4 = 2.75 bits/symbols.

2.12: This is immediate −2(0.25×log2 0.25) − 4(0.125×log2 0.125) = 2.5.

2.13: If method C does not expand any of the n-bit strings, then the result of
applying it to all the n-bit input strings is a set of 2n binary strings, none of which
is longer than n bits and some of which are shorter. This is impossible because the
total number of n-bit strings is 2n, so the total number of shorter strings must be
less than that.

2.14: The method does not exploit the redundancy in the input. Even in our
simple example the two consecutive SS of SWISS (and also the two SS of MISS) re-
sult in 5 + 1 = 6 bits. If the dictionary size is 256, then a pair of identical input
bytes results in 256 + 1 = 257 bits; a considerable expansion. On the other hand,
two consecutive 1-bits are generated only if two consecutive input characters are
identical to two consecutive dictionary characters. It seems reasonable to assume
that the number of consecutive zeros between two 1-bits is, on average, half the dic-
tionary size. If half the dictionary size is greater than eight (the size of a character),
expansion occurs.

Later that evening, we were all sitting around the table talking when some-
one said something and Murray Gell-Mann remarked, “Oh, that’s a pleonasm.”
Everyone went, “What?” “It’s a sentence with a triple redundancy,” Gell-Mann
stated. Gell-Mann is well known among his associates for his pedantic knowl-
edge of language and facts. Feynman and I sneaked into my library where we
looked it up in the dictionary. Gell-Mann was right. Feynman hit his fist on the
table, and exclaimed, “DAMN IT! He’s always GODDAMNED right, always!”
“Let’s see if we can catch him tonight,” I replied.

— Al Seckel

Answers to Exercises 981

2.15: 1: The initial 10 indicates that v1 = 1. The following 0 indicates that
v2 = 0. The fourth bit is 1, indicating that there are more nonzero vector elements
to be decoded. Bits 5–6 are 10, indicating that v3 = 1. Bits 7–8 are 11, indicating
that v4 = −1. Bit 9 is zero, indicating that the remaining elements are all zeros.

2: The shortest code, for all-zero vectors, is 000, just three bits. As an example
of the longest code let’s assume an 8-component vector where all the elements are
1. The resulting code is 101011010110101010, an 18-bit number, longer than the
fixed-size code of 13 bits.

This method results in very short codes for certain vectors and very long codes
for others. Thus, this method should be used in cases where we have to compress
vectors that tend to have trailing zeros.

2.16: Figure Ans.6a,b,c shows the three trees. The codes sizes for the trees are

(5 + 5 + 5 + 5·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(5 + 5 + 4 + 4·2 + 4·3 + 3·5 + 3·5 + 12)/30 = 76/30,

(6 + 6 + 5 + 4·2 + 3·3 + 3·5 + 3·5 + 12)/30 = 76/30.

(a)

A B

2

5

8

(b) (c) (d)

A B

2

A B

2

C D

3

C D

3C D

3 D

8
8

FE 5

5

E

5

E

8

G

20

H

10

F

E

A B

2

3

C

G

10

F G

10 F G

10
H

30

3018 H

30

18
H

30

18

Figure Ans.6: Three Huffman Trees For Eight Symbols.

2.17: After adding symbols A, B, C, D, E, F, and G to the tree we were left with
the three symbols ABEF (with probability 10/30), CDG (with probability 8/30),
and H (with probability 12/30). The two symbols with lowest probabilities were
ABEF and CDG, so they had to be merged. Instead, symbols CDG and H were
merged, creating a non-Huffman tree.

2.18: The second row of Table Ans.7 (due to Guy Blelloch) shows a symbol whose
Huffman code is three bits long, but for which #− log2 0.3$ = #1.737$ = 2.

982 Answers to Exercises

Pi Code − log2 Pi #− log2 Pi$
.01 000 6.644 7

*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table Ans.7: A Huffman Code Example.

2.19: Imagine a large alphabet where all the symbols have (about) the same
probability. Since the alphabet is large, that probability will be small, resulting
in long codes. Imagine the other extreme case, where certain symbols have high
probabilities (and, therefore, short codes). Since the probabilities have to add up
to 1, the rest of the symbols will have low probabilities (and, therefore, long codes).
We thus see that the size of a code depends on the probability, but is indirectly
affected by the size of the alphabet.

2.20: Answer not provided.

2.21: Figure Ans.8 shows Huffman codes for 5, 6, 7, and 8 symbols with equal
probabilities. In the case where n is a power of 2, the codes are simply the fixed-
sized ones. In other cases the codes are very close to fixed-size. This shows that
symbols with equal probabilities do not benefit from variable-size codes. (This is
another way of saying that random text cannot be compressed.) Table Ans.9 shows
the codes, their average sizes and variances.

2.22: The number of groups increases exponentially from 2s to 2s+n = 2s × 2n.

2.23: The binary value of 127 is 01111111 and that of 128 is 10000000. Half the
pixels in each bitplane will therefore be 0 and the other half, 1. In the worst case,
each bitplane will be a checkerboard, i.e., will have many runs of size one. In such
a case, each run requires a 1-bit code, leading to one codebit per pixel per bitplane,
or eight codebits per pixel for the entire image, resulting in no compression at all.
In comparison, a Huffman code for such an image requires just two codes (since
there are just two pixel values) and they can be one bit each. This leads to one
codebit per pixel, or a compression factor of eight.

2.24: The two trees are shown in Figure 2.24c,d. The average code size for the
binary Huffman tree is

1×.49 + 2×.25 + 5×.02 + 5×.03 + 5×.04 + 5×.04 + 3×.12 = 2 bits/symbol,

and that of the ternary tree is

1×.26 + 3×.02 + 3×.03 + 3×.04 + 2×.04 + 2×.12 + 1×.49 = 1.34 trits/symbol.

Answers to Exercises 983

1

2

3

4

5

6

7

8

1

1

1

0

0

0

1

2

3

4

5

6

1

1

0

0

1

2

3

4

5

6

7

1

1

1

0

0

0

1

2

3

4

5

1

1

0

0

Figure Ans.8: Huffman Codes for Equal Probabilities.

Avg.
n p a1 a2 a3 a4 a5 a6 a7 a8 size Var.
5 0.200 111 110 101 100 0 2.6 0.64
6 0.167 111 110 101 100 01 00 2.672 0.2227
7 0.143 111 110 101 100 011 010 00 2.86 0.1226
8 0.125 111 110 101 100 011 010 001 000 3 0

Table Ans.9: Huffman Codes for 5–8 Symbols.

984 Answers to Exercises

2.25: Figure Ans.10 shows how the loop continues until the heap shrinks to just
one node that is the single pointer 2. This indicates that the total frequency (which
happens to be 100 in our example) is stored in A[2]. All other frequencies have
been replaced by pointers. Figure Ans.11a shows the heaps generated during the
loop.

2.26: The code lengths for the seven symbols are 2, 2, 3, 3, 4, 3, and 4 bits. This
can also be verified from the Huffman code-tree of Figure Ans.11b. A set of codes
derived from this tree is shown in the following table:

Count: 25 20 13 17 9 11 5
Code: 01 11 101 000 0011 100 0010
Length: 2 2 3 3 4 3 4

2.27: A symbol with high frequency of occurrence should be assigned a shorter
code. Therefore it has to appear high in the tree. The requirement that at each
level the frequencies be sorted from left to right is artificial. In principle it is not
necessary but it simplifies the process of updating the tree.

2.28: Figure Ans.12 shows the initial tree and how it is updated in the 11 steps
(a) through (k). Notice how the esc symbol gets assigned different codes all the
time, and how the different symbols move about in the tree and change their codes.
Code 10, e.g., is the code of symbol “i” in steps (f) and (i), but is the code of “s” in
steps (e) and (j). The code of a blank space is 011 in step (h), but 00 in step (k).

The final output is: “s0i00r100W1010000d011101000”. A total of 5×8+22 =
62 bits. The compression ratio is thus 62/88 ≈ 0.7.

2.29: A simple calculation shows that the average size of a token in Table 2.32 is
about 9 bits. In stage 2, each 8-bit byte will be replaced, on the average, by a 9-bit
token, resulting in an expansion factor of 9/8 = 1.125 or 12.5%.

2.30: The decompressor will interpret the input data as “111110 0110 11000 0. . . ”,
which is the string “XRP. . . ”.

2.31: A typical fax machine scans lines that are about 8.2 inches wide (≈ 208 mm).
A blank scan line thus produces 1,664 consecutive white pels.

2.32: These codes are needed for cases such as example 4, where the run length
is 64, 128 or any length for which a make-up code has been assigned.

2.33: There may be fax machines (now or in the future) built for wider paper, so
the Group 3 code was designed to accommodate them.

2.34: Each scan line starts with a white pel, so when the decoder inputs the next
code it knows whether it is for a run of white or black pels. This is why the codes
of Table 2.38 have to satisfy the prefix property in each column but not between
the columns.

Answers to Exercises 985

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[7 11 6 8 9] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[11 9 8 6] 17+14 24 14 25 20 6 17 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 9 8 6] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[9 6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[6 8 5] 20+24 31 24 5 25 20 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 8 5] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[8 5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[5 4] 25+31 44 31 4 5 25 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3 4] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[4 3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[3] 56+44 56 44 3 4 5 3 4 6 5 7 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14
[2] 100 2 2 3 4 5 3 4 6 5 7 6 7

Figure Ans.10: Sifting the Heap.

986 Answers to Exercises

5 9 11 13

17 20
250

1

1
1

1

1
1

0

0
0

0

5

9 11

13 17 20 25

9

1113

17 2025

13 14

25 17 20

11

17 14

25 20

13

17 24

25 20

14

20 24

25

17

24 25

31

20

25 31

24

31 44

25

44

31

(a)

(b)

Figure Ans.11: (a) Heaps. (b) Huffman Code-Tree.

Answers to Exercises 987

Initial tree

(a). Input: s. Output: ‘s’.
esc s1

(b). Input: i. Output: 0‘i’.
esc i1 1 s1

esc
0

1
s1esc

0

s1
0

i1esc
0

1

1
1

(c). Input: r. Output: 00‘r’.
esc r1 1 i1 2 s1 →
esc r1 1 i1 s1 2

s1
0

i1
0

1

1
2

1
r1esc

0

1

s1
0

i1
0

1

1
2

1
r1esc

0

1

(d). Input: W. Output: 100‘W’.
esc W1 1 r1 2 i1 s1 3 →
esc W1 1 r1 s1 i1 2 2

W1

s1
0

i1
0

1

1
3

1
r1

0

2

esc
0

1

1

W1

s1

0

i1
0

1

1

2

1
r1

0

2

esc
0

1

1

Figure Ans.12: Exercise 2.28. Part I.

988 Answers to Exercises

W1

s2

0

i1
0

1

1

3

1
r1

0

2

esc
0

1

1

s2

W1

0

i1
0

1

1

3

1
r1

0

2

esc
0

1

1

(e). Input: s. Output: 10.
esc W1 1 r1 s2 i1 2 3 →
esc W1 1 r1 i1 s2 2 3

s2

W1

0

i2
0

1

1

4

1
r1

0

2

esc
0

1

1

(f). Input: i. Output: 10.
esc W1 1 r1 i2 s2 2 4

s2

W1

0

i2
0

1

1

4

1
r1

0

3

0

2

1

d1esc
0

1

s2

W1

0

i2
0

1

1

4

1
r1

0

3

0

2

1

d1esc
0

1

(g). Input: d. Output: 000‘d’.
esc d1 1 W1 2 r1 i2 s2 3 4 →
esc d1 1 W1 r1 2 i2 s2 3 4

Figure Ans.12: Exercise 2.28. Part II.

Answers to Exercises 989

s2W2

0

i2
0

1

1

4

1

r1

0

4

0

2

1

d1esc
0

1

1

s2

W2

0

i2
0

1

1

4

1
r1

0

4

0

3

1

d1esc
0

1

1

(h). Input: W. Output: 011.
esc d1 1 W2 r1 3 i2 s2 4 4 →
esc d1 1 r1 W2 2 i2 s2 4 4

s2W2

0

i3
0

1

1

5

1

r1

0

4

0

2

1

d1esc
0

1

1

s2W2

0

i3
0

1

1

5

1

r1

0

4

0

2

1

d1esc
0

1

1

(i). Input: i. Output: 10.
esc d1 1 r1 W2 2 i3 s2 4 5 →
esc d1 1 r1 W2 2 s2 i3 4 5

Figure Ans.12: Exercise 2.28. Part III.

990 Answers to Exercises

s3W2

0

i3
0

1

1

6

1

r1

0

4

0

2

1

d1esc
0

1

1

(j). Input: s. Output: 10.
esc d1 1 r1 W2 2 s3 i3 4 6

s3W3

0

i3
0

1

1

6

1

r1

0

5

0

2

1

d1esc
0

1

1

s3W3

0

i3
0

1

1

6

1

r1

0

5

0

2

1

d1esc
0

1

1

(k). Input: W. Output: 00.
esc d1 1 r1 W3 2 s3 i3 5 6 →
esc d1 1 r1 2 W3 s3 i3 5 6

Figure Ans.12: Exercise 2.28. Part IV.

Answers to Exercises 991

2.35: The code of a run length of one white pel is 000111, and that of one black
pel is 010. Two consecutive pels of different colors are thus coded into 9 bits. Since
the uncoded data requires just two bits (01 or 10), the compression ratio is 9/2=4.5
(the compressed stream is 4.5 times longer than the uncompressed one; a large
expansion).

2.36: Figure Ans.13 shows the modes and the actual code generated from the two
lines.

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
vertical mode horizontal mode pass vertical mode horizontal mode. . .

-1 0 3 white 4 black code +2 -2 4 white 7 black

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
010 1 001 1000 011 0001 000011 000010 001 1011 00011

Figure Ans.13: Two-Dimensional Coding Example.

2.37: Table Ans.14 shows the steps of encoding the string a2a2a2a2. Because of
the high probability of a2 the low and high variables start at very different values
and approach each other slowly.

a2 0.0 + (1.0 − 0.0) × 0.023162=0.023162
0.0 + (1.0 − 0.0) × 0.998162=0.998162

a2 0.023162 + .975 × 0.023162=0.04574495
0.023162 + .975 × 0.998162=0.99636995

a2 0.04574495 + 0.950625 × 0.023162=0.06776322625
0.04574495 + 0.950625 × 0.998162=0.99462270125

a2 0.06776322625 + 0.926859375 × 0.023162=0.08923124309375
0.06776322625 + 0.926859375 × 0.998162=0.99291913371875

Table Ans.14: Encoding the String a2a2a2a2.

2.38: An argument similar to the one in the previous exercise shows that there are
two ways of writing this number. It can be written either as 0.1000. . . or 0.0111. . . .

2.39: In practice, the eof symbol has to be included in the original table of fre-
quencies and probabilities. This symbol is the last to be encoded and the decoder
stops when it detects an eof.

992 Answers to Exercises

2.40: The encoding steps are simple (see first example on page 101). We start
with the interval [0, 1). The first symbol a2 reduces the interval to [0.4, 0.9). The
second one, to [0.6, 0.85), the third one to [0.7, 0.825) and the eof symbol, to
[0.8125, 0.8250). The approximate binary values of the last interval are 0.1101000000
and 0.1101001100, so we select the 7-bit number 1101000 as our code.

The probability of the string “a2a2a2eof” is (0.5)3 × 0.1 = 0.0125, but since
− log2 0.125 ≈ 6.322 it follows that the practical minimum code size is 7 bits.

2.41: Perhaps the simplest way is to calculate a set of Huffman codes for the
symbols, using their probabilities. This converts each symbol to a binary string, so
the input stream can be encoded by the QM-coder. After the compressed stream
is decoded by the QM-decoder, an extra step is needed, to convert the resulting
binary strings back to the original symbols.

2.42: The results are shown in Tables Ans.15 and Ans.16. When all symbols are
LPS, the output C always points at the bottom A(1 − Qe) of the upper (LPS)
subinterval. When the symbols are MPS, the output always points at the bottom
of the lower (MPS) subinterval, i.e., 0.

2.43: If the current input bit is an LPS, A is shrunk to Qe, which is always 0.5
or less, so A always has to be renormalized in such a case.

2.44: The results are shown in Tables Ans.17 and Ans.18 (compare with the
answer to exercise 2.42).

2.45: The four decoding steps are as follows:

Step 1: C = 0.981, A = 1, the dividing line is A(1 − Qe) = 1(1 − 0.1) = 0.9, so
the LPS and MPS subintervals are [0, 0.9) and [0.9, 1). Since C points to the upper
subinterval, an LPS is decoded. The new C is 0.981 − 1(1 − 0.1) = 0.081 and the
new A is 1×0.1 = 0.1.
Step 2: C = 0.081, A = 0.1, the dividing line is A(1−Qe) = 0.1(1− 0.1) = 0.09, so
the LPS and MPS subintervals are [0, 0.09) and [0.09, 0.1), and an MPS is decoded.
C is unchanged and the new A is 0.1(1 − 0.1) = 0.09.
Step 3: C = 0.081, A = 0.09, the dividing line is A(1−Qe) = 0.09(1−0.1) = 0.0081,
so the LPS and MPS subintervals are [0, 0.0081) and [0.0081, 0.09), and an LPS is
decoded. The new C is 0.081−0.09(1−0.1) = 0 and the new A is 0.09×0.1 = 0.009.
Step 4: C = 0, A = 0.009, the dividing line is A(1−Qe) = 0.009(1−0.1) = 0.00081,
so the LPS and MPS subintervals are [0, 0.00081) and [0.00081, 0.009), and an MPS
is decoded. C is unchanged and the new A is 0.009(1 − 0.1) = 0.00081.

2.46: In practice, an encoder may encode texts other than English, such as a
foreign language or the source code of a computer program. Even in English there
are some examples of a q not followed by a u, such as in this sentence. (The author
has noticed that science-fiction writers tend to use non-English sounding words,
such as Qaal, to name characters in their works.)

Answers to Exercises 993

Symbol C A

Initially 0 1
s1 (LPS) 0 + 1(1 − 0.5) = 0.5 1×0.5 = 0.5
s2 (LPS) 0.5 + 0.5(1 − 0.5) = 0.75 0.5×0.5 = 0.25
s3 (LPS) 0.75 + 0.25(1 − 0.5) = 0.875 0.25×0.5 = 0.125
s4 (LPS) 0.875 + 0.125(1 − 0.5) = 0.9375 0.125×0.5 = 0.0625

Table Ans.15: Encoding Four Symbols With Qe = 0.5.

Symbol C A

Initially 0 1
s1 (MPS) 0 1×(1 − 0.1) = 0.9
s2 (MPS) 0 0.9×(1 − 0.1) = 0.81
s3 (MPS) 0 0.81×(1 − 0.1) = 0.729
s4 (MPS) 0 0.729×(1 − 0.1) = 0.6561

Table Ans.16: Encoding Four Symbols With Qe = 0.1.

Symbol C A Renor. A Renor. C

Initially 0 1
s1 (LPS) 0 + 1 − 0.5 = 0.5 0.5 1 1
s2 (LPS) 1 + 1 − 0.5 = 1.5 0.5 1 3
s3 (LPS) 3 + 1 − 0.5 = 3.5 0.5 1 7
s4 (LPS) 7 + 1 − 0.5 = 6.5 0.5 1 13

Table Ans.17: Renormalization Added to Table Ans.15.

Symbol C A Renor. A Renor. C

Initially 0 1
s1 (MPS) 0 1 − 0.1 = 0.9
s2 (MPS) 0 0.9 − 0.1 = 0.8
s3 (MPS) 0 0.8 − 0.1 = 0.7 1.4 0
s4 (MPS) 0 1.4 − 0.1 = 1.3

Table Ans.18: Renormalization Added to Table Ans.16.

994 Answers to Exercises

2.47: 2562 = 65, 536, a manageable number, but 2563 = 16, 777, 216, perhaps too
big for a practical implementation, unless a sophisticated data structure is used, or
unless the encoder gets rid of older data from time to time.

2.48: A color or gray-scale image with 4-bit pixels. Each symbol is a pixel, and
there are 16 different ones.

2.49: An object file generated by a compiler or an assembler normally has several
distinct parts including the machine instructions, symbol table, relocation bits, and
constants. Such parts may have different bit distributions.

2.50: The alphabet has to be extended, in such a case, to include one more symbol.
If the original alphabet consisted of all the possible 256 8-bit bytes, it should be
extended to 9-bit symbols, and should include 257 values.

2.51: Table Ans.19 shows the groups generated in both cases and makes it clear
why these particular probabilities were assigned.

Context f p
abc→x 10 10/11
Esc 1 1/11

Context f p
abc→ a1 1 1/20

→ a2 1 1/20
→ a3 1 1/20
→ a4 1 1/20
→ a5 1 1/20
→ a6 1 1/20
→ a7 1 1/20
→ a8 1 1/20
→ a9 1 1/20
→ a10 1 1/20

Esc 10 10/20
Total 20

Table Ans.19: Stable vs. Variable Data.

2.52: The d is added to the order-0 contexts with frequency 1. The escape fre-
quency should be incremented from 5 to 6, bringing the total frequencies from 19
up to 21. The probability assigned to the new d is therefore 1/21, and that assigned
to the escape is 6/21. All other probabilities are reduced from x/19 to x/21.

2.53: The new d would require switching from order-2 to order-0, sending two
escapes that take 1 and 1.32 bits. The d is now found in order-0 with probability
1/21, so it is encoded in 4.39 bits. The total number of bits required to encode the
second d is thus 1 + 1.32 + 4.39 = 6.71, still greater than 5.

Answers to Exercises 995

2.54: The first three cases don’t change. They still code a symbol with 1, 1.32, and
6.57 bits, which is less than the 8 bits required for a 256-symbol alphabet without
compression. Case 4 is different since the d is now encoded with a probability of
1/256, producing 8 instead of 4.8 bits. The total number of bits required to encode
the d in case 4 is now 1 + 1.32 + 1.93 + 8 = 12.25.

2.55: The final trie is shown in Figure Ans.20.

a,4 s,6

s,2 a,2 s,3

s,2 a,2

n,1

n,1

n,1

i,2

i,1

i,1

s,1

s,1

s,1

i,1

i,1m,1

m,1

m,1

14. ‘a’

a,1

a,1

s,1

Figure Ans.20: Final Trie of “assanissimassa”.

2.56: This is, of course

1 − Pe(bt+1 = 1|bt
1) = 1 − b + 1/2

a + b + 1
=

a + 1/2
a + b + 1

.

2.57: For the first string the single bit has a suffix of 00, so the probability of leaf
00 is Pe(1, 0) = 1/2. This is equal to the probability of string 0 without any suffix.
For the second string each of the two zero bits has suffix 00, so the probability of
leaf 00 is Pe(2, 0) = 3/8 = 0.375. This is greater than the probability 0.25 of string
00 without any suffix. Similarly, the probabilities of the remaining three strings are
Pe(3, 0) = 5/8 ≈ 0.625, Pe(4, 0) = 35/128 ≈ 0.273, and Pe(5, 0) = 63/256 ≈ 0.246.
As the strings get longer, their probabilities get smaller but they are greater than the
probabilities without the suffix. Having a suffix of 00 thus increases the probability
of having strings of zeros following it.

2.58: This is straightforward and is shown in Figure 2.77b.

2.59: The four trees are shown in Figure Ans.21a–d. The weighted probability
that the next bit will be a zero given that three zeros have just been generated is
0.5. The weighted probability to have two consecutive zeros given the suffix 000 is
0.375, higher than the 0.25 without the suffix.

996 Answers to Exercises

(a)

1

1

1

0 (1,0)

(1,0)

Pw=.5
Pe=.5

.5

.5
(1,0)
.5
.5

(1,0)
.5
.5

(b)

1

1

1

0 (2,0)

(2,0)

Pw=.375
Pe=.375

.375

.375
(2,0)
.375
.375

(2,0)
.375
.375

(c)

1

1

1

0

0

(1,0)

(1,0)

Pw=.5
Pe=.5

.5

.5
(1,0)
.5
.5

(1,0)
.5
.5

(d)

1 0

0 0

00

(0,1)

(0,2)

Pw=.3125
Pe=.375

.5

.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

(0,1)
.5
.5

000|0 000|00

000|11000|1

Figure Ans.21: Context Trees For 000|0, 000|00, 000|1, and 000|11.

3.1: The size of the output stream is N [48 − 28P] = N [48 − 25.2] = 22.8N .
The size of the input stream is, as before, 40N . The compression factor is thus
40/22.8 ≈ 1.75.

3.2: The decoder doesn’t know but it does not need to know. The decoder simply
reads tokens and uses each offset to find a string of text without having to know
whether the string was a first or a last match.

3.3: The next step matches the space and encodes the string “We”.

sirWsid|WeastmanWeasilyW ⇒ (4,1,“e”)
sirWsidWe|astmanWeasilyWte ⇒ (0,0,“a”)

and the next one matches nothing and encodes the “a”.

3.4: The first two characters CA at positions 17–18 are a repeat of the CA at
positions 9–10, so they will be encoded as a string of length 2 at offset 18− 10 = 8.

Answers to Exercises 997

The next two characters AC at positions 19–20 are a repeat of the string at positions
8–9, so they will be encoded as a string of length 2 at offset 20 − 9 = 11.

3.5: The decoder interprets the first 1 of the end marker as the start of a token.
The second 1 is interpreted as the prefix of a 7-bit offset. The next 7 bits are 0 and
they identify the end-marker as such, since a “normal” offset cannot be zero.

3.6: This is straightforward. The remaining steps are shown in Table Ans.22

Dictionary Token Dictionary Token
15 “Wt” (4, “t”) 21 “Wsi” (19,“i”)
16 “e” (0, “e”) 22 “c” (0, “c”)
17 “as” (8, “s”) 23 “k” (0, “k”)
18 “es” (16,“s”) 24 “Wse” (19,“e”)
19 “Ws” (4, “s”) 25 “al” (8, “l”)
20 “ea” (4, “a”) 26 “s(eof)” (1, “(eof)”)

Table Ans.22: Next 12 Encoding Steps in the LZ78 Example.

3.7: Table Ans.23 shows the last three steps.

Hash
p_src 3 chars index P Output Binary output

11 “h t” 7 any→7 h 01101000
12 “Wth” 5 5→5 4,7 0000|0011|00000111
16 “ws” ws 01110111|01110011

Table Ans.23: Last Steps of Encoding “that thatch thaws”.

The final compressed stream consists of 1 control word followed by 11 items (9
literals and 2 copy items)
0000010010000000|01110100|01101000|01100001|01110100|00100000|0000|0011
|00000101|01100011|01101000|0000|0011|00000111|01110111|01110011.

3.8: Imagine a compression utility for a personal computer that maintains all the
files (or groups of files) on the hard disk in compressed form, to save space. Such a
utility should be transparent to the user; it should automatically decompress a file
every time it is opened and automatically compress it when it is being closed. In
order to be transparent, such a utility should be fast; with compression ratio being
only a secondary feature.

998 Answers to Exercises

in new in new
I dict? entry output I dict? entry output

a Y s N 263-s 115 (s)
al N 256-al 97 (a) W Y
l Y Wa N 264-Wa 32 (W)
lf N 257-lf 108 (l) a Y
f Y al Y
f N 258-f 102 (f) alf N 265-alf 256 (al)
W Y f Y
We N 259-We 32 (w) fa N 266-fa 102 (f)
e Y a Y
ea N 260-ea 101 (e) al Y
a Y alf Y
at N 261-at 97 (a) alfa N 267-alfa 265 (alf)
t Y a Y
ts N 262-ts 116 (t) a,eof N 97 (a)
s Y

Table Ans.24: LZW Encoding of “alf eats alfalfa”.

3.9: Table Ans.24 summarizes the steps. The output emitted by the encoder is

97 (a), 108 (l), 102 (f), 32 (W), 101 (e), 97 (a), 116 (t), 115 (s), 32 (W), 256 (al),
102 (f), 265 (alf), 97 (a),

and the following new entries are added to the dictionary

(256: al), (257: lf), (258: f), (259: We), (260: ea), (261: at), (262: ts),
(263: s), (264: Wa), (265: alf), (266: fa), (267: alfa).

3.10: The encoder inputs the first a into I, searches and finds a in the dictionary.
It inputs the next a but finds that Ix, which is now aa, is not in the dictionary.
The encoder thus adds string aa to the dictionary as entry 256 and outputs the
token 97 (a). Variable I is initialized to the second a. The third a is input, so Ix is
the string aa, which is now in the dictionary. I becomes this string, and the fourth
a is input. Ix is now aaa which is not in the dictionary. The encoder thus adds
string aaa to the dictionary as entry 257 and outputs 256 (aa). I is initialized to
the fourth a. Continuing this process is straightforward.

The result is that strings aa, aaa, aaaa,. . . are added to the dictionary as
entries 256, 257, 258,. . . , and the output is

97 (a), 256 (aa), 257 (aaa), 258 (aaaa),. . .

The output consists of pointers pointing to longer and longer strings of as. The first
k pointers thus point at strings whose total length is 1 + 2 + · · · + k = (k + k2)/2.

Assuming an input stream that consists of one million as, we can find the size
of the compressed output stream by solving the quadratic equation (k + k2)/2 =
1000000 for the unknown k. The solution is k ≈ 1414. The original, 8-million bit
input is thus compressed into 1414 pointers, each at least 9-bit (and in practice,

Answers to Exercises 999

probably 16-bit) long. The compression factor is thus either 8M/(1414×9) ≈ 628.6
or 8M/(1414 × 16) ≈ 353.6.

This is an impressive result but such input streams are rare (notice that this
particular input can best be compressed by generating an output stream containing
just “1000000 a”, and without using LZW).

3.11: We simply follow the decoding steps described in the text. The results are:
1. Input 97. This is in the dictionary so set I=“a” and output “a”. String “ax”
needs to be saved in the dictionary but x is still unknown..
2. Input 108. This is in the dictionary so set J=“l” and output “l”. Save “al” in
entry 256. Set I=“l”.
3. Input 102. This is in the dictionary so set J=“f” and output “f”. Save “lf” in
entry 257. Set I=“f”.
4. Input 32. This is in the dictionary so set J=“W” and output “W”. Save “f ” in
entry 258. Set I=“W”.
5. Input 101. This is in the dictionary so set J=“e” and output “e”. Save “We” in
entry 259. Set I=“e”.
6. Input 97. This is in the dictionary so set J=“a” and output “a”. Save “ea” in
entry 260. Set I=“a”.
7. Input 116. This is in the dictionary so set J=“t” and output “t”. Save “at” in
entry 261. Set I=“t”.
8. Input 115. This is in the dictionary so set J=“s” and output “s”. Save “ts” in
entry 262. Set I=“t”.
9. Input 32. This is in the dictionary so set J=“W” and output “W”. Save “s ” in
entry 263. Set I=“W”.
10. Input 256. This is in the dictionary so set J=“al” and output “al”. Save “Wa”
in entry 264. Set I=“al”.
11. Input 102. This is in the dictionary so set J=“f” and output “f”. Save “alf”
in entry 265. Set I=“f”.
12. Input 265. This has just been saved in the dictionary so set J=“alf” and
output “alf”. Save “fa” in dictionary entry 266. Set I=“alf”.
13. Input 97. This is in the dictionary so set J=“a” and output “a”. Save “alfa”
in entry 267 (even though it will never be used). Set I=“a”.
14. Read eof. Stop.

3.12: We assume that the dictionary is initialized to just the two entries (1: a)
and (2: b). The encoder outputs

1 (a), 2 (b), 3 (ab), 5(aba), 4(ba), 7 (bab), 6 (abab), 9 (ababa), 8 (baba),. . .

and adds the new entries (3: ab), (4: ba), (5: aba), (6: abab), (7: bab), (8: baba),
(9: ababa), (10: ababab), (11: babab),. . . to the dictionary. This regular behavior
can be analyzed and the kth output pointer and dictionary entry predicted, but the
effort is probably not worth it.

3.13: The answer to exercise 3.10 shows the relation between the size of the
compressed file and the size of the largest dictionary string for the “worst case”

1000 Answers to Exercises

situation (input that creates the longest strings). For a 1Mbyte input stream, there
will be 1,414 strings in the dictionary, the largest of which is 1,414 symbols long.

3.14: This is straightforward (Table Ans.25) but not very efficient since only one
two-symbol dictionary phrase is used.

Add to
Step Input Output S dict. S’

swiss miss

1 s 115 s — s
2 w 119 w 256-sw w
3 i 105 i 257-wi i
4 s 115 s 258-is s
5 s 115 s 259-ss s
6 - 32 W 260-s W
7 m 109 m 261-Wm m
8 is 258 is 262-mis is
9 s 115 s 263-iss s

Table Ans.25: LZMW Compression of “swiss miss”.

3.15: Table Ans.26 shows all the steps. In spite of the short input, the result is
quite good (13 codes to compress 18-symbols) because the input contains concen-
trations of as and bs.

Add to
Step Input Output S dict. S’

yabbadabbadabbadoo

1 y 121 y — y
2 a 97 a 256-ya a
3 b 98 b 257-ab b
4 b 98 b 258-bb b
5 a 97 a 259-ba a
6 d 100 a 260-ad a
7 ab 257 ab 261-dab ab
8 ba 259 ba 262-abba ba
9 dab 261 dab 263-badab dab
10 ba 259 ba 264-dabba ba
11 d 100 d 265-bad d
12 o 111 o 266-do o
13 o 111 o 267-o o

Table Ans.26: LZMW Compression of “yabbadabbadabbadoo”.

Answers to Exercises 1001

3.16: 1. The encoder starts by shifting the first two symbols xy to the search
buffer, outputting them as literals and initializing all locations of the index table to
the null pointer.
2. The current symbol is a (the first a) and the context is xy. It is hashed to, say,
5, but location 5 of the index table contains a null pointer, so P is null. Location
5 is set to point to the first a, which is then output as a literal. The data in the
encoder’s buffer is shifted to the left.
3. The current symbol is the second a and the context is ya. It is hashed to, say,
1, but location 1 of the index table contains a null pointer, so P is null. Location 1
is set to point to the second a, which is then output as a literal. The data in the
encoder’s buffer is shifted to the left.
4. The current symbol is the third a and the context is aa. It is hashed to, say,
2, but location 2 of the index table contains a null pointer, so P is null. Location
2 is set to point to the third a, which is then output as a literal. The data in the
encoder’s buffer is shifted to the left.
5. The current symbol is the fourth a and the context is aa. We know from step
4 that it is hashed to 2, and location 2 of the index table points to the third a.
Location 2 is set to point to the fourth a, and the encoder tries to match the string
starting with the third a to the string starting with the fourth a. Assuming that
the look-ahead buffer is full of as, the match length L will be the size of that buffer.
The encoded value of L will be written to the compressed stream, and the data in
the buffer shifted L positions to the left.
6. If the original input stream is long, more a’s will be shifted into the look-ahead
buffer, and this step will also result in a match of length L. If only n as remain in
the input stream, they will be matched, and the encoded value of n output.

The compressed stream will consist of the three literals x, y, and a, followed
by (perhaps several values of) L, and possibly ending with a smaller value.

3.17: T percent of the compressed stream is made up of literals, some appearing
consecutively (and thus getting the flag “1” for two literals, half a bit per literal)
and others with a match length following them (and thus getting the flag “01”, one
bit for the literal). We assume that two thirds of the literals appear consecutively
and one third are followed by match lengths. The total number of flag bits created
for literals is thus

2
3
T × 0.5 +

1
3
T × 1.

A similar argument for the match lengths yields

2
3
(1 − T) × 2 +

1
3
(1 − T) × 1

for the total number of the flag bits. We now write the equation

2
3
T × 0.5 +

1
3
T × 1 +

2
3
(1 − T) × 2 +

1
3
(1 − T) × 1 = 1,

1002 Answers to Exercises

which is solved to yield T = 2/3. This means that if two thirds of the items in the
compressed stream are literals, there would be 1 flag bit per item on the average.
More literals would result in fewer flag bits.

3.18: The first three ones indicate six literals. The following 01 indicates a literal
(b) followed by a match length (of 3). The 10 is the code of match length 3, and
the last 1 indicates two more literals (x and y).

4.1: No. The definition of redundancy (Section 2.1) tells us that an image where
each color appears with the same frequency has no redundancy (statistically), yet
it is not necessarily random and may even be interesting and/or useful.

4.2: Figure Ans.27 shows two 32×32 matrices. The first one, a, with random (and
therefore decorrelated) values and the second one, b, is its inverse (and therefore
with correlated values). Their covariance matrices are also shown and it is obvious
that matrix cov(a) is close to diagonal, whereas matrix cov(b) is far from diagonal.
The Matlab code for this figure is also listed.

4.3: The results are shown in Table Ans.28 together with the Matlab code used
to calculate it.

43210 Gray 43210 Gray 43210 Gray 43210 Gray
00000 00000 01000 01100 10000 11000 11000 10100
00001 00001 01001 01101 10001 11001 11001 10101
00010 00011 01010 01111 10010 11011 11010 10111
00011 00010 01011 01110 10011 11010 11011 10110
00100 00110 01100 01010 10100 11110 11100 10010
00101 00111 01101 01011 10101 11111 11101 10011
00110 00101 01110 01001 10110 11101 11110 10001
00111 00100 01111 01000 10111 11100 11111 10000

Table Ans.28: First 32 Binary and Gray Codes.

a=linspace(0,31,32); b=bitshift(a,-1);
b=bitxor(a,b); dec2bin(b)

Code For Table Ans.28.

4.4: One feature is the regular way in which each of the five code bits alternates
periodically between 0 and 1. It is easy to write a program that will set all five bits
to 0, will flip the rightmost bit after two codes have been calculated, and will flip
any of the other four code bits in the middle of the period of its immediate neighbor
on the right.

Another feature is the fact that the second half of the table is a mirror image
of the first half, but with the most significant bit set to one. After the first half

Answers to Exercises 1003

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

a b

cov(a) cov(b)

Figure Ans.27: Covariance Matrices of Correlated and Decorrelated Values

a=rand(32); b=inv(a);
figure(1), imagesc(a), colormap(gray); axis square
figure(2), imagesc(b), colormap(gray); axis square
figure(3), imagesc(cov(a)), colormap(gray); axis square
figure(4), imagesc(cov(b)), colormap(gray); axis square

Code for Figure Ans.27.

of the table has been computed, using any method, this symmetry can be used to
quickly calculate the second half.

4.5: Figure Ans.29 is an angular code wheel representation of the 4 and 6-bit RGC
codes (part a) and the 4 and 6-bit binary codes (part b). The individual bitplanes

1004 Answers to Exercises

are shown as rings, with the most significant bits as the innermost ring. It is easy
to see that the maximum angular frequency of the RGC is half that of the binary
code.

(a)

(b)

Figure Ans.29: Angular Code Wheels of RGC and Binary Codes.

4.6: No. If pixel values are in the range [0, 255], a difference (Pi − Qi) can be at
most 255. The worst case is where all the differences are 255. It is easy to see that
such a case yields an RMSE of 255.

4.7: The code of Figure Ans.30 yields the coordinates of the rotated points

(7.071, 0), (9.19, 0.7071), (17.9, 0.78), (33.9, 1.41), (43.13,−2.12),

(notice how all the y coordinates are small numbers) and shows that the cross-
correlation drops from 1729.72 before the rotation to −23.0846 after it. A significant
reduction!

4.8: The eight values in the top row are close (the distances between them are
either 2 or 3). Each of the other rows is obtained as a right-circular shift of the
preceding row.

Answers to Exercises 1005

p={{5,5},{6, 7},{12.1,13.2},{23,25},{32,29}};
rot={{0.7071,-0.7071},{0.7071,0.7071}};
Sum[p[[i,1]]p[[i,2]], {i,5}]
q=p.rot
Sum[q[[i,1]]q[[i,2]], {i,5}]

Figure Ans.30: Code For Rotating Five Points.

4.9: It is obvious that such a block can be represented as a linear combination of
the patterns in the leftmost column of Figure 4.21. The actual calculation yields
the eight weights 4, 0.72, 0, 0.85, 0, 1.27, 0, and 3.62 for the patterns of this column.
The other 56 weights are zero or very close to zero.

4.10: The Mathematica code below produces the eight coefficients

140,−71, 0,−7, 0,−2, 0, 0.

After clearing the last two nonzero weights (−7 and −2) and applying the one-
dimensional IDCT, Equation(4.8),
DCT[i_]:={(1/2)Cr[i]Sum[Pixl[[x+1]]Cos[(2x+1)i Pi/16], {x,0,7,1}]};
IDCT[x_]:={(1/2)Sum[Cr[i]G[[i+1]]Cos[(2x+1)i Pi/16], {i,0,7,1}]};

to the sequence 140,−71, 0, 0, 0, 0, 0, 0, we get 15, 20, 30, 43, 56, 69, 79, and 84. These
are not identical to the original values, but the maximum difference is only 4.

4.11: Figure Ans.31 shows the results and the Matlab code. Notice that the same
code can also be used to calculate and display the DCT basis images.

4.12: Figure Ans.32 shows the 64 basis images and the Matlab code to calculate
and display them. Each basis image is an 8×8 matrix.

4.13: A4 is the 4×4 matrix

A4 =




h0(0/4) h0(1/4) h0(2/4) h0(3/4)
h1(0/4) h1(1/4) h1(2/4) h1(3/4)
h2(0/4) h2(1/4) h2(2/4) h2(3/4)
h3(0/4) h3(1/4) h3(2/4) h3(3/4)


 =

1√
4




1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2


 .

Similarly, A8 is the matrix

A8 =
1√
8




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2




1006 Answers to Exercises

N=8;
m=[1:N]’*ones(1,N); n=m’;
% can also use cos instead of sin
%A=sqrt(2/N)*cos(pi*(2*(n-1)+1).*(m-1)/(2*N));
A=sqrt(2/N)*sin(pi*(2*(n-1)+1).*(m-1)/(2*N));
A(1,:)=sqrt(1/N);
C=A’;
for row=1:N
for col=1:N
B=C(:,row)*C(:,col).’; %tensor product
subplot(N,N,(row-1)*N+col)
imagesc(B)
drawnow

end
end

Figure Ans.31: The 64 Basis Images of the Two-Dimensional DST.

Answers to Exercises 1007

M=3; N=2^M; H=[1 1; 1 -1]/sqrt(2);
for m=1:(M-1) % recursion
H=[H H; H -H]/sqrt(2);

end
A=H’;
map=[1 5 7 3 4 8 6 2]; % 1:N
for n=1:N, B(:,n)=A(:,map(n)); end;
A=B;
sc=1/(max(abs(A(:))).^2); % scale factor
for row=1:N
for col=1:N
BI=A(:,row)*A(:,col).’; % tensor product
subplot(N,N,(row-1)*N+col)
oe=round(BI*sc); % results in -1, +1
imagesc(oe), colormap([1 1 1; .5 .5 .5; 0 0 0])
drawnow

end
end

Figure Ans.32: The 8×8 WHT Basis Images and Matlab Code.

1008 Answers to Exercises

4.14: The average of vector w(i) is zero, so Equation (4.17) yields

(
W·WT

)
jj

=
k∑

i=1

w
(i)
j w

(i)
j =

k∑
i=1

(
w

(i)
j − 0

)2

=
k∑

i=1

(
c
(j)
i − 0

)2

= k Variance(c(j)).

4.15: The arguments of the cosine functions used by the DCT are of the form
(2x + 1)iπ/16, where i and x are integers in the range [0, 7]. Such an argument
can be written in the form nπ/16, where n is an integer in the range [0, 15×
7]. Since the cosine function is periodic, it satisfies cos(32π/16) = cos(0π/16),
cos(33π/16) = cos(π/16), and so on. As a result, only the 32 values cos(nπ/16) for
n = 0, 1, 2, . . . , 31 are needed. The author is indebted to V. Saravanan for pointing
out this feature of the DCT.

4.16: When the following MathematicaTM code is applied to Table 4.53b it creates
a data unit with 64 pixels, all having the value 140, which is the average value of
the pixels in the original data unit 4.50.

Cr[i_]:=If[i==0, 1/Sqrt[2], 1];
IDCT[x_,y_]:={(1/4)Sum[Cr[i]Cr[j]G[[i+1,j+1]]Quant[[i+1,j+1]]*
Cos[(2x+1)i Pi/16]Cos[(2y+1)j Pi/16], {i,0,7,1}, {j,0,7,1}]};

4.17: Selecting R = 1 has produced the quantization coefficients of Table Ans.33a
and the quantized data unit of Table Ans.33b. This table has 18 nonzero coefficients
which, when used to reconstruct the original data unit, produce Table Ans.34, only
a small improvement over Table 4.51.

4.18: The zigzag sequence is 1118, 2, 0,−2, 0, . . . , 0︸ ︷︷ ︸
13

,−1, 0, . . . (there are only four

nonzero coefficients).

4.19: Perhaps the simplest way is to manually figure out the zigzag path and
to record it in an array zz of structures, where each structure contains a pair of
coordinates for the path as shown, e.g., in Figure Ans.35.

If the two components of a structure are zz.r and zz.c, then the zig-zag
traversal can be done by a loop of the form :

for (i=0; i<64; i++){
row:=zz[i].r; col:=zz[i].c
...data_unit[row][col]...}

4.20: It is located in row 3 column 5, so it is encoded as 1110|101.

4.21: Thirteen consecutive zeros precede this coefficient, so Z = 13. The coefficient
itself is found in Table 4.55 in row 1, column 0, so R = 1 and C = 0. Assuming
that the Huffman code in position (R,Z) = (1, 13) of Table 4.58 is 1110101, the
final code emitted for 1 is 1110101|0.

Answers to Exercises 1009

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14
8 9 10 11 12 13 14 15

1118. 3 2 -1 1 0 0 0
-1 0 1 1 1 0 0 0
-3 -2 0 -2 0 0 0 0
-1 -2 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 -1 1 0 0 0
0 0 0 1 0 0 0 0

(a) (b)

Table Ans.33: (a): The Quantization table 1 + (i + j) × 1. (b): Quantized
Coefficients Produced by (a).

139 139 138 139 139 138 139 140
140 140 140 139 139 139 139 140
142 141 140 140 140 139 139 140
142 141 140 140 140 140 139 139
142 141 140 140 140 140 140 139
140 140 140 140 139 139 139 141
140 140 140 140 139 139 140 140
139 140 141 140 139 138 139 140

Table Ans.34: Restored data unit of Table 4.50.

(0,0) (0,1) (1,0) (2,0) (1,1) (0,2) (0,3) (1,2)
(2,1) (3,0) (4,0) (3,1) (2,2) (1,3) (0,4) (0,5)
(1,4) (2,3) (3,2) (4,1) (5,0) (6,0) (5,1) (4,2)
(3,3) (2,4) (1,5) (0,6) (0,7) (1,6) (2,5) (3,4)
(4,3) (5,2) (6,1) (7,0) (7,1) (6,2) (5,3) (4,4)
(3,5) (2,6) (1,7) (2,7) (3,6) (4,5) (5,4) (6,3)
(7,2) (7,3) (6,4) (5,5) (4,6) (3,7) (4,7) (5,6)
(6,5) (7,4) (7,5) (6,6) (5,7) (6,7) (7,6) (7,7)

Figure Ans.35: Coordinates for the Zigzag Path.

4.22: This is shown by multiplying the largest four n-bit number, 11 . . . 1︸ ︷︷ ︸
n

by 4,

which is easily done by shifting it 2 positions to the left. The result is the n + 2-bit
number 11 . . . 1︸ ︷︷ ︸

n

00.

4.23: Simple growth rules make for a more natural progressive growth of the
image. They make it easier for a person watching the image develop on the screen
to decide if and when to stop the decoding process and accept or discard the image.

4.24: The only specification that depends on the particular bits assigned to the
two colors is Equation (4.19). All the other parts of JBIG are independent of the

1010 Answers to Exercises

bit assignment.

4.25: For the 16-bit template of Figure 4.89a the relative coordinates are

A1 = (3,−1), A2 = (−3,−1), A3 = (2,−2), A4 = (−2,−2).

For the 13-bit template of Figure 4.89b the relative coordinates of A1 are (3,−1).
For the 10-bit templates of Figure 4.89c,d the relative coordinates of A1 are (2,−1).

4.26: It produces better compression in cases where the text runs vertically.

4.27: Going back to step 1 we have the same points participate in the parti-
tion for each codebook entry (this happens because our points are concentrated in
four distinct regions, but in general a partition P

(k)
i may consist of different image

blocks in each iteration k). The distortions calculated in step 2 are summarized in
Table Ans.37. The average distortion D

(1)
i is

D(1) = (277+277+277+277+50+50+200+117+37+117+162+117)/12 = 163.17,

much smaller than the original 603.33. If step 3 indicates no convergence, more iter-
ations should follow (Exercise 4.28), reducing the average distortion and improving
the values of the four codebook entries.

4.28: Each new codebook entry C
(k)
i is calculated, in step 4 of iteration k, as

the average of the block images comprising partition P
(k−1)
i . In our example the

image blocks (points) are concentrated in four separate regions, so the partitions
calculated for iteration k = 1 are the same as those for k = 0. Another iteration, for
k = 2, will therefore compute the same partitions in its step 1 yielding, in step 3, an
average distortion D(2) that equals D(1). Step 3 will therefore indicate convergence.

4.29: It is 4−8 ≈ 0.000015 the area of the entire space.

4.30: Monitor the compression ratio and delete the dictionary and start afresh
each time compression performance drops below a certain threshold.

4.31: Here are steps 4 and 5. Step 4: Point (2, 0) is popped out of the GPP. The
pixel value at this position is 7. The best match for this point is with the dictionary
entry containing 7. The encoder outputs the pointer 7. The match does not have
any concave corners, so we push the point on the right of the matched block, (2, 1),
and the point below it, (3, 0), into the GPP. The GPP now contains points (2, 1),
(3, 0), (0, 2), and (1, 1). The dictionary is updated by appending to it (at location

18) the block 4
7 .

Step 5: Point (1, 1) is popped out of the GPP. The pixel value at this position
is 5. The best match for this point is with the dictionary entry containing 5. The
encoder outputs the pointer 5. The match does not have any concave corners, so

Answers to Exercises 1011

B1 B2

B3 B4

B5 C2

C1

C3

C4

B6

B7

B8

B9

B10

B11

B12

×

× ×

×

20

20

40

40

60

60

80

80

100

100

120

120

140

140

160

160

180

180

200

200

220

220

240

240

Figure Ans.36: Twelve Points and Four Codebook Entries C
(1)
i .

I: (46 − 32)2 + (41 − 32)2 = 277, (46 − 60)2 + (41 − 32)2 = 277,
(46 − 32)2 + (41 − 50)2 = 277, (46 − 60)2 + (41 − 50)2 = 277,

II: (65 − 60)2 + (145 − 150)2 = 50, (65 − 70)2 + (145 − 140)2 = 50,
III: (210 − 200)2 + (200 − 210)2 = 200,
IV: (206 − 200)2 + (41 − 32)2 = 117, (206 − 200)2 + (41 − 40)2 = 37,

(206 − 200)2 + (41 − 50)2 = 117, (206 − 215)2 + (41 − 50)2 = 162,
(206 − 215)2 + (41 − 35)2 = 117.

Table Ans.37: Twelve Distortions For k = 1.

1012 Answers to Exercises

we push the point to the right of the matched block, (1, 2), and the point below it,
(2, 1), into the GPP. The GPP contains points (1, 2), (2, 1), (3, 0), and (0, 2). The

dictionary is updated by appending to it (at locations 19, 20) the two blocks 2
5 and

4 5 .

4.32: It may simply be too long. When compressing text, each symbol is normally
1-byte long (2 bytes in Unicode). However, images with 24-bit pixels are very
common, and a 16-pixel block in such an image is 48-bytes long.

4.33: If the encoder uses a (2, 1, k) general unary code, then the value of k should
be included in the header.

4.34: The mean and standard deviation are p̄ = 115 and σ = 77.93, respectively.
The counts become n+ = n− = 8, and Equations (4.27) are solved to yield p+ = 193
and p− = 37. The original block is compressed to the 16 bits




1 0 1 1
1 0 0 1
1 1 0 1
0 0 0 0


 ,

and the two 8-bit values 37 and 193.

4.35: Table Ans.38 summarizes the results. Notice how a 1-pixel with a context
of 00 is assigned high probability after being seen 3 times.

Pixel Context Counts Probability New counts

5 0 10=2 1,1 1/2 2,1
6 1 00=0 1,3 3/4 1,4
7 0 11=3 1,1 1/2 2,1
8 1 10=2 2,1 1/3 2,2

Table Ans.38: Counts and Probabilities for Next four Pixels.

4.36: Such a thing is possible for the encoder but not for the decoder. A com-
pression method using “future” pixels in the context is useless because its output
would be impossible to decompress.

4.37: A 2nd order Markov model. In such a model the value of the current data
item depends on just two of its past neighbors, not necessarily the two immediate
ones.

Answers to Exercises 1013

4.38: The two previously seen neighbors of P=8 are A=1 and B=11. P is thus
in the central region, where all codes start with a zero, and L=1, H=11. The
computations are straightforward:

k = �log2(11 − 1 + 1)� = 3, a = 23+1 − 11 = 5, b = 2(11 − 23) = 6.

Table Ans.39 lists the five 3-bit codes and six 4-bit codes for the central region.
The code for 8 is thus 0|111.

The two previously seen neighbors of P=7 are A=2 and B=5. P is thus in the
right outer region, where all codes start with 11, and L=2, H=7. We are looking
for the code of 7− 5 = 2. Choosing m = 1 yields, from Table 4.112, the code 11|01.

The two previously seen neighbors of P=0 are A=3 and B=5. P is thus in the
left outer region, where all codes start with 10, and L=3, H=5. We are looking for
the code of 3 − 0 = 3. Choosing m = 1 yields, from Table 4.112, the code 10|100.

Pixel Region Pixel
P code code

1 0 0000
2 0 0010
3 0 0100
4 0 011
5 0 100
6 0 101
7 0 110
8 0 111
9 0 0001

10 0 0011
11 0 0101

Table Ans.39: The Codes for a Central Region.

4.39: Because the decoder has to resolve ties in the same way as the encoder.

4.40: Because this will result in a weighted sum whose value is in the same range
as the values of the pixels. If pixel values are, e.g., in the range [0, 15] and the
weights add up to 2, a prediction may result in values of up to 30.

4.41: Each of the three weights 0.0039, −0.0351, and 0.3164 is used twice. The
sum of the weights is thus 0.5704 and the result of dividing each weight by this sum
is 0.0068, −0.0615, and 0.5547. It is easy to verify that the sum of the renormalized
weights 2(0.0068 − 0.0615 + 0.5547) equals 1.

4.42: One such example is an archive of static images. NASA has a large archive
of images taken by various satellites. They should be kept highly compressed, but
they never change so each image has to be compressed only once. A slow encoder
is therefore acceptable but a fast decoder is certainly handy. Another example is
an art collection. Many museums have digitized their collections of paintings, and
those are also static.

1014 Answers to Exercises

4.43: The decoder knows this pixel since it knows the value of average µ[i−1, j] =
0.5(I[2i−2, 2j]+I[2i−1, 2j +1]) and since it has already decoded pixel I[2i−2, 2j]

4.44: When the decoder inputs the 5, it knows that the difference between p (the
pixel being decoded) and the reference pixel starts at position 6 (counting from
left). Since bit 6 of the reference pixel is 0, that of p must be 1.

4.45: Yes, but compression would suffer. One way to apply this method is to
separate each byte into two 4-bit pixels and encode each pixel separately. This
approach is bad since the prefix and suffix of a 4-bit pixel may often consist of more
than 4 bits. Another approach is to ignore the fact that a byte contains two pixels,
and use the method as originally described. This may still compress the image, but
is not very efficient, as the following example illustrates.

Example: The two bytes 1100|1101 and 1110|1111 represent four pixels, each
differing from its immediate neighbor by its least significant bit. The four pixels
thus have similar colors (or grayscales). Comparing consecutive pixels results in
prefixes of 3 or 2, but comparing the 2 bytes produces the prefix 2.

4.46: Because this produces a value X in the same range as A, B, and C. If the
weights were, for instance, 1, 100, and 1, X would have much bigger values than
any of the three pixels.

4.47: the four vectors are

a = (90, 95, 100, 80, 90, 85),

b(1) = (100, 90, 95, 102, 80, 90),

b(2) = (101, 128, 108, 100, 90, 95),

b(3) = (128, 108, 110, 90, 95, 100),

and the code of Figure Ans.40 produces the solutions w1 = 0.1051, w2 = 0.3974,
and w3 = 0.3690. Their total is 0.8715, compared with the original solutions, which
added up to 0.9061. The point is that the numbers involved in the equations (the
elements of the four vectors) are not independent (for example, pixel 80 appears in
a and in b(1)) except for the last element (85 or 91) of a and the first element 101
of b(2), which are independent. Changing these two elements affects the solutions,
which is why the solutions do not always add up to unity. However, compressing
nine pixels produces solutions whose total is closer to one than in the case of six
pixels. Compressing an entire image, with many thousands of pixels, produces
solutions whose sum is very close to 1.

4.48: Figure Ans.41a,b,c shows the results, with all Hi values shown in small
type. Most Hi values are zero because the pixels of the original image are so highly
correlated. The Hi values along the edges are very different because of the simple
edge rule used. The result is that the Hi values are highly decorrelated and have
low entropy. Thus, they are candidates for entropy coding.

Answers to Exercises 1015

a={90.,95,100,80,90,85};
b1={100,90,95,100,80,90};
b2={100,128,108,100,90,95};
b3={128,108,110,90,95,100};
Solve[{b1.(a-w1 b1-w2 b2-w3 b3)==0,
b2.(a-w1 b1-w2 b2-w3 b3)==0,
b3.(a-w1 b1-w2 b2-w3 b3)==0},{w1,w2,w3}]

Figure Ans.40: Solving For Three Weights.

1 . 3 . 5 . 7 .
. 0 . 0 . 0 . -5

17 . 19 . 21 . 23 .
. 0 . 0 . 0 . -13

33 . 35 . 37 . 39 .
. 0 . 0 . 0 . -21

49 . 51 . 53 . 55 .
. -33 . -34 . -35 . -64

1 . 7 . 5 . 5 .
.
15 . 19 . 11 . 23 .
.
33 . 0 . 37 . 0 .
.
-33 . 51 . -35 . 55 .
.

1 . . . 5 . . .
.
. . 0 . . . -5 .
.
33 . . . 37 . . .
.
. . -33 . . . -55 .
.

(a) (b) (c)

Figure Ans.41: (a) Bands L2 and H2. (b) Bands L3 and H3. (c) Bands L4 and H4.

4.49: There are 16 values. The value 0 appears nine times, and each of the other
seven values appears once. The entropy is thus

−
∑

pi log2 pi = − 9
16

log2

(
9
16

)
− 7

1
16

log2

(
1
16

)
≈ 2.2169.

Not very small, since seven of the 16 values have the same probability. In practice,
values of an Hi difference band tend to be small, are both positive and negative,
and are concentrated around zero, so their entropy is small.

4.50: Because the decoder needs to know how the encoder estimated X for each
Hi difference value. If the encoder uses one of three methods for prediction, it
has to precede each difference value in the compressed stream with a code that
tells the decoder which method was used. Such a code can have variable size (for
example, 0, 10, 11) but even adding just one or two bits to each prediction reduces
compression performance significantly, since each Hi value needs to be predicted,
and the number of these values is close to the size of the image.

4.51: The binary tree is shown in Figure Ans.42. From this tree, it is easy to see
that the progressive image file is 3 6|5 7|7 7 10 5.

4.52: They are shown in Figure Ans.43

1016 Answers to Exercises

3,7

3 4 5 6 6 4 5 8

3,5 5,7

3,6

6,7 4,10 5,5

Figure Ans.42: A Binary Tree For An 8-Pixel Image.

.
.

.

Figure Ans.43: The 15 6-Tuples With Two White Pixels.

4.53: No. An image with little or no correlation between the pixels will not
compress with quadrisection, even though the size of the last matrix is always
small. Even without knowing the details of quadrisection we can confidently state
that such an image will produce a sequence of matrices Mj with few or no identical
rows. In the extreme case, where the rows of any Mj are all distinct, each Mj will
have four times the number of rows of its predecessor. This will create indicator
vectors Ij that get longer and longer, thereby increasing the size of the compressed
stream and reducing the overall compression performance.

4.54: This is just the concatenation of the 12 distinct rows of M4

MT
5 = (0000|0001|1111|0011|1010|1101|1000|0111|1110|0101|1011|0010).

4.55: M4 has four columns, so it can have at most 16 distinct rows, implying that
M5 can have at most 4×16 = 64 elements.

4.56: The decoder has to read the entire compressed stream, save it in memory,
and start the decoding with L5. Grouping the eight elements of L5 yields the four
distinct elements 01, 11, 00, and 10 of L4, so I4 can now be used to reconstruct L4.
The four zeros of I4 correspond to the four distinct elements of L4, and the remaining
10 elements of L4 can be constructed from them. Once L4 has been constructed, its
14 elements are grouped to form the seven distinct elements of L3. These elements
are 0111, 0010, 1100, 0110, 1111, 0101, and 1010, and they correspond to the seven
zeros of I3. Once L3 has been constructed, its eight elements are grouped to form

Answers to Exercises 1017

the four distinct elements of L2. Those four elements are the entire L2 since I2 is
all zero. Reconstructing L1 and L0 is now trivial.

4.57: The two halves of L0 are distinct, so L1 consists of the two elements

L1 = (0101010101010101, 1010101010101010),

and the first indicator vector is I1 = (0, 0). The two elements of L1 are distinct, so
L2 has the four elements

L2 = (01010101, 01010101, 10101010, 10101010),

and the second indicator vector is I2 = (0, 1, 0, 2). Two elements of L2 are distinct,
so L3 has the four elements L3 = (0101, 0101, 1010, 1010), and the third indicator
vector is I3 = (0, 1, 0, 2). Again two elements of L3 are distinct, so L4 has the four
elements L4 = (01, 01, 10, 10), and the fourth indicator vector is I4 = (0, 1, 0, 2).
Only two elements of L4 are distinct, so L5 has the four elements L5 = (0, 1, 1, 0).

The output thus consists of k = 5, the value 2 (indicating that I2 is the first
nonzero vector) I2, I3, and I4 (encoded), followed by L5 = (0, 1, 1, 0).

4.58: Using a Hilbert curve produces the 21 runs 5, 1, 2, 1, 2, 7, 3, 1, 2, 1, 5, 1,
2, 2, 11, 7, 2, 1, 1, 1, 6. RLE produces the 27 runs 0, 1, 7, eol, 2, 1, 5, eol, 5, 1, 2,
eol, 0, 3, 2, 3, eol, 0, 3, 2, 3, eol, 0, 3, 2, 3, eol, 4, 1, 3, eol, 3, 1, 4, eol.

4.59: The string 2011.

4.60: This particular numbering makes it easy to convert between the number
of a subsquare and its image coordinates. (We assume that the origin is located
at the bottom-left corner of the image and that image coordinates vary from 0 to
1.) As an example, translating the digits of the number 1032 to binary results
in (01)(00)(11)(10). The first bits of these groups constitute the x coordinate of
the subsquare, and the second bits constitute the y coordinate. Thus, the image
coordinates of subsquare 1032 are x = .00112 = 3/16 and y = .10102 = 5/8, as can
be directly verified from Figure 4.152c.

4.61: This is shown in Figure Ans.44.

10050

500

1

1,2(0.25)
0,1,2,3(1)0,1,2,3(0.5)

3(0.5)

2

Figure Ans.44: A Two-State Graph.

1018 Answers to Exercises

4.62: The function is

f(x, y) =
{

x + y, if x + y ≤ 1,
0, if x + y > 1.

4.63: The graph has five states, so each transition matrix is of size 5×5. Direct
computation from the graph yields

W0 =




0 1 0 0 0
0 0.5 0 0 0
0 0 0 0 1
0 −0.5 0 0 1.5
0 −0.25 0 0 1


 , W3 =




0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 1.5


 ,

W1 = W2 =




0 0 1 0 0
0 0.25 0 0 0.5
0 0 0 1.5 0
0 0 −0.5 1.5 0
0 −0.375 0 0 1.25


 .

The final distribution is the five-component vector

F = (0.25, 0.5, 0.375, 0.4125, 0.75)T .

4.64: One way to specify the center is to construct string 033 . . . 3. This yields

ψi(03 . . . 3) = (W0 ·W3 · · ·W3 ·F)i

=
(

0.5 0
0 1

) (
0.5 0.5
0 1

)
· · ·

(
0.5 0.5
0 1

) (
0.5
1

)
i

=
(

0.5 0
0 1

) (
0 1
0 1

) (
0.5
1

)
i

=
(

0.5
1

)
i

.

4.65: Figure Ans.45 shows Matlab code for such a matrix.

dim=256;
for i=1:dim
for j=1:dim
m(i,j)=(i+j-2)/(2*dim-2);

end
end
m

Figure Ans.45: Matlab Code For
A Matrix mi,j = (i + j)/2.

Answers to Exercises 1019

4.66: A direct examination of the graph yields the ψi values

ψi(0) = (W0 ·F)i = (0.5, 0.25, 0.75, 0.875, 0.625)T
i ,

ψi(01) = (W0 ·W1 ·F)i = (0.5, 0.25, 0.75, 0.875, 0.625)T
i ,

ψi(1) = (W1 ·F)i = (0.375, 0.5, 0.61875, 0.43125, 0.75)T
i ,

ψi(00) = (W0 ·W0 ·F)i = (0.25, 0.125, 0.625, 0.8125, 0.5625)T
i ,

ψi(03) = (W0 ·W3 ·F)i = (0.75, 0.375, 0.625, 0.5625, 0.4375)T
i ,

ψi(3) = (W3 ·F)i = (0, 0.75, 0, 0, 0.625)T
i ,

and the f values

f(0) = I ·ψ(0) = 0.5, f(01) = I ·ψ(01) = 0.5, f(1) = I ·ψ(1) = 0.375,

f(00) = I ·ψ(00) = 0.25, f(03) = I ·ψ(03) = 0.75, f(3) = I ·ψ(3) = 0.

4.67: Figure Ans.46a,b shows the six states and all 21 edges. We use the notation
i(q, t)j for the edge with quadrant number q and transformation t from state i to
state j. This GFA is more complex than pervious ones since the original image is
less self-similar.

4.68: The transformation can be written (x, y) → (x,−x+ y), so (1, 0) → (1,−1),
(3, 0) → (3,−3), (1, 1) → (1, 0) and (3, 1) → (3,−2). The original rectangle is thus
transformed into a parallelogram.

4.69: The two sets of transformations produce the same Sierpiński triangle but at
different sizes and orientations.

4.70: All three transformations shrink an image to half its original size. In addi-
tion, w2 and w3 place two copies of the shrunken image at relative displacements of
(0, 1/2) and (1/2, 0), as shown in Figure Ans.47. The result is the familiar Sierpiński
gasket but in a different orientation.

4.71: There are 32×32 = 1, 024 ranges and (256 − 15)× (256 − 15) = 58, 081
domains. The total number of steps is thus 1, 024 × 58, 081×8 = 475, 799, 552, still
a large number. PIFS is thus computationally intensive.

4.72: Suppose that the image has G levels of gray. A good measure of data
loss is the difference between the value of an average decompressed pixel and its
correct value, expressed in number of gray levels. For large values of G (hundreds
of gray levels) an average difference of log2 G gray levels (or fewer) is considered
satisfactory.

5.1: A written page. A person can place marks on a page and read them later
as text, mathematical expressions, and drawings. This is a two-dimensional repre-
sentation of the information on the page. The page can later be scanned by, e.g., a
fax machine, and its contents transmitted as a one-dimensional stream of bits that
constitute a different representation of the same information.

1020 Answers to Exercises

4

0 1

35

2

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3
(1,0) (2,2)

(2,1)
(3,1)

(0,0) (3,0)

(0,0) (3,0)

(0,1) (3,3)

(1,0) (2,2)

(0,1) (3,3)

(1,6)

(0,7)

(0,0) (0,6)

(2,0) (2,6)

(0,0) (0,6)

(2,0) (2,6)

(0,0)

(0,0)

(3,0)

(0,0)
(0,8)

(0,0)
(2,0)

(2,1)
(3,1)

(0,0)
(2,0)

(2,4)

(1,6)

(0,7)

(3,0)

(2,4)

(0,0)
(0,8)

(a)

Start state

0 12

4 5 3

(b)

0(0,0)1 0(3,0)1 0(0,1)2 0(1,0)2 0(2,2)2 0(3,3)2 1(0,7)3
1(1,6)3 1(2,4)3 1(3,0)3 2(0,0)4 2(2,0)4 2(2,1)4 2(3,1)4
3(0,0)5 4(0,0)5 4(0,6)5 4(2,0)5 4(2,6)5 5(0,0)5 5(0,8)5

Figure Ans.46: A GFA for Exercise 4.67.

Answers to Exercises 1021

Original
w2

w1

w3

After 1
iteration

Z Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Z
Z

Z
Z
Z

Z
Z
Z

Z

Figure Ans.47: Another Sierpiński Gasket.

5.2: Figure Ans.48 shows f(t) and three shifted copies of the wavelet, for a = 1
and b = 2, 4, and 6. The inner product W (a, b) is plotted below each copy of the
wavelet. It is easy to see how the inner products are affected by the increasing
frequency.

The table of Figure Ans.49 lists 15 values of W (a, b), for a = 1, 2, and 3 and for
b = 2 through 6. The density plot of the figure, where the bright parts correspond
to large values, shows those values graphically. For each value of a, the CWT yields
values that drop with b, reflecting the fact that the frequency of f(t) increases with
t. The five values of W (1, b) are small and very similar, while the five values of
W (3, b) are larger and differ more. This shows how scaling the wavelet up makes
the CWT more sensitive to frequency changes in f(t).

5.3: They are shown in Figure 5.11c.

5.4: Figure Ans.50a shows a simple, 8×8 image with one diagonal line above the
main diagonal. Figure Ans.50b,c shows the first two steps in its pyramid decom-
position. It is obvious that the transform coefficients in the bottom-right subband
(HH) indicate a diagonal artifact located above the main diagonal. It is also easy
to see that subband LL is a low-resolution version of the original image.

5.5: The average can easily be calculated. It turns out to be 131.375, which is
exactly 1/8 of 1051. The reason the top-left transform coefficient is eight times the

1022 Answers to Exercises

2 4 6 8 10

Figure Ans.48: An Inner Product for a = 1 and b = 2, 4, 6.

a b = 2 3 4 5 6
1 0.032512 0.000299 1.10923×10−6 2.73032×10−9 8.33866×10−11

2 0.510418 0.212575 0.0481292 0.00626348 0.00048097
3 0.743313 0.629473 0.380634 0.173591 0.064264

3 4

2

1

5 6b=2

a=3

Figure Ans.49: Fifteen Values And a Density Plot of W (a, b).

Answers to Exercises 1023

12 16 12 12 12 12 12 12
12 12 16 12 12 12 12 12
12 12 12 16 12 12 12 12
12 12 12 12 16 12 12 12
12 12 12 12 12 16 12 12
12 12 12 12 12 12 16 12
12 12 12 12 12 12 12 16
12 12 12 12 12 12 12 12

14 12 12 12 4 0 0 0
12 14 12 12 0 4 0 0
12 14 12 12 0 4 0 0
12 12 14 12 0 0 4 0
12 12 14 12 0 0 4 0
12 12 12 14 0 0 0 4
12 12 12 14 0 0 0 4
12 12 12 12 0 0 0 0

13 13 12 12 2 2 0 0
12 13 13 12 0 2 2 0
12 12 13 13 0 0 2 2
12 12 12 13 0 0 0 2
2 2 0 0 4 4 0 0
0 2 2 0 0 4 4 0
0 0 2 2 0 0 4 4
0 0 0 2 0 0 0 4

(a) (b) (c)

Figure Ans.50: The Subband Decomposition of a Diagonal Line.

average is that the Matlab code that did the calculations uses
√

2 instead of 2 (see
function individ(n) in Figure 5.22).

5.6: Figure Ans.51a–c shows the results of reconstruction from 3277, 1639, and
820 coefficients, respectively. Despite the heavy loss of wavelet coefficients, only a
very small loss of image quality is noticeable. The number of wavelet coefficients
is, of course, the same as the image resolution 128×128 = 16, 384. Using 820 out of
16,384 coefficients corresponds to discarding 95% of the smallest of the transform
coefficients (notice, however, that some of the coefficients were originally zero, so
the actual loss may amount to less than 95%).

5.7: The Matlab code of Figure Ans.52 calculates W as the product of the three
matrices A1, A2, and A3 and computes the 8×8 matrix of transform coefficients.
Notice that the top-left value 131.375 is the average of all the 64 image pixels.

5.8: A simple example of such input is the vector of alternating values x =
(. . . , 1,−1, 1,−1, 1, . . .).

5.9: For eight-tap filters, rules 1 and 2 imply

h2
0(0) + h2

0(1) + h2
0(2) + h2

0(3) + h2
0(4) + h2

0(5) + h2
0(6) + h2

0(7) = 1,

h0(0)h0(2) + h0(1)h0(3) + h0(2)h0(4) + h0(3)h0(5) + h0(4)h0(6) + h0(5)h0(7) = 0,

h0(0)h0(4) + h0(1)h0(5) + h0(2)h0(6) + h0(3)h0(7) = 0,

h0(0)h0(6) + h0(1)h0(7) = 0,

and rules 3–5 yield

f0 =
(
h0(7), h0(6), h0(5), h0(4), h0(3), h0(2), h0(1), h0(0)

)
,

h1 =
(
−h0(7), h0(6),−h0(5), h0(4),−h0(3), h0(2),−h0(1), h0(0)

)
,

f1 =
(
h0(0),−h0(1), h0(2),−h0(3), h0(4),−h0(5), h0(6),−h0(7)

)
.

The eight coefficients are listed in Table 5.35 (this is the Daubechies D8 filter).

1024 Answers to Exercises

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3277

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 1639

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 820

(a)

(b)

(c)

Figure Ans.51: Three Lossy Reconstructions of the 128×128 Lena Image.

Answers to Exercises 1025

clear
a1=[1/2 1/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;
0 0 0 0 1/2 1/2 0 0; 0 0 0 0 0 0 1/2 1/2;
1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1/2 -1/2 0 0; 0 0 0 0 0 0 1/2 -1/2];
% a1*[255; 224; 192; 159; 127; 95; 63; 32];
a2=[1/2 1/2 0 0 0 0 0 0; 0 0 1/2 1/2 0 0 0 0;
1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];
a3=[1/2 1/2 0 0 0 0 0 0; 1/2 -1/2 0 0 0 0 0 0;
0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 1];
w=a3*a2*a1;
dim=8; fid=fopen(’8x8’,’r’);
img=fread(fid,[dim,dim])’; fclose(fid);
w*img*w’ % Result of the transform

131.375 4.250 −7.875 −0.125 −0.25 −15.5 0 −0.25
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75
12.000 59.875 39.875 31.875 15.75 32.0 16 15.75

Figure Ans.52: Code and Results For the Calculation of Matrix W and Transform
W ·I ·WT .

5.10: Figure Ans.53 lists the Matlab code of the inverse wavelet transform function
iwt1(wc,coarse,filter) and a test.

5.11: Figure Ans.54 shows the result of blurring the “lena” image. Parts (a) and
(b) show the logarithmic multiresolution tree and the subband structure, respec-
tively. Part (c) shows the results of the quantization. The transform coefficients
of subbands 5–7 have been divided by two, and all the coefficients of subbands
8–13 have been cleared. We can say that the blurred image of part (d) has been
reconstructed from the coefficients of subbands 1–4 (1/64th of the total number
of transform coefficients) and half of the coefficients of subbands 5-7 (half of 3/64,
or 3/128). On average, the image has been reconstructed from 5/128 ≈ 0.039 or
3.9% of the transform coefficients. Notice that the Daubechies D8 filter was used
in the calculations. Readers are encouraged to use this code and experiment with
the performance of other filters.

5.12: This is written a-=b/2; b+=a;.

1026 Answers to Exercises

function dat=iwt1(wc,coarse,filter)
% Inverse Discrete Wavelet Transform
dat=wc(1:2^coarse);
n=length(wc); j=log2(n);
for i=coarse:j-1
dat=ILoPass(dat,filter)+ ...
IHiPass(wc((2^(i)+1):(2^(i+1))),filter);

end

function f=ILoPass(dt,filter)
f=iconv(filter,AltrntZro(dt));

function f=IHiPass(dt,filter)
f=aconv(mirror(filter),rshift(AltrntZro(dt)));

function sgn=mirror(filt)
% return filter coefficients with alternating signs
sgn=-((-1).^(1:length(filt))).*filt;

function f=AltrntZro(dt)
% returns a vector of length 2*n with zeros
% placed between consecutive values
n =length(dt)*2; f =zeros(1,n);
f(1:2:(n-1))=dt;

Figure Ans.53: Code For the One-Dimensional Inverse
Discrete Wavelet Transform.

A simple test of iwt1 is
n=16; t=(1:n)./n;
dat=sin(2*pi*t)
filt=[0.4830 0.8365 0.2241 -0.1294];
wc=fwt1(dat,1,filt)
rec=iwt1(wc,1,filt)

5.13: We sum Equation (5.13) over all the values of l to get

2j−1−1∑
l=0

sj−1,l =
2j−1−1∑

l=0

(sj,2l + dj−1,l/2) =
1
2

2j−1−1∑
l=0

(sj,2l + sj,2l+1) =
1
2

2j−1∑
l=0

sj,l.

(Ans.1)
Therefore, the average of set sj−1 equals

1
2j−1

2j−1−1∑
l=0

sj−1,l =
1

2j−1

1
2

2j−1∑
l=0

sj,l =
1
2j

2j−1∑
l=0

sj,l

the average of set sj .

Answers to Exercises 1027

(c) (d)

1 2
3 4

(a) (b)

6 7
5

8

10
11

1312

9

H0

H1

↓2

↓2

H0

H1

↓2

↓2

H0

H1

↓2

↓2

H0

H1

↓2

↓2

Figure Ans.54: Blurring As A Result of Coarse Quantization.

clear, colormap(gray);
filename=’lena128’; dim=128;
fid=fopen(filename,’r’);
img=fread(fid,[dim,dim])’;
filt=[0.23037,0.71484,0.63088,-0.02798, ...
-0.18703,0.03084,0.03288,-0.01059];
fwim=fwt2(img,3,filt);
figure(1), imagesc(fwim), axis square
fwim(1:16,17:32)=fwim(1:16,17:32)/2;
fwim(1:16,33:128)=0;
fwim(17:32,1:32)=fwim(17:32,1:32)/2;
fwim(17:32,33:128)=0;
fwim(33:128,:)=0;
figure(2), colormap(gray), imagesc(fwim)
rec=iwt2(fwim,3,filt);
figure(3), colormap(gray), imagesc(rec)

Code For Figure Ans.54.

1028 Answers to Exercises

5.14: The code of Figure Ans.55 produces the expression

0.0117P1 − 0.0977P2 + 0.5859P3 + 0.5859P4 − 0.0977P5 + 0.0117P6.

Clear[p,a,b,c,d,e,f];
p[t_]:=a t^5+b t^4+c t^3+d t^2+e t+f;
Solve[{p[0]==p1, p[1/5.]==p2, p[2/5.]==p3,
p[3/5.]==p4, p[4/5.]==p5, p[1]==p6}, {a,b,c,d,e,f}];
sol=ExpandAll[Simplify[%]];
Simplify[p[0.5] /.sol]

Figure Ans.55: Code for a Degree-5 Interpolating Polynomial.

5.15: The Matlab code of Figure Ans.56 does that and produces the transformed
integer vector y = (111,−1, 84, 0, 120, 25, 84, 3). The inverse transform generates
vector z that is identical to the original data x. Notice how the detail coefficients
are much smaller than the weighted averages. Notice also that Matlab arrays are
indexed from 1, whereas the discussion in the text assumes arrays indexed from 0.
This causes the difference in index values in Figure Ans.56.

clear;
N=8; k=N/2;
x=[112,97,85,99,114,120,77,80];
% Forward IWT into y
for i=0:k-2,
y(2*i+2)=x(2*i+2)-floor((x(2*i+1)+x(2*i+3))/2);
end;
y(N)=x(N)-x(N-1);
y(1)=x(1)+floor(y(2)/2);
for i=1:k-1,
y(2*i+1)=x(2*i+1)+floor((y(2*i)+y(2*i+2))/4);
end;
% Inverse IWT into z
z(1)=y(1)-floor(y(2)/2);
for i=1:k-1,
z(2*i+1)=y(2*i+1)-floor((y(2*i)+y(2*i+2))/4);
end;
for i=0:k-2,
z(2*i+2)=y(2*i+2)+floor((z(2*i+1)+x(2*i+3))/2);
end;
z(N)=y(N)+z(N-1);

Figure Ans.56: Matlab Code For Forward and Inverse IWT.

Answers to Exercises 1029

5.16: Images g0 through g5 will have dimensions

(3·25 + 1× 4·25 + 1) = 97×129, 49×65, 25×33, 13×17, and 7×9.

5.17: In the sorting pass of the third iteration the encoder transmits the number
l = 3 (the number of coefficients ci,j in our example that satisfy 212 ≤ |ci,j | < 213),
followed by the three pairs of coordinates (3, 3), (4, 2), and (4, 1) and by the signs of
the three coefficients. In the refinement step it transmits the six bits cdefgh. These
are the 13th most significant bits of the coefficients transmitted in all the previous
iterations.

The information received so far enables the decoder to further improve the 16
approximate coefficients. The first nine become

c2,3 = s1ac0 . . . 0, c3,4 = s1bd0 . . . 0, c3,2 = s01e00 . . . 0,

c4,4 = s01f00 . . . 0, c1,2 = s01g00 . . . 0, c3,1 = s01h00 . . . 0,

c3,3 = s0010 . . . 0, c4,2 = s0010 . . . 0, c4,1 = s0010 . . . 0,

and the remaining seven are not changed.

5.18: The simple equation 10×220×8 = (500x)×(500x)×8 is solved to yield x2 = 40
square inches. If the card is square, it is approximately 6.32 inches on a side. Such
a card has 10 rolled impressions (about 1.5×1.5 each), two plain impressions of
the thumbs (about 0.875×1.875 each), and simultaneous impressions of both hands
(about 3.125×1.875 each). All the dimensions are in inches.

5.19: The bit of 10 is encoded, as usual, in pass 2. The bit of 1 is encoded in
pass 1 since this coefficient is still insignificant but has significant neighbors. This
bit is 1, so coefficient 1 becomes significant (a fact that is not used later). Also,
this bit is the first 1 of this coefficient, so the sign bit of the coefficient is encoded
following this bit. The bits of coefficients 3 and −7 are encoded in pass 2 since these
coefficients are significant.

6.1: It is easy to calculate that 525 · 4/3 = 700 pixels.

6.2: The vertical height of the picture on the author’s 27 in. television set is 16 in.,
which translates to a viewing distance of 7.12×16 = 114 in. or about 9.5 feet. It is
easy to see that individual scan lines are visible at any distance shorter than about
6 feet.

6.3: There aren’t many, but here are three examples: (1) Surveillance camera,
(2) an old, silent movie being restored and converted from film to video, and (3) a
video presentation taken underwater.

6.4: The golden ratio φ ≈ 1.618 has traditionally been considered the aspect ratio
that is most pleasing to the eye. This suggests that 1.77 is the better aspect ratio.

1030 Answers to Exercises

6.5: Imagine a camera panning from left to right. New objects will enter the field
of view from the right all the time. A block on the right side of the frame may thus
contain objects that did not exist in the previous frame.

6.6: Since (4, 4) is at the center of the “+”, the value of s is halved, to 2. The
next step searches the four blocks labeled 4, centered on (4, 4). Assuming that the
best match is at (6, 4), the two blocks labeled 5 are searched. Assuming that (6, 4)
is the best match, s is halved to 1, and the eight blocks labeled 6 are searched. The
diagram shows that the best match is finally found at location (7, 4).

6.7: The picture consists of 18×18 macroblocks, and each macroblock constitutes
six 8×8 blocks of samples. The total number of samples is, thus, 18×18×6×64 =
124, 416.

6.8: The size category of zero is 0, so code 100 is emitted, followed by zero bits.
The size category of 4 is 3, so code 110 is first emitted, followed by the three
least-significant bits of 4, which are 100.

6.9: The zigzag sequence is

118, 2, 0,−2, 0, . . . , 0︸ ︷︷ ︸
13

,−1, 0,

The run-level pairs are (0, 2), (1,−2), and (13,−1), so the final codes are (notice
the sign bits following the run-level codes)

0100 0|000110 1|00100000 1|10,

(without the vertical bars).

6.10: There are no nonzero coefficients, no run-level codes, just the 2-bit EOB
code. However, in nonintra coding, such a block is encoded in a special way.

7.1: An average book may have 60 characters per line, 45 lines per page, and 400
pages. This comes to 60×45×400 = 1, 080, 000 characters, requiring one byte of
storage each.

7.2: The period of a wave is its speed divided by its frequency. For sound we get

34380 cm/s
22000 Hz

= 1.562 cm,
34380

20
= 1719 cm.

7.3: The (base-10) logarithm of x is a number y such that 10y = x. The number
2 is the logarithm of 100 since 102 = 100. Similarly, 0.3 is the logarithm of 2 since
100.3 = 2. Also, The base-b logarithm of x is a number y such that by = x (for any
real b > 1).

Answers to Exercises 1031

7.4: Each doubling of the sound intensity increases the dB level by 3. Therefore,
the difference of 9 dB (3 + 3 + 3) between A and B corresponds to three doublings
of the sound intensity. Thus, source B is 2·2·2 = 8 times louder than source A.

7.5: Each 0 would result in silence and each sample of 1, in the same tone. The
result would be a nonuniform buzz. Such sounds were common on early personal
computers.

7.6: The experiment should be repeated with several persons, preferably of dif-
ferent ages. The person should be placed in a sound insulated chamber and a pure
tone of frequency f should be played. The amplitude of the tone should be gradu-
ally increased from zero until the person can just barely hear it. If this happens at
a decibel value d, point (d, f) should be plotted. This should be repeated for many
frequencies until a graph similar to Figure 7.4a is obtained.

7.7: Imagine that the sound being compressed contains one second of a pure tone
(just one frequency). This second will be digitized to 44,100 consecutive samples
per channel. The samples indicate amplitudes, so they don’t have to be the same.
However, after filtering, only one subband (although in practice perhaps two sub-
bands) will have nonzero signals. All the other subbands correspond to different
frequencies, so they will have signals that are either zero or very close to zero.

7.8: Assuming that a noise level P1 translates to x decibels

20 log
(

P1

P2

)
= x dB SPL,

results in the relation

20 log

(
3
√

2P1

P2

)
= 20

[
log10

3
√

2 + log
(

P1

P2

)]
= 20(0.1 + x/20) = x + 2.

Thus, increasing the sound level by a factor of 3
√

2 increases the decibel level by
2 dB SPL.

7.9: The decoder has to decode 44,100/384 ≈ 114.84 frames per second. Thus,
each frame has to be decoded in approximately 8.7 ms. In order to output 114.84
frames in 64,000 bits, each frame must have Bf = 557 bits available to encode it.
The number of slots per frame is thus 557/32 ≈ 17.41. Thus, the last (18th) slot is
not full and has to padded.

7.10: Table 7.31 shows that the scale factor is 111 and the select information is 2.
The third rule in Table 7.32 shows that a scfsi of 2 means that only one scale factor
was coded, occupying just six bits in the compressed output. The decoder assigns
these six bits as the values of all three scale factors.

1032 Answers to Exercises

7.11: Typical layer II parameters are (1) a sampling rate of 48000 samples/s, (2)
a bitrate of 64000 bits/s, and (3) 1152 quantized signals per frame. The decoder
has to decode 48000/1152 = 41.66 frames per second. Thus, each frame has to be
decoded in 24 ms. In order to output 41.66 frames in 64000 bits, each frame must
have Bf = 1536 bits available to encode it.

7.12: A program to play .mp3 files is an MPEG layer III decoder, not an encoder.
Decoding is much simpler since it does not use a psychoacoustic model, nor does it
have to anticipate preechoes and maintain the bit reservoir.

8.1: Because the original string S can be reconstructed from L but not from F.

8.2: A direct application of equation (8.1) eight more times produces:

S[10-1-2]=L[T2[I]]=L[T[T1[I]]]=L[T[7]]=L[6]=i;
S[10-1-3]=L[T3[I]]=L[T[T2[I]]]=L[T[6]]=L[2]=m;
S[10-1-4]=L[T4[I]]=L[T[T3[I]]]=L[T[2]]=L[3]=W;
S[10-1-5]=L[T5[I]]=L[T[T4[I]]]=L[T[3]]=L[0]=s;
S[10-1-6]=L[T6[I]]=L[T[T5[I]]]=L[T[0]]=L[4]=s;
S[10-1-7]=L[T7[I]]=L[T[T6[I]]]=L[T[4]]=L[5]=i;
S[10-1-8]=L[T8[I]]=L[T[T7[I]]]=L[T[5]]=L[1]=w;
S[10-1-9]=L[T9[I]]=L[T[T8[I]]]=L[T[1]]=L[9]=s;

The original string “swiss miss” is indeed reproduced in S from right to left.

8.3: Figure Ans.57 shows the rotations of S and the sorted matrix. The last
column, L of Ans.57b happens to be identical to S, so S=L=“sssssssssh”. Since
A=(s,h), a move-to-front compression of L yields C = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1). Since
C contains just the two values 0 and 1, they can serve as their own Huffman codes,
so the final result is 1000000001, 1 bit per character!

sssssssssh
sssssssshs
ssssssshss
sssssshsss
ssssshssss
sssshsssss
ssshssssss
sshsssssss
shssssssss
hsssssssss

hsssssssss
shssssssss
sshsssssss
ssshssssss
sssshsssss
ssssshssss
sssssshsss
ssssssshss
sssssssshs
sssssssssh

(a) (b)
Figure Ans.57: Permutations of “sssssssssh”.

Answers to Exercises 1033

8.4: The encoder starts at T[0], which contains 5. The first element of L is thus
the last symbol of permutation 5. This permutation starts at position 5 of S, so its
last element is in position 4. The encoder thus has to go through symbols S[T[i-1]]
for i = 0, . . . , n − 1, where the notation i − 1 should be interpreted cyclically (i.e.,
0 − 1 should be n − 1). As each symbol S[T[i-1]] is found, it is compressed using
move-to-front. The value of I is the position where T contains 0. In our example,
T[8]=0, so I=8.

8.5: The first element of a triplet is the distance between two dictionary entries,
the one best matching the content and the one best matching the context. In this
case there is no content match, no distance, so any number could serve as the first
element, 0 being the best (smallest) choice.

8.6: Because the three lines are sorted in ascending order. The bottom two lines
of Table 8.13c are not in sorted order. This is why the “zz...z” part of string S
must be preceded and followed by complementary bits.

8.7: The encoder places S between two entries of the sorted associative list and
writes the (encoded) index of the entry above or below S on the compressed stream.
The fewer the number of entries, the smaller this index, and the better the com-
pression.

8.8: Context 5 is compared to the three remaining contexts 6, 7, and 8, and it is
most similar to context 6 (they share a suffix of “b”). Context 6 is compared to 7
and 8 and, since they don’t share any suffix, context 7, the shorter of the two, is
selected. The remaining context 8 is, of course, the last one in the ranking. The
final context ranking is

1 → 3 → 4 → 0 → 5 → 6 → 7 → 8.

8.9: Equation (8.3) shows that the third “a” is assigned rank 1 and the “b” and
“a” following it are assigned ranks 2 and 3, respectively.

8.10: Table Ans.58 shows the sorted contexts. Equation (Ans.2) shows the context
ranking at each step.

0
u

, 0
u

→ 2
b

, 1
l

→ 3
b

→ 0
u

,

0
u

→ 2
l

→ 3
a

→ 4
b

, 2
l

→ 4
a

→ 1
d

→ 5
b

→ 0
u

,
(Ans.2)

3
i

→ 5
a

→ 2
l

→ 6
b

→ 5
d

→ 0
u

.

The final output is “u 2 b 3 l 4 a 5 d 6 i 6.” Notice that each of the distinct input
symbols appears once in this output in raw format.

1034 Answers to Exercises

0 λ u
1 u x

(a)

0 λ u
1 ub x
2 u b

(b)

0 λ u
1 ub l
2 ubl x
3 u b

(c)

0 λ u
1 ubla x
2 ub l
3 ubl a
4 u b

(d)

0 λ u
1 ubla d
2 ub l
3 ublad x
4 ubl a
5 u b

(e)

0 λ u
1 ubla d
2 ub l
3 ublad i
4 ubladi x
5 ubl a
6 u b

(f)

Table Ans.58: Constructing the Sorted Lists For ubladiu.

8.11: All n1 bits of string L1 need be written on the output stream. This already
shows that there is going to be no compression. String L2 consists of n1/k 1’s, so all
of it has to be written on the output stream. String L3 similarly consists of n1/k2

1’s, and so on. The size of the output stream is thus

n1 +
n1

k
+

n1

k2
+

n1

k3
+ · · · + n1

km
= n1

km+1 − 1
km(k − 1)

,

for some value of m. The limit of this expression, when m → ∞, is n1k/(k − 1).
For k = 2 this equals 2n1. For larger values of k this limit is always between n1

and 2n1.
For the curious reader, here is how the sum above is calculated. Given the

series

S =
m∑

i=0

1
ki

= 1 +
1
k

+
1
k2

+
1
k3

+ · · · + 1
km−1

+
1

km
,

we multiply both sides by 1/k

S

k
=

1
k

+
1
k2

+
1
k3

+ · · · + 1
km

+
1

km+1
= S +

1
km+1

− 1,

and subtract
S

k
(k − 1) =

km+1 − 1
km+1

→ S =
km+1 − 1
km(k − 1)

.

8.12: The input stream consists of:
1. A run of three zero groups, coded as 10|1 since 3 is in second position in class 2.
2. The nonzero group 0100, coded as 111100.
3. Another run of three zero groups, again coded as 10|1.
4. The nonzero group 1000, coded as 01100.
5. A run of four zero groups, coded as 010|00 since 4 is in first position in class 3.
6. 0010, coded as 111110.
7. A run of two zero groups, coded as 10|0.

The output is thus the 31-bit string 1011111001010110001000111110100.

Answers to Exercises 1035

8.13: The input stream consists of:
1. A run of three zero groups, coded as R2R1 or 101|11.
2. The nonzero group 0100, coded as 00100.
3. Another run of three zero groups, again coded as 101|11.
4. The nonzero group 1000, coded as 01000.
5. A run of four zero groups, coded as R4 = 1001.
6. 0010, coded as 00010.
7. A run of two zero groups, coded as R2 = 101.

The output is thus the 32-bit string 10111001001011101000100100010101.

8.14: The input stream consists of:
1. A run of three zero groups, coded as F3 or 1001.
2. The nonzero group 0100, coded as 00100.
3. Another run of three zero groups, again coded as 1001.
4. The nonzero group 1000, coded as 01000.
5. A run of four zero groups, coded as F3F1 = 1001|11.
6. 0010, coded as 00010.
7. A run of two zero groups, coded as F2 = 101.

The output is thus the 32-bit string 10010010010010100010011100010101.

8.15: Yes, if they are located in different quadrants or subquadrants. Pixels 123
and 301, for example, are adjacent in Figure 8.27 but have different prefixes.

8.16: No, since all prefixes have the same probability of occurrence. In our example
the prefixes are four bits long and all 16 possible prefixes have the same probability
since a pixel may be located anywhere in the image. A Huffman code calculated for
16 equally-probable symbols has an average size of four bits per symbol, so nothing
would be gained. The same is true for suffixes.

8.17: This is possible, but it places severe limitations on the size of the string.
In order to rearrange a one-dimensional string into a four-dimensional cube, the
string size should be 24n. If the string size happens to be 24n + 1, it has to be
extended to 24(n+1), which doubles its size. It is possible to rearrange the string
into a rectangular box, not just a cube, but then its size will have to be of the form
2n12n22n32n4 where the four ni’s are integers.

8.18: The LZW method, which starts with the entire alphabet stored at the
beginning of its dictionary. However, an adaptive version of LZW can be designed
to compress words instead of individual characters.

8.19: Relative values (or offsets). Each (x, y) pair may specify the position of
a character relative to its predecessor. This results in smaller numbers for the
coordinates, and smaller numbers are easier to compress.

8.20: There may be such letters in other, “exotic” alphabets, but a more common
example is a rectangular box enclosing text. The four rules comprising such a box
should be considered a mark, but the text characters inside the box should be
identified as separate marks.

1036 Answers to Exercises

8.21: Because this guarantees that the two probabilities will add up to 1.

8.22: Figure Ans.59 shows how state A feeds into the new state D′ which, in
turn, feeds into states E and F . Notice how states B and C haven’t changed. Since
the new state D′ is identical to D, it is possible to feed A into either D or D′

(cloning can be done in two different but identical ways). The original counts of
state D should now be divided between D and D′ in proportion to the counts of
the transitions A → D and B, C → D.

0

1

0B

A
E

C

D F

D’

1

1

0

1

0B

A
E

C

FD’

D
0

0

0

0

Figure Ans.59: New State D’ Cloned.

8.23: Figure Ans.60 shows the new state 6. Its 1-output is identical to that of
state 1, and its 0-output is a copy of the 0-output of state 3.

0

1
652 0

1
3

0
1

0
0 1

1

1

0

40

1
0

1

Figure Ans.60: State 6 Added.

8.24: A precise answer requires many experiments with various data files. A
little thinking, though, shows that the larger k, the better the initial model that
is created when the old one is discarded. Larger values of k thus minimize the
loss of compression. However, very large values may produce an initial model that
is already large and cannot grow much. The best value for k is therefore one
that produces an initial model large enough to provide information about recent
correlations in the data, but small enough so it has room to grow before it too has
to be discarded.

8.25: The number of marked points can be written 8(1+2+3+5+8+13) = 256
and the numbers in parentheses are the Fibonacci numbers.

Answers to Exercises 1037

8.26: It is very small. A segment pointing in direction Di can be preceded by
another segment pointing in the same direction only if the original curve is straight
or very close to straight for more than 26 coordinate units (half the width of grid
S13).

8.27: A point has two coordinates. If each coordinate occupies 8 bits, then the
use of Fibonacci numbers reduces the 16-bit coordinates to an 8-bit number, a
compression ratio of 0.5. The use of Huffman codes can typically reduce this 8-
bit number to (on average) a 4-bit code, and the use of the Markov model can
perhaps cut this by another bit. The result is an estimated compression ratio of
3/16 = 0.1875. If each coordinate is a 16-bit number, then this ratio improves to
3/32 = .09375.

8.28: The resulting, shorter grammar is shown in Figure Ans.61. It is one rule
and one symbol shorter.

Input Grammar

S → abcdbcabcdbc S → CC
A → bc
C → aAdA

Figure Ans.61: Improving the Grammar of Figure 8.42.

8.29: Generating rule C has made rule B underused (i.e., used just once).

8.30: Rule S consists of two copies of rule A. The first time rule A is encountered,
its contents aBdB are sent. This involves sending rule B twice. The first time rule
B is sent, its contents bc are sent (and the decoder does not know that the string
bc it is receiving is the contents of a rule). The second time rule B is sent, the pair
(1, 2) is sent (offset 1, count 2). The decoder identifies the pair and uses it to set
up the rule 1 → bc. Sending the first copy of rule A therefore amounts to sending
abcd(1, 2). The second copy of rule A is sent as the pair (0, 4) since A starts at offset
0 in S and its length is 4. The decoder identifies this pair and uses it to set up the
rule 2 → a1d1 . The final result is therefore abcd(1, 2)(0, 4).

8.31: In each of these cases, the encoder removes one edge from the boundary and
inserts two new edges. There is a net gain of one edge.

8.32: They create triangles (18, 2, 3) and (18, 3, 4), and reduce the boundary to
the sequence of vertices

(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18).

A.1: It is a combination of "4x and "9, or "49.

1038 Answers to Exercises

B.1: The values of X are listed below. Each has a probability of 1/8.

X(HHH) = 3, X(HHT) = 2, X(HTH) = 2, X(HTT) = 1,

X(THH) = 2, X(THT) = 1, X(TTH) = 1, X(TTT) = 0.

B.2: The definition of expectation implies that E(X) = v. The expected value of
a constant random variable is the constant value.

B.3: Denote m = E(X). From Var(X) = E[(X − m)2] we get

Var(X) = E(X2 − 2Xm + m2)

= E(X2) − E(−2mX) + E(m2)

= E(X2) − 2mE(X) + m2

= E(X2) − 2m2 + m2

= E(X2) − m2.

B.4: The probability of rolling a double-six with two dice is 1/36. The complement
probability is 35/36. The probability of rolling a double-six in the first throw, or
the second throw,. . . , or the 24th throw is

1 − (35/36)(35/36) · · · (35/36)︸ ︷︷ ︸
24

≈ 1 − 0.5086 = 0.4914.

For game B, the probability of rolling a six is 1/6, its complement is 5/6, so
the probability of rolling a six in four tries is

1 − (5/6)(5/6)(5/6)(5/6) ≈ 1 − 0.482 = 0.518;

slightly higher than the winning probability of game A.

B.5: This problem is easy to solve intuitively. Once B has withdrawn, one of
the remaining two companies will win the contract. All we have to do to find their
new chances is to scale their old chances such that they add up to 1. Since the old
chances add up to 3/5, they have to be scaled by 5/3 to bring their new sum to 1.
The new chances are therefore (2/5)(5/3) = 2/3 and (1/5)(5/3) = 1/3.

Next, we use conditional probabilities to solve the same problem. We are
looking for the conditional probabilities P (A|B̄) and P (C|B̄). We know that P (B)
was 2/5, so P (B̄) = 1 − P (B) = 3/5. The quantity P (A · B̄) is the probability
that A will win and B will not win. It equals P (A), since if A wins, B cannot win.
Equation (B.2) therefore yields the conditional probabilities

P (A|B̄) =
P (A · B̄)

P (B̄)
=

(2/5)
(3/5)

=
2
3
,

P (C|B̄) =
P (C · B̄)

P (B̄)
=

(1/5)
(3/5)

=
1
3
.

Answers to Exercises 1039

B.6: Applying Bayes’ theorem, the results are 0.24, 0.24, and 0.36, respectively.
The knowledge that the student got an A made is less likely that he selected mathe-
matics, more likely that he selected biology, and did not much affect the probabilities
that he selected physics or chemistry.

B.7: Using appropriate mathematical software it is easy to obtain this integral
separately for negative and nonnegative values of x.

∫
L(V, x) dx =




−1

V exp
(√

2
V x

) , x ≥ 0,

1√
2V

exp
(√

2
V x

)
, x < 0.

C.1: A straight line segment from a to b is an example of a one-dimensional curve
that passes through every point in the interval a, b.

C.2: The key is to realize that P0 is a single point, and P1 is constructed by
connecting nine copies of P0 with straight segments. Similarly, P2 consists of nine
copies of P1, in different orientations, connected by segments (the dashed segments
in Figure Ans.62).

(a) (b) (c)

P0 P1

Figure Ans.62: The First Three Iterations of the Peano Curve.

C.3: Written in binary, the coordinates are (1101, 0110). We iterate four times,
each time taking 1 bit from the x coordinate and 1 bit from the y coordinate
to form an (x, y) pair. The pairs are 10, 11, 01, 10. The first one yields [from
Table C.12(1)] 01. The second pair yields [also from Table C.12(1)] 10. The third
pair [from Table C.12(1)] 11, and the last pair [from Table C.12(4)] 01. The result
is thus 01|10|11|01 = 109.

C.4: Table C.2 shows that this traversal is based on the sequence 2114.

1040 Answers to Exercises

C.5: This is straightforward

(00, 01, 11, 10) → (000, 001, 011, 010)(100, 101, 111, 110)
→ (000, 001, 011, 010)(110, 111, 101, 100)
→ (000, 001, 011, 010, 110, 111, 101, 100).

D.1: It is j · m + (i + 1).

D.2: It makes sense to store the degree n of the polynomial in the first array
location.

D.3: Yes. In a ternary tree, the three children of node a are stored in locations
2a, 2a + 1, and 2a + 2 and the parent of a can be found at array location �a/3�.

D.4: The pre-order, in-order, and level-order traversals are, respectively

A, ((B, (D, E)), (C, (F, (G, H)))),
((D, B, E), A, (null, C, (G, F, H))),

(A, (B, C), (D, E, F), (G, H)).

D.5: Each of the 8 characters of a name can be one of the 26 letters or the ten
digits, so the total number of names is 368 = 2, 821, 109, 907, 456; close to 3 trillion.

E.1: A direct check shows that when only a single bit is changed in any of the
codewords of code2, the result is not any of the other codewords.

E.2: A direct check shows that code4 has a Hamming distance of 4, which is more
than enough to detect all 2-bit errors.

E.3: b2 is the parity of b3, b6, b7, b10, and b11. b4 is the parity of b5, b6, and b7.
b8 is the parity of b9, b10, and b11.

E.4: Table Ans.63 summarizes the definitions of the five parity bits required for
this case.

Parity Data bits
bits 3 5 6 7 9 10 11 12 13 14 15 17 18 19 20 21
1 x x x x x x x x x x
2 x x x x x x x x x
4 x x x x x x x x x
8 x x x x x x x
16 x x x x x

Table Ans.63: Hamming Code for m = 16.

Answers to Exercises 1041

E.5: It is a variable-size code (Chapter 2). It’s easy to see that it satisfies the
prefix property.

F.1: Yes. It alternates between states 1, 2, 3, 4, and 1.

H.1: All the shades of gray.

H.2: A yellow surface absorbs blue and reflects green and red.

H.3: Yes! These are three colors that produce white when mixed. Examples are
red, green, and blue; cyan, magenta, and yellow.

H.4: For point 1, it is easy to see that R = 0 and G = 1. Since it is on the U = 0
plane, where Y = B, it is easy to calculate that B = 0.663. For point 2 we have
R = 0 and B = 1. Since it is on the Y = 0.3 plane, we get G = 0.317. Similarly,
point 3 has R = 0 and the two equations Y = 0.3 and U = 0 are solved to yield
G = 0.453 and B = 0.3.

H.5: Because white isn’t a pure color; it is a mixture of all colors.

H.6: Recall that the sum of a dyad is white. Since illuminant white is in the
middle of the line connecting c and d, it is obtained by adding equal amounts of
them (0.5c + 0.5d). This is why they are complementary.

H.7: Saturation refers to the amount of white in a color. Point f corresponds
to full saturation, whereas illuminant white corresponds to no saturation. The
saturation of the color of point e is, therefore, the ratio of the distances fw/ew.

H.8: If we continue the line from w to g, it intercepts the pure spectral curve
at the bottom, an area that does not correspond to any wavelength. We therefore
continue the line in the opposite direction until it intercepts the pure spectral curve
at h and we say that the dominant wavelength of point g is 497c (where c stands
for “complement”).

H.9: Direct calculations using matrix D44 produce the areas in Figure Ans.64.
The three areas have black pixel percentages of 1/16, 2/16, and 16/16, respectively.

A[x, y] = 0 1 15

10001000. . .
00000000. . .
00000000. . .
00000000. . .

10001000. . .
00000000. . .
00100010. . .
00000000. . .

11111111. . .
11111111. . .
11111111. . .
11111111. . .

Figure Ans.64: Ordered Dither: Three Uniform Areas.

1042 Answers to Exercises

H.10: A direct application of Equation (H.2) yields

D88 =

0 32 8 40 2 34 10 42

48 16 56 24 50 18 58 26

12 44 4 36 14 46 6 38

60 28 52 20 62 30 54 22

3 35 11 43 1 33 9 41

51 19 59 27 49 17 57 25

15 47 7 39 13 45 5 37

63 31 55 23 61 29 53 21

.

H.11: A checkerboard pattern. This can be seen by manually simulating the
algorithm of Figure H.22b for a few pixels.

H.12: We assume that the test is
if p ≥ 0.5, then p := 1 else p := 0; add the error 0.5 − p to the next pixel q.

The first pixel is thus set to 1 and the error of 0.5−1 = −0.5 is added to the second
pixel, changing it from 0.5 to 0. The second pixel is set to 0 and the error, which is
0 − 0 = 0, is added to the third pixel, leaving it at 0.5. The third pixel is thus set
to 1 and the error of 0.5 − 1 = −0.5 is added to the fourth pixel, changing it from
0.5 to 0. The results are

.5 .5 .5 .5 .5→ 1 0 .5 .5 .5→ 1 0 1 0 .5→ 1 0 1 0 1

H.13: Direct examination shows that the barons are 62 and 63 and the near-barons
are 60 and 61.

H.14: A checkerboard pattern, similar to the one produced by diffusion dither.
This can be seen by manually executing the algorithm of Figure H.24 for a few
pixels.

H.15: Classes 14, 15, and 10 are barons. Classes 12 and 13 are near-barons. The
class numbers in positions (i, j) and (i, j + 2) add up to 15.

I.1: This is straightforward

A+B =


 8 10 12

8 10 12
8 10 12


 ,A−B =


−6 −6 −6

0 0 0
6 6 6


 ,A×B =


 18 24 30

54 69 84
90 114 138


 .

I.2: Equation (I.4) gives

T−1 =
1

1 · 1 − 1 · 1
(
· · ·

)
,

which is undefined. Matrix T is thus singular ; it does not have an inverse! This
becomes easy to understand when we think of T as the coefficients matrix of the

Answers to Exercises 1043

system of equations (I.3) above. This is a system of three equations in the three
unknowns x, y, and z, but its first two equations are contradictory. The first one
says that x − y equals 1, while the second one says that the same x − y equals −2.
Mathematically, such a system has a singular coefficients matrix.

I.3: This is easily proved by showing that both dot products (P×Q) • P and
(P×Q) • Q equal zero.

(P × Q) • P = P1(P2Q3 − P3Q2) + P2(−P1Q3 + P3Q1) + P3(P1Q2 − P2Q1) = 0.

And similarly for (P × Q) • Q.

I.4: In the special case where i = (1, 0, 0) and j = (0, 1, 0) it is easy to verify
that the product i× j equals (0, 0, 1) = k. The triplet (i, j, i × j = k) thus has
the handedness of the coordinate system (it is either right-handed or left-handed,
depending on the coordinate system). In a right-handed coordinate system, the
right hand rule makes it easy to predict the direction of P×Q. The rule is: if
your thumb points in the direction of P and your second finger, in the direction of
Q, then your middle finger will point in the direction of P×Q. In a left-handed
coordinate system, a similar left-hand rule applies.

I.5: They either have the same direction, or they point in opposite directions.

I.6: We are looking for a vector P(t) that is linear in t and that satisfies P(0) = P1

and P(1) = P2. It is easy to guess that

P(t) = (1 − t)P1 + tP2 = t(P2 − P1) + P1

satisfies both conditions.

I.7: This is not especially hard

c =
2 · 1 + 1 · 0 + 3 · (−1)

12 + 02 + (−1)2
(1, 0,−1) = (−1/2, 0, 1/2),

d =a − c = (2.5, 1, 2.5).

I.8: Because of the wide spread use of computers, the world of science and engi-
neering has moved from analog to digital. Instead of a continuous function f(t) we
now have an n-tuple (f1, f2, . . . , fn), and this is a vector (in n dimensions).

I.9: The multiplication rule yields (0, 1)×(0, 1) = (−1, 0) or i×i = −1. The strange
rule of complex number multiplication results in i2 = −1 or

√
−1 = i.

I.10: The multiplication rule yields (a, b)×(−a,−b) = (0, 0), which justifies calling
(−a,−b) the opposite of (a, b).

1044 Answers to Exercises

I.11: We start with i = cos(π/2) + i sin(π/2), from which we get

√
i =

(
cos

π

2
+ i sin

π

2

)1/2

.

By DeMoivre’s theorem, this equals

cos
π

4
+ i sin

π

4
=

1√
2

+ i
1√
2

=
1 + i√

2
. (Ans.3)

A simple check gives (
1 + i√

2

)2

=
1 + 2i + i2

2
= i.

(DeMoivre’s theorem states that sin(nx) + i cos(nx) is one of the values of (sinx +
i cos x)n.)

I.12: We start with the elegant formula

eit = cos t + i sin t.

Substituting t = π/2 yields

eiπ/2 = i sin(π/2) = i.

Both sides are now raised to the ith power, yielding

ii = (eiπ/2)i = ei2π/2 = e−π/2.

Surprisingly, this is a real number. In the past, calculating many digits of this
number (or others like it) involved years of toil. Today, however, the single Matlab
statement vpa(’i^i’,140) produces, in less than a second, the 140-digit number

0.20787 95763 50761 90854 69556 19834 97877 00338 77841
63176 96080 75135 88305 54198 77285 48213 97886 00277
86542 60353 40521 77330 72350 21808 19061 97303 74663
98700

Since a = exp(ln a) for any a, we also get

eln i = i = eiπ/2,

from which it is clear that ln i = iπ/2.
By the way, the exponential function ez is defined for any complex number

z = x + iy by

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+ · · · .

Answers to Exercises 1045

Leonhard Euler, the great Eighteenth century mathematician, intro-
duced the notation i for

√
−1 in 1777. It is interesting to note that electrical

engineers use the notation j instead, since they deal with electrical voltages
and currents and find it convenient to reserve i to indicate current.

I.13: The axiom and the production rules stay the same. Only the initial heading
and the turn angle change. The initial heading can be either 0 or 90◦, and the turn
angle either 90◦ or 270◦.

I.14: Such a polynomial depends on three coefficients b, c, and d that can be
considered three-dimensional points, and any three points are on the same plane.

I.15:
P(2/3) =(0,−9)(2/3)3 + (−4.5, 13.5)(2/3)2 + (4.5,−3.5)(2/3)

=(0,−8/3) + (−2, 6) + (3,−7/3)
=(1, 1) = P3

I.16: We use the relations sin 30◦ = cos 60◦ = .5 and the approximation cos 30◦ =
sin 60◦ ≈ .866. The four points are P1 = (1, 0), P2 = (cos 30◦, sin 30◦) = (.866, .5),
P3 = (.5, .866), and P4 = (0, 1). The relation A = N · P becomes




a
b
c
d


 = A = N · P =




−4.5 13.5 −13.5 4.5
9.0 −22.5 18 −4.5
−5.5 9.0 −4.5 1.0
1.0 0 0 0







(1, 0)
(.866, .5)
(.5, .866)

(0, 1)




and the solutions are

a = −4.5(1, 0) + 13.5(.866, .5) − 13.5(.5, .866) + 4.5(0, 1) = (.441,−.441),
b = 19(1, 0) − 22.5(.866, .5) + 18(.5, .866) − 4.5(0, 1) = (−1.485,−0.162),
c = −5.5(1, 0) + 9(.866, .5) − 4.5(.5, .866) + 1(0, 1) = (0.044, 1.603),
d = 1(1, 0) − 0(.866, .5) + 0(.5, .866) − 0(0, 1) = (1, 0).

The PC is thus P(t) = (.441,−.441)t3 +(−1.485,−0.162)t2 +(0.044, 1.603)t+(1, 0).
The midpoint is P(.5) = (.7058, .7058), only 0.2% away from the midpoint of the
arc, which is at (cos 45◦, sin 45◦) ≈ (.7071, .7071).

I.17: The new equations are easy enough to set up. Using Mathematica, they are
also easy to solve. The following code

Solve[{d==p1,
a al^3+b al^2+c al+d==p2,
a be^3+b be^2+c be+d==p3,
a+b+c+d==p4},{a,b,c,d}];

1046 Answers to Exercises

ExpandAll[Simplify[%]]

(where al and be stand for α and β, respectively) produces the (messy) solutions

a = −P1

αβ
+

P2

−α2 + α3 + αβ − α2β
+

P3

αβ − β2 − αβ2 + β3
+

P4

1 − α − β + αβ

b = P1

(
−α + α3 + β − α3β − β3 + αβ3

)
/γ + P2

(
−β + β3

)
/γ

+ P3

(
α − α3

)
/γ + P4

(
α3β − αβ3

)
/γ

c = −P1

(
1 +

1
α

+
1
β

)
+

βP2

−α2 + α3 + αβ − α2β

+
αP3

αβ − β2 − αβ2 + β3
+

αβP4

1 − α − β + αβ

d = P1.

where γ = (−1 + α)α(−1 + β)β(−α + β).

From here, the basis matrix immediately follows




− 1
αβ

1
−α2+α3αβ−α2β

1
αβ−β2−αβ2+β3

1
1−α−β+αβ

−α+α3+β−α3β−β3+αβ3

γ
−β+β3

γ
α−α3

γ
α3β−αβ3

γ

−
(
1 + 1

α + 1
β

)
β

−α2+α3+αβ−α2β
α

αβ−β2−αβ2+β3
αβ

1−α−β+αβ

1 0 0 0




A direct check, again using Mathematica, for α = 1/3 and β = 2/3, reduces this
matrix to matrix N of Equation (I.22).

I.18: The missing points will have to be estimated by interpolation or extrapo-
lation from the known points before our method can be applied. Obviously, the
fewer points are known, the worse the final interpolation. Note that 16 points are
necessary, since a bicubic polynomial has 16 coefficients.

I.19: Figure Ans.65a shows a diamond-shaped grid of 16 equally-spaced points.
The eight points with negative weights are shown in black. Figure Ans.65b shows a
cut (labeled xx) through four points in this surface. The cut is a curve that passes
through pour data points. It is easy to see that when the two exterior (black) points
are raised, the center of the curve (and, as a result, the center of the surface) gets
lowered. It is now clear that points with negative weights push the center of the
surface in a direction opposite that of the points.

Figure Ans.65c is a more detailed example that also shows why the four corner
points should have positive weights. It shows a simple symmetric surface patch that
interpolates the 16 points

P00 = (0, 0, 0), P10 = (1, 0, 1), P20 = (2, 0, 1), P30 = (3, 0, 0),
P01 = (0, 1, 1), P11 = (1, 1, 2), P21 = (2, 1, 2), P31 = (3, 1, 1),

Answers to Exercises 1047

(a)

x

x

(b)

1

2
3

0

1
2

3
0

0

1

2

0

1

2
3

0

1
2

3

2

0

1

0

1

2

3

0

1

2
3

1

2

(c) (d) (e)
Figure Ans.65: An Interpolating Bicubic Surface Patch.

P02 = (0, 2, 1), P12 = (1, 2, 2), P22 = (2, 2, 2), P32 = (3, 2, 1),
P03 = (0, 3, 0), P13 = (1, 3, 1), P23 = (2, 3, 1), P33 = (3, 3, 0).

We first raise the eight boundary points from z = 1 to z = 1.5. Figure Ans.65d shows
how the center point P(.5, .5) gets lowered from (1.5, 1.5, 2.25) to (1.5, 1.5, 2.10938).
We next return those points to their original positions and instead raise the four
corner points from z = 0 to z = 1. Figure Ans.65e shows how this raises the center
point from (1.5, 1.5, 2.25) to (1.5, 1.5, 2.26563).

the talk of the ordinary Englishman made me sick, I couldn’t get

enough exercise, and the amusements of London seemed as

flat as soda-water that has been standing in the sun.

John Buchan, 1915, The Thirty-nine Steps

1048 Answers to Exercises

Clear[Nh,p,pnts,U,W];
p00={0,0,0}; p10={1,0,1}; p20={2,0,1}; p30={3,0,0};
p01={0,1,1}; p11={1,1,2}; p21={2,1,2}; p31={3,1,1};
p02={0,2,1}; p12={1,2,2}; p22={2,2,2}; p32={3,2,1};
p03={0,3,0}; p13={1,3,1}; p23={2,3,1}; p33={3,3,0};
Nh={{-4.5,13.5,-13.5,4.5},{9,-22.5,18,-4.5},
{-5.5,9,-4.5,1},{1,0,0,0}};
pnts={{p33,p32,p31,p30},{p23,p22,p21,p20},
{p13,p12,p11,p10},{p03,p02,p01,p00}};
U[u_]:={u^3,u^2,u,1}; W[w_]:={w^3,w^2,w,1};
(* prt [i] extracts component i from the 3rd dimen of P *)
prt[i_]:=pnts[[Range[1,4],Range[1,4],i]];
p[u_,w_]:={U[u].Nh.prt[1].Transpose[Nh].W[w],
U[u].Nh.prt[2].Transpose[Nh].W[w], \
U[u].Nh.prt[3].Transpose[Nh].W[w]};
g1=ParametricPlot3D[p[u,w], {u,0,1},{w,0,1},
Compiled->False, DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2],
Table[Point[pnts[[i,j]]],{i,1,4},{j,1,4}]}];
Show[g1,g2, ViewPoint->{-2.576, -1.365, 1.718}]

Code For Figure Ans.65.

